1
|
Vinnikov V, Kochanova D, Vigašová K, Gulati S, Durdík M, Košík P, Marková E, Jakl L, Zastko L, Kontrišová K, Belyaev I. Dose-response curve for induction of unstable chromosome aberrations by 6 MV linear accelerator photons: Analysis of intra-experimental variations. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2025; 902:503849. [PMID: 40044372 DOI: 10.1016/j.mrgentox.2025.503849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 05/13/2025]
Abstract
Cytogenetic biodosimetry relies on dose-response curves (DRCs) for each type of radiation that can cause a radiation emergency. We have constructed a DRC based on the dicentric assay. Blood samples from four healthy volunteers were irradiated with acute 6 MV linac photons, 0.46-4.55 Gy; 0.68 and 1.37 Gy doses were used in the 'blind' validation study. Lymphocytes were cultured with variations in time delay in mitogenic stimulation after irradiation (2 vs. 16 h) and mitotic arrest by colchicine (3.5 vs. 16 h). Aberrations were scored in the first division metaphases, ensured by fluorescence-plus-Giemsa staining. DRCs for dicentrics and dicentrics plus centric rings were efficiently fitted using the linear-quadratic model. We show, for the first time, that neither prolonged mitotic arrest nor delayed mitogenic stimulation has any effect on DRC. However, the latter factor caused a significant increase in the yield of the second division metaphase in culture. Inter-donor differences in the DRC for aberrations were not large, but individual changes in the frequencies of second-division cells were highly variable. In the validation study, the DRC combined from all experimental series provided dose estimates that were as accurate as those, obtained using the donors' individual or culture-type specific DRCs. The DRC coefficients in present study were slightly higher than those reported previously for linac beams and close to values for orthovoltage X-rays. Further cytogenetic studies of megavoltage radiation beams require stringent standardization of experimental conditions.
Collapse
Affiliation(s)
- Volodymyr Vinnikov
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Dominika Kochanova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Katarína Vigašová
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Sachin Gulati
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Matúš Durdík
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Pavol Košík
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Eva Marková
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Lukáš Jakl
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Lucián Zastko
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic; Department of Laboratory Medicine, Faculty of Health Sciences, Catholic University in Ruzomberok, Ružomberok, Slovak Republic, KUR, Nám. A. Hlinku 48, Ružomberok 03401, Slovak Republic.
| | - Kristína Kontrišová
- Department of Radiation Oncology, St. Elisabeth Cancer Institute, Bratislava, Slovak Republic, OUSA, Heydukova 48, Bratislava 81250, Slovak Republic.
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| |
Collapse
|
2
|
Smith TL, Ryan TL, Escalona MB, Shuryak IE, Balajee AS. Application of FISH based G2-PCC assay for the cytogenetic assessment of high radiation dose exposures: Potential implications for rapid triage biodosimetry. PLoS One 2024; 19:e0312564. [PMID: 39453904 PMCID: PMC11508073 DOI: 10.1371/journal.pone.0312564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 10/27/2024] Open
Abstract
The main goal of this study is to test the utility of calyculin A induced G2-PCC assay as a biodosimetry triage tool for assessing a wide range of low and acute high radiation dose exposures of photons. Towards this initiative, chromosome aberrations induced by low and high doses of x-rays were evaluated and characterized in G2-prematurely condensed chromosomes (G2-PCCs) by fluorescence in situ hybridization (FISH) using human centromere and telomere specific PNA (peptide nucleic acid) probes. A dose dependent increase in the frequency of dicentric chromosomes was observed in the G2-PCCs up to 20 Gy of x-rays. The combined yields of dicentrics and rings in the G2-PCCs showed a clear dose dependency up to 20 Gy from 0.02/cell for 0.1 Gy to 14.98/cell for 20 Gy. Centric rings were observed more frequently than acentric ring chromosomes in the G2-PCCs at all the radiation doses from 1 Gy to 20 Gy. A head-to-head comparison was also performed by FISH on the yields of chromosome aberrations induced by different doses of x-rays (0 Gy -7.5 Gy) in colcemid arrested metaphase chromosomes and calyculin A induced G2-PCCs. In general, the frequencies of dicentrics, rings and acentric fragments were slightly higher in G2-PCCs than in colcemid arrested metaphase chromosomes at all the radiation doses, but the differences were not statistically significant. To reduce the turnaround time for absorbed radiation dose estimation, attempt was made to obtain G2-PCCs by reducing the culture time to 36 hrs. The absorbed doses estimated in x-rays irradiated (0,1,2 and 4 Gy) G2-PCCs after 36 hrs of culture were grossly like that of G2-PCCs and colcemid arrested metaphase chromosomes prepared after 48 hrs of culture. Our study indicates that the shortened version of calyculin A induced G2-PCC assay coupled with the FISH staining technique can serve as an effective triage biodosimetry tool for large-scale radiological/nuclear incidents.
Collapse
Affiliation(s)
- Tammy L. Smith
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| | - Terri L. Ryan
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| | - Maria B. Escalona
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| | - Igor E. Shuryak
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York, United States of America
| | - Adayabalam S. Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| |
Collapse
|
3
|
Yadav U, Bhat NN, Mungse US, Shirsath KB, Joshi M, Sapra BK. G 0-PCC-FISH derived multi-parametric biodosimetry methodology for accidental high dose and partial body exposures. Sci Rep 2024; 14:16103. [PMID: 38997265 PMCID: PMC11245508 DOI: 10.1038/s41598-024-65330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
High dose radiation exposures are rare. However, medical management of such incidents is crucial due to mortality and tissue injury risks. Rapid radiation biodosimetry of high dose accidental exposures is highly challenging, considering that they usually involve non uniform fields leading to partial body exposures. The gold standard, dicentric assay and other conventional methods have limited application in such scenarios. As an alternative, we propose Premature Chromosome Condensation combined with Fluorescent In-situ Hybridization (G0-PCC-FISH) as a promising tool for partial body exposure biodosimetry. In the present study, partial body exposures were simulated ex-vivo by mixing of uniformly exposed blood with unexposed blood in varying proportions. After G0-PCC-FISH, Dolphin's approach with background correction was used to provide partial body exposure dose estimates and these were compared with those obtained from conventional dicentric assay and G0-PCC-Fragment assay (conventional G0-PCC). Dispersion analysis of aberrations from partial body exposures was carried out and compared with that of whole-body exposures. The latter was inferred from a multi-donor, wide dose range calibration curve, a-priori established for whole-body exposures. With the dispersion analysis, novel multi-parametric methodology for discerning the partial body exposure from whole body exposure and accurate dose estimation has been formulated and elucidated with the help of an example. Dose and proportion dependent reduction in sensitivity and dose estimation accuracy was observed for Dicentric assay, but not in the two PCC methods. G0-PCC-FISH was found to be most accurate for the dose estimation. G0-PCC-FISH has potential to overcome the shortcomings of current available methods and can provide rapid, accurate dose estimation of partial body and high dose accidental exposures. Biological dose estimation can be useful to predict progression of disease manifestation and can help in pre-planning of appropriate & timely medical intervention.
Collapse
Affiliation(s)
- Usha Yadav
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Nagesh N Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Utkarsha S Mungse
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Kapil B Shirsath
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Manish Joshi
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Balvinder K Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
4
|
Meenakshi C, Venkatachalam P, Chandrasekaran S, Venkatraman B. Construction of dose response curve for 6 MV LINAC X-rays using Premature Chromosome Condensation assay for radiation dosimetry. Appl Radiat Isot 2021; 173:109729. [PMID: 33906115 DOI: 10.1016/j.apradiso.2021.109729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Quantification of chromosomal aberrations in the exposed personnel blood samples is considered as a 'gold standard' and sensitive biomarker in biological dosimetry. Despite technological developments, culture of cells for 48-52 h remains an unmet need in case of triage biodosimetry. Moreover, it is difficult to get sufficient number of metaphase spreads for scoring after high doses of exposures. The technique which causes condensation of chromatin before mitosis using biological or chemical agent is named as Premature Chromosome Condensation (PCC) assay. This assay is considered as an alternative to chromosome aberration assay, particularly at high acute doses of low and high LET radiation. To establish the PCC assay, blood samples were collected from healthy non-smoking individuals (n = 3) and exposed to various doses (0-20 Gy) of 6 MV X-rays at a dose rate of 5.6 Gy/min, using a high energy Linear accelerator (LINAC). Irradiated blood samples were subjected to Calyculin-A induced PCC. About 500 cells or more than 100 Ring Chromosomes (RC) were scored at each dose. Dicentric chromosomes (DC) and acentric fragments were also scored at each dose; the number of chromosomal aberrations in G1, M, G2/M and M/A phase of cell cycle were recorded and the frequency was used to construct the dose response curve. A dose dependent increase in RC and DC frequency were observed with a slope of 0.049 ± 0.002 and 0.30 ± 0.02 respectively. This study is first of its kind to construct a dose response curve for LINAC X-rays using a PCC assay.
Collapse
Affiliation(s)
- C Meenakshi
- Human Genetics Department, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamilnadu, India
| | - P Venkatachalam
- Human Genetics Department, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamilnadu, India.
| | - S Chandrasekaran
- Health, Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu, India
| | - B Venkatraman
- Health, Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu, India
| |
Collapse
|
5
|
Sun M, Moquet J, Lloyd D, Ainsbury E. A faster and easier biodosimetry method based on calyculin A-induced premature chromosome condensation (PCC) by scoring excess objects. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2020; 40:892-905. [PMID: 32590374 DOI: 10.1088/1361-6498/aba085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dicentric analysis and the ring PCC assay as established biodosimetry methods both have limitations in the estimation of absorbed doses in suspected overexposure cases between 5 and 10 Gy. The proposed method based on calyculin A-induced PCC overcomes these limitations by scoring excess objects as the endpoint. This new scoring method can potentially serve as a faster and up-scalable approach that complements the existing methods with higher accuracy at different dose ranges. It can also potentially be performed by less skilled workers when no automated system is available in mass casualty emergency cases to assist with the triage of patients. Additionally, it offers the possibility to further reduce the sample size and PCC induction time. In this pilot study, a calibration curve for excess objects was constructed using the new scoring method for the first time and a blind validation test composed of three unknown doses was carried out. Almost all the dose estimates were within the 95% confidence limits of the actual test doses by scoring only 50-100 PCC spreads. This method was found to be more accurate than ring PCC for doses below 10 Gy.
Collapse
|
6
|
Yadav U, Bhat NN, Shirsath KB, Mungse US, Sapra BK. Multifaceted applications of pre-mature chromosome condensation in radiation biodosimetry. Int J Radiat Biol 2020; 96:1274-1280. [PMID: 32689847 DOI: 10.1080/09553002.2020.1798545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Biodosimetry with persistent cytogenetic indicators in peripheral blood lymphocytes (PBLs) plays crucial role in regulatory/medical management of individuals overexposed to radiation. Conventional methods require ∼48 h culture and have limited dose range (0.1-5Gy) applications due to checkpoint arrest/poor stimulation. G0-Phase Premature chromosome condensation (G0-PCC) allows chromosome aberration analysis within hours after blood collection. Due to high skill demand, applications of G0-PCC were not very well explored and being re-visited worldwide. Among all aberrations, analysis of excess chromosomal fragments is quickest. Radiation dose response curve for the fragments has been reported. PURPOSE In present study, excess fragment analysis has been addressed in detail, in addition to validation of radiation dose response curve, gender variation in the response, dose dependent repair kinetics, minimum detection limit (MDL), duration and accuracy of final dose estimation with 5blindfolded, ex vivo irradiated samples have been studied. In extension, feasibility of multiparametric dosimetry with Fluorescent in situ hybridization (FISH) based endpoints were qualitatively explored. MATERIAL AND METHODS PBLs were exposed to Gamma-Radiation and G0-PCC was performed at different time points. Decay kinetics and dose response curve were established. Gender Variation of the frequency of the fragments was assessed at 0, 2 and 4 Gy. FISH was performed with G0-PCC applying centromere probe, whole chromosome paints, multi-color FISH and multi-color banding probes. RESULTS Radiation response curve for fragments was found to be linear (Slope 1.09 ± 0.031 Gy-1). Background frequency as well as dose response did not show significant gender bias. Based on variation in background frequency of fragments MDL was calculated to be ∼0.3 Gy. Kinetics of fragment tested at 0, 4, 8, 16 and 24 h showed exponential decay pattern from 0 to 8 h and without further decay. Final dose estimation of five samples was completed within 13 man-hours. Dicentric chromosomes, translocations, insertions and breaks were identifiable in combination with centromere FISH and WCP. Advanced methods employing multicolor FISH and multi-color banding were also demonstrated with PCC spreads. CONCLUSION G0-PCC, can be useful tool for high dose biodosimetry with quick assessment of fragment frequency. Further, it holds potential for multi-parametric dosimetry in combination with FISH.
Collapse
Affiliation(s)
- Usha Yadav
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Nagesh Nagabhushana Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | | | - Utkarsha Sagar Mungse
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Balvinder Kaur Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
7
|
Sun M, Moquet J, Barnard S, Lloyd D, Ainsbury E. A Simplified Calyculin A-Induced Premature Chromosome Condensation (PCC) Protocol for the Biodosimetric Analysis of High-Dose Exposure to Gamma Radiation. Radiat Res 2020; 193:560-568. [PMID: 32216709 DOI: 10.1667/rr15538.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/26/2020] [Indexed: 11/03/2022]
Abstract
Chemical-induced premature chromosome condensation (PCC) is an alternative biodosimetry method to the gold-standard dicentric analysis for ionizing radiation. However, existing literature shows great variations in the experimental protocols which, together with the different scoring criteria applied in individual studies, result in large discrepancies in the coefficients of the calibration curves. The current study is based on an extensive review of the peer-reviewed literature on the chemical-induced ring PCC (rPCC) assay for high-dose exposure. For the first time, a simplified yet effective protocol was developed and tested in an attempt to reduce the scoring time and to increase the accuracy of dose estimation. Briefly, the protein phosphatase inhibitor, calyculin A, was selected over okadaic acid for higher efficiency. Colcemid block was omitted and only G2-PCC cells were scored. Strict scoring criteria for total rings and hollow rings only were described to minimize the uncertainty resulting from scoring ring-like artefacts. It was found that ring aberrations followed a Poisson distribution and the dose-effect relationship favored a linear fit with an α value of 0.0499 ± 0.0028 Gy-1 for total rings and 0.0361 ± 0.0031 Gy-1 for hollow rings only. The calibration curves constructed by scoring ring aberrations were directly compared between the simplified calyculin A-induced PCC protocol and that of the cell fusion-induced PCC for high-dose exposure to gamma rays. The technical practicalities of these two methods were also compared; and our blind validation tests showed that both assays were feasible for high-dose γ-ray exposure assessment even when only hollow rings in 100 PCC spreads were scored.
Collapse
Affiliation(s)
- Mingzhu Sun
- Radiation Effects Department, Public Health England (PHE), Didcot, United Kingdom
| | - Jayne Moquet
- Radiation Effects Department, Public Health England (PHE), Didcot, United Kingdom
| | - Stephen Barnard
- Radiation Effects Department, Public Health England (PHE), Didcot, United Kingdom
| | - David Lloyd
- Radiation Effects Department, Public Health England (PHE), Didcot, United Kingdom
| | - Elizabeth Ainsbury
- Radiation Effects Department, Public Health England (PHE), Didcot, United Kingdom
| |
Collapse
|
8
|
Sun M, Moquet J, Barnard S, Lloyd D, Ainsbury E. Scoring rings in the cell fusion-induced premature chromosome condensation (PCC) assay for high dose radiation exposure estimation after gamma-ray exposure. Int J Radiat Biol 2019; 95:1259-1267. [DOI: 10.1080/09553002.2019.1625465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mingzhu Sun
- Department of Radiation Effects, Public Health England, Didcot, UK
| | - Jayne Moquet
- Department of Radiation Effects, Public Health England, Didcot, UK
| | - Stephen Barnard
- Department of Radiation Effects, Public Health England, Didcot, UK
| | - David Lloyd
- Department of Radiation Effects, Public Health England, Didcot, UK
| | | |
Collapse
|
9
|
Guerrero-Carbajal C, Romero-Aguilera I, Arceo-Maldonado C, Gonzalez-Mesa JE, Cortina-Ramirez GE, Garcia-Lima O. Dose response of prematurely condensed chromosome rings after gamma irradiation. Int J Radiat Biol 2019; 95:607-610. [DOI: 10.1080/09553002.2019.1566677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | | | | | | | | | - Omar Garcia-Lima
- Centro de Protección e Higiene de las Radiaciones (CPHR), La Habana, Cuba
| |
Collapse
|