1
|
Horie M, Sugino S, Fujita K, Endoh S, Maru J, Matsuzawa T, Ogura I. Evaluation of inflammatory and mesothelioma-related responses in mice following the intraperitoneal administration of cellulose nanofibers. NANOIMPACT 2025; 38:100561. [PMID: 40355086 DOI: 10.1016/j.impact.2025.100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/30/2025] [Accepted: 04/18/2025] [Indexed: 05/14/2025]
Abstract
Mesothelioma can develop from long-term exposure to fine fibrous materials including asbestos and carbon nanotubes, and chronic inflammation is critical for its development. Inflammatory responses and key related markers associated with the development of mesothelioma were evaluated over time in relation to cellulose nanofibers (CNFs), which are being developed as new plant-derived materials, for the purpose of risk management Three types of CNFs, mechanically fibrillated CNFs, TEMPO-oxidized CNFs, and phosphorylated CNFs, were administered intraperitoneally to mice at doses of 0.1 and 1.0 mg per animal, and progress was observed for up to 2 years. In the group receiving mechanically fibrillated CNFs, white substances were observed adhering to the liver surface throughout the observation period. This white substance was presumed to be cellulose. Some CNFs have been shown to persist in the body. During this period, inflammation markers and mesothelioma-related markers were evaluated at 1, 2, and 6 months, and 1, and 2 years after administration. No significant symptoms were observed in animals administered one of the three types of CNFs intraperitoneally during the observation period. Inflammatory markers in the peritoneal lavage fluid remained below the detection limit throughout the entire observation period. Additionally, no significant increase in blood levels of mesothelioma or the major related markers mesothelin, osteopontin, or HMGB1 was observed. In this study, although some CNFs remained in the body, no inflammatory response was observed in vivo under the concentration conditions and observation periods used. Furthermore, no evidence of long-term effects, such as cancer, was found.
Collapse
Affiliation(s)
- Masanori Horie
- Health and Medical Research Institute (HMRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan.
| | - Sakiko Sugino
- Health and Medical Research Institute (HMRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan
| | - Katsuhide Fujita
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan
| | - Shigehisa Endoh
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan
| | - Junko Maru
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan
| | - Tomohiko Matsuzawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Isamu Ogura
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
2
|
Alfei S, Zuccari G. Last Fifteen Years of Nanotechnology Application with Our Contribute. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:265. [PMID: 39997828 PMCID: PMC11858446 DOI: 10.3390/nano15040265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025]
Abstract
Currently, nanotechnology is the most promising science, engineering, and technology conducted at the nanoscale (nm), which is used in several sectors. Collectively, nanotechnology is causing a new industrial revolution, and nano-based products are becoming increasingly important for the global market and economy. The interest in nanomaterials has been strongly augmented during the last two decades, and this fact can be easily evaluated by considering the number of studies present in the literature. In November 2024, they accounted for 764,279 experimental studies developed in the years 2009-2024. During such a period, our group contributed to the field of applicative nanotechnology with several experimental and review articles, which we hope could have relevantly enhanced the knowledge of the scientific community. In this new publication, an exhaustive overview regarding the main types of developed nanomaterials, the characterization techniques, and their applications has been discussed. Particular attention has been paid to nanomaterials employed for the enhancement of bioavailability and delivery of bioactive molecules and to those used for ameliorating traditional food packaging. Then, we briefly reviewed our experimental studies on the development of nanoparticles (NPs), dendrimers, micelles, and liposomes for biomedical applications by collecting inherent details in a reader-friendly table. A brief excursus about our reviews on the topic has also been provided, followed by the stinging question of nanotoxicology. Indeed, although the application of nanotechnology translates into a great improvement in the properties of non-nanosized pristine materials, there may still be a not totally predictable risk for humans, animals, and the environment associated with an extensive application of NPs. Nanotoxicology is a science in rapid expansion, but several sneaky risks are not yet fully disclosed. So, the final part of this study discusses the pending issue related to the possible toxic effects of NPs and their impact on customers' acceptance in a scenario of limited knowledge.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Via Cembrano 4, 16148 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Via Cembrano 4, 16148 Genoa, Italy;
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| |
Collapse
|
3
|
Zheng L, Li J, Huang J, Feng W, Zhan Y, Liu D. Near Real-Time Measurement of Airborne Carbon Nanotubes with Metals Using Raman-Spark Emission Spectroscopy. APPLIED SPECTROSCOPY 2025:37028241307258. [PMID: 39772927 DOI: 10.1177/00037028241307258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
We present a near real-time measurement method that combines Raman and spark emission spectroscopy to quantitatively analyze the molecular structure of airborne single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), as well as detect toxic metals within CNTs. A corona-based aerosol microconcentrator was used for airborne CNTs sampling to enhance the measurement accuracy and sensitivity. The intensity of the characteristic Raman bands of CNTs and atomic emission lines of metals exhibited a linear relationship with the analyte mass, yielding high coefficient R2 values. By carefully selecting appropriate signal peaks for calibration, we achieved a limit of detection (LOD) in terms of air concentration as low as 0.09 μg/m3 for SWCNT and 0.81 μg/m3 for MWCNT with a sampling time of 10 min. Additionally, our method exhibited excellent performance in measuring metals, with a mass LOD of 0.8-0.9 ng for Co and Ni and a mass LOD of 35.09 ng for Fe. The method performed well for the measurement of CNT and relevant metal composition with advantages of near real-time monitoring, low LOD, and portable use, making it a valuable tool for various applications in nanomaterial analysis.
Collapse
Affiliation(s)
- Lina Zheng
- Jiangsu Engineering Research Center for Dust Control and Occupational Protection, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Jialin Li
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Jing Huang
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Wenting Feng
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Yuhan Zhan
- School of Architecture and Design, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Dou Liu
- Jiangsu Engineering Research Center for Dust Control and Occupational Protection, China University of Mining and Technology, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Bartone RD, Tisch LJ, Dominguez J, Payne CK, Bonner JC. House Dust Mite Proteins Adsorb on Multiwalled Carbon Nanotubes Forming an Allergen Corona That Intensifies Allergic Lung Disease in Mice. ACS NANO 2024. [PMID: 39259863 PMCID: PMC11440643 DOI: 10.1021/acsnano.4c07893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The increasing use of multiwalled carbon nanotubes (MWCNTs) could increase the risk of allergic lung disease in occupational or consumer settings. We previously reported that MWCNTs exacerbated allergic lung disease in mice induced by extract from house dust mites (HDM), a common cause of asthma in humans. Because MWCNTs avidly bind biomolecules to form protein coronas that can modify immunotoxicity, we hypothesized that exacerbation of allergic lung disease in mice caused by coexposure to MWCNTs and HDM extract was due to the formation of an allergen corona. In a first set of experiments, male and female C57BL/6J mice were coexposed to MWCNTs and HDM extract over 3 weeks compared to MWCNTs or HDM extract alone. In a second set of experiments, mice were exposed to pristine MWCNTs or MWCNTs with an HDM allergen corona (HDM-MWCNTs). HDM-MWCNTs were formed by incubating MWCNTs with HDM extract, where ∼7% of proteins adsorbed to MWCNTs, including Der p 1 and Der p 2. At necropsy, bronchoalveolar lavage fluid was collected from lungs to assess lactate dehydrogenase, total protein and inflammatory cells, while lung tissue was used for histopathology, qPCR, and Western blotting. Compared to MWCNTs or HDM extract alone, coexposure to MWCNTs and HDM extract or exposure to HDM-MWCNTs increased pathological outcomes associated with allergic lung disease (eosinophilia, fibrosis, mucous cell metaplasia), increased mRNAs associated with fibrosis (Col1A1, Arg1) and enhanced STAT6 phosphorylation in lung tissue. These findings indicated that exacerbation of HDM-induced allergic lung disease by MWCNTs is due to an allergen corona.
Collapse
Affiliation(s)
- Ryan D Bartone
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Logan J Tisch
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Judith Dominguez
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Christine K Payne
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - James C Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
5
|
Chen X, Zhang L, Yu C, Duan A, Jiao B, Chen Y, Dai Y, Li B. The role of HMGB1 on SiC NPs-induced inflammation response in lung epithelial-macrophage co-culture system. Food Chem Toxicol 2024; 190:114762. [PMID: 38871110 DOI: 10.1016/j.fct.2024.114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
In recent years, carbonized silicon nanoparticles (SiC NPs) have found widespread scientific and engineering applications, raising concerns about potential human health risks. SiC NPs may induce pulmonary damage through sustained inflammatory responses and oxidative stress, with unclear toxicity mechanisms. This study uses an in vitro co-culture model of alveolar macrophages (NR8383) and alveolar epithelial cells (RLE-6TN) to simulate the interaction between airway epithelial cells and immune cells, providing initial insights into SiC NP-triggered inflammatory responses. The research reveals that increasing SiC NP exposure prompts NR8383 cells to release high mobility group box 1 protein (HMGB1), which migrates into RLE-6TN cells and activates the receptor for advanced glycation end-products (RAGE) and Toll-like receptor 4 (TLR4). RAGE and TLR4 synergistically activate the MyD88/NF-κB inflammatory pathway, ultimately inducing inflammatory responses and oxidative stress in RLE-6TN cells, characterized by excessive ROS generation and altered cytokine levels. Pretreatment with RAGE and TLR4 inhibitors attenuates SiC-induced HMGB1 expression and downstream pathway proteins, reducing inflammatory responses and oxidative damage. This highlights the pivotal role of RAGE-TLR4 crosstalk in SiC NP-induced pulmonary inflammation, providing insights into SiC NP cytotoxicity and nanomaterial safety guidelines.
Collapse
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Linyuan Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Changyan Yu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Airu Duan
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Bo Jiao
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yuanyuan Chen
- Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yufei Dai
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China; Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| | - Bin Li
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| |
Collapse
|
6
|
Gendron D, Bubak G. Carbon Nanotubes and Graphene Materials as Xenobiotics in Living Systems: Is There a Consensus on Their Safety? J Xenobiot 2023; 13:740-760. [PMID: 38132708 PMCID: PMC10744618 DOI: 10.3390/jox13040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Carbon nanotubes and graphene are two types of nanomaterials that have unique properties and potential applications in various fields, including biomedicine, energy storage, and gas sensing. However, there is still a debate about the safety of these materials, and there is yet to be a complete consensus on their potential risks to human health and the environment. While some studies have provided recommendations for occupational exposure limits, more research is needed to fully understand the potential risks of these materials to human health and the environment. In this review, we will try to summarize the advantages and disadvantages of using carbon nanotubes and graphene as well as composites containing them in the context of their biocompatibility and toxicity to living systems. In addition, we overview current policy guidelines and technical regulations regarding the safety of carbon-based nanomaterials.
Collapse
Affiliation(s)
- David Gendron
- Kemitek, Cégep de Thetford, 835 Rue Mooney, Thetford Mines, QC G6G 0A5, Canada
| | - Grzegorz Bubak
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland;
| |
Collapse
|
7
|
Sato K, Fukui H, Hagiwara Y, Ogawa R, Nishioka A, Numano T, Sugiyama T, Kawabe M, Mera Y, Yoneda T. Difference in carcinogenicities of two different vapor grown carbon fibers with different physicochemical characteristics induced by intratracheal instillation in rats. Part Fibre Toxicol 2023; 20:37. [PMID: 37770972 PMCID: PMC10537556 DOI: 10.1186/s12989-023-00547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Carbon fibers are high aspect ratio structures with diameters on the submicron scale. Vapor grown carbon fibers are contained within multi-walled carbon tubes, with VGCF™-H commonly applied as a conductive additive in lithium-ion batteries. However, several multi-walled carbon fibers, including MWNT-7, have been reported to induce lung carcinogenicity in rats. This study investigated the carcinogenic potential of VGCF™-H fibers in F344 rats of both sexes with the vapor grown carbon fibers VGCF™-H and MWNT-7 over 2 years. The carbon fibers were administered to rats by intratracheal instillation at doses of 0, 0.016, 0.08, and 0.4 mg/kg (total doses of 0, 0.128, 0.64, and 3.2 mg/kg) once per week for eight weeks and the rats were observed for up to 2 years after the first instillation. RESULTS Histopathological examination showed the induction of malignant mesothelioma on the pleural cavity with dose-dependent increases observed at 0, 0.128, 0.64, and 3.2 mg/kg in rats of both sexes that were exposed to MWNT-7. On the other hand, only two cases of pleural malignant mesothelioma were observed in the VGCF™-H groups; both rats that received 3.2 mg/kg in male. The animals in the MWNT-7 groups either died or became moribund earlier than those in the VGCF™-H groups, which is thought related to the development of malignant mesothelioma. The survival rates were higher in the VGCF™-H group, and more carbon fibers were observed in the pleural lavage fluid (PLF) of the MWNT-7 groups. These results suggest that malignant mesothelioma is related to the transfer of carbon fibers into the pleural cavity. CONCLUSIONS The intratracheal instillation of MWNT-7 clearly led to carcinogenicity in both male and female rats at all doses. The equivocal evidence for carcinogenic potential that was observed in male rats exposed to VGCF™-H was not seen in the females. The differences in the carcinogenicities of the two types of carbon fibers are thought due to differences in the number of carbon fibers reaching the pleural cavity. The results indicate that the carcinogenic activity of VGCF™-H is lower than that of MWNT-7.
Collapse
Affiliation(s)
- Kei Sato
- Chemical Management Department, Resonac Corporation, Tokyo Shiodome Bldg.,1-9-1, Higashi-Shimbashi, Minato-ku, Tokyo, 105-7325, Japan.
| | - Hiroko Fukui
- Chemical Management Department, Resonac Corporation, Tokyo Shiodome Bldg.,1-9-1, Higashi-Shimbashi, Minato-ku, Tokyo, 105-7325, Japan
| | - Yuji Hagiwara
- Chemical Management Department, Resonac Corporation, Tokyo Shiodome Bldg.,1-9-1, Higashi-Shimbashi, Minato-ku, Tokyo, 105-7325, Japan
| | - Ryoji Ogawa
- Chemical Management Department, Resonac Corporation, Tokyo Shiodome Bldg.,1-9-1, Higashi-Shimbashi, Minato-ku, Tokyo, 105-7325, Japan
| | - Ayako Nishioka
- Chemical Management Department, Resonac Corporation, Tokyo Shiodome Bldg.,1-9-1, Higashi-Shimbashi, Minato-ku, Tokyo, 105-7325, Japan
| | - Takamasa Numano
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi, 491-0113, Japan
| | - Taiki Sugiyama
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi, 491-0113, Japan
| | - Mayumi Kawabe
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi, 491-0113, Japan
| | - Yukinori Mera
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi, 491-0113, Japan
| | - Tadashi Yoneda
- Chemical Management Department, Resonac Corporation, Tokyo Shiodome Bldg.,1-9-1, Higashi-Shimbashi, Minato-ku, Tokyo, 105-7325, Japan
| |
Collapse
|
8
|
Kasai T, Fukushima S. Exposure of Rats to Multi-Walled Carbon Nanotubes: Correlation of Inhalation Exposure to Lung Burden, Bronchoalveolar Lavage Fluid Findings, and Lung Morphology. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2598. [PMID: 37764628 PMCID: PMC10536709 DOI: 10.3390/nano13182598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
To evaluate lung toxicity due to inhalation of multi-walled carbon nanotubes (MWCNTs) in rats, we developed a unique MWCNT aerosol generator based on dry aerosolization using the aerodynamic cyclone principle. Rats were exposed to MWNT-7 (also known as Mutsui-7 and MWCNT-7) aerosolized using this device. We report here an analysis of previously published data and additional unpublished data obtained in 1-day, 2-week, 13-week, and 2-year inhalation exposure studies. In one-day studies, it was found that approximately 50% of the deposited MWNT-7 fibers were cleared the day after the end of exposure, but that clearance of the remaining fibers was markedly reduced. This is in agreement with the premise that the rapidly cleared fibers were deposited in the ciliated airways while the slowly cleared fibers were deposited beyond the ciliated airways in the respiratory zone. Macrophage clearance of MWNT-7 fibers from the alveoli was limited. Instead of macrophage clearance from the alveoli, containment of MWNT-7 fibers within induced granulomatous lesions was observed. The earliest changes indicative of pulmonary toxicity were seen in the bronchoalveolar lavage fluid. Macrophage-associated inflammation persisted from the one-day exposure to MWNT-7 to the end of the two-year exposure period. Correlation of lung tumor development with MWNT-7 lung burden required incorporating the concept of area under the curve for the duration of the study; the development of lung tumors induced by MWNT-7 correlated with lung burden and the duration of MWNT-7 residence in the lung.
Collapse
Affiliation(s)
- Tatsuya Kasai
- Japan Bioassay Research Center (JBRC), Japan Organization of Occupational Health and Safety, Hadano 257-0015, Japan
| | | |
Collapse
|
9
|
Hojo M, Maeno A, Sakamoto Y, Yamamoto Y, Taquahashi Y, Hirose A, Suzuki J, Inomata A, Nakae D. Time-Course of Transcriptomic Change in the Lungs of F344 Rats Repeatedly Exposed to a Multiwalled Carbon Nanotube in a 2-Year Test. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2105. [PMID: 37513116 PMCID: PMC10383707 DOI: 10.3390/nano13142105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Despite intensive toxicological studies of carbon nanotubes (CNTs) over the last two decades, only a few studies have demonstrated their pulmonary carcinogenicities in chronic animal experiments, and the underlying molecular mechanisms are still unclear. To obtain molecular insights into CNT-induced lung carcinogenicity, we performed a transcriptomic analysis using a set of lung tissues collected from rats in a 2-year study, in which lung tumors were induced by repeated intratracheal instillations of a multiwalled carbon nanotube, MWNT-7. The RNA-seq-based transcriptome identified a large number of significantly differentially expressed genes at Year 0.5, Year 1, and Year 2. Ingenuity Pathway Analysis revealed that macrophage-elicited signaling pathways such as phagocytosis, acute phase response, and Toll-like receptor signaling were activated throughout the experimental period. At Year 2, cancer-related pathways including ERBB signaling and some axonal guidance signaling pathways such as EphB4 signaling were perturbed. qRT-PCR and immunohistochemistry indicated that several key molecules such as Osteopontin/Spp1, Hmox1, Mmp12, and ERBB2 were markedly altered and/or localized in the preneoplastic lesions, suggesting their participation in the induction of lung cancer. Our findings support a scenario of inflammation-induced carcinogenesis and contribute to a better understanding of the molecular mechanism of MWCNT carcinogenicity.
Collapse
Affiliation(s)
- Motoki Hojo
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Ai Maeno
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Yoshimitsu Sakamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Yukio Yamamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Yuhji Taquahashi
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Akihiko Hirose
- Chemicals Assessment and Research Center, Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Jin Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Akiko Inomata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Dai Nakae
- Department of Medical Sports, Faculty of Health Care and Medical Sports, Teikyo Heisei University, 4-1 Uruido-Minami, Ichihara 290-0193, Chiba, Japan
| |
Collapse
|
10
|
Hautanen V, Morikka J, Saarimäki LA, Bisenberger J, Toimela T, Serra A, Greco D. The in vitro immunomodulatory effect of multi-walled carbon nanotubes by multilayer analysis. NANOIMPACT 2023; 31:100476. [PMID: 37437691 DOI: 10.1016/j.impact.2023.100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/17/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
The study of multi-walled carbon nanotube (MWCNT) induced immunotoxicity is crucial for determining hazards posed to human health. MWCNT exposure most commonly occurs via the airways, where macrophages are first line responders. Here we exploit an in vitro assay, measuring dose-dependent secretion of a wide panel of cytokines, as a measure of immunotoxicity following the non-lethal, multi-dose exposure (IC5, IC10 and IC20) to 7 MWCNTs with different intrinsic properties. We find that a tangled structure, and small aspect ratio are key properties predicting MWCNT induced immunotoxicity, mediated predominantly by IL1B cytokine secretion. To assess the mechanism of action giving rise to MWCNT immunotoxicity, transcriptomics analysis was linked to cytokine secretion in a multilayer model established through correlation analysis across exposure concentrations. This reinforced the finding that tangled MWCNTs have greater immunomodulatory potency, displaying enrichment of immune system, signal transduction and pattern recognition associated pathways. Together our results further elucidate how structure, length and aspect ratio, critical intrinsic properties of MWCNTs, are tied to immunotoxicity.
Collapse
Affiliation(s)
- Veera Hautanen
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland; Institute of Biotechnology, University of Helsinki, P.O.Box 56, Helsinki, Uusimaa 00014, Finland
| | - Jack Morikka
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Laura Aliisa Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Jan Bisenberger
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Tarja Toimela
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Angela Serra
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland; Tampere Institute for Advanced Study, Tampere University, Kalevantie 4, Tampere 33100, Finland
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland; Institute of Biotechnology, University of Helsinki, P.O.Box 56, Helsinki, Uusimaa 00014, Finland; Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
11
|
Janosikova M, Nakladalova M, Stepanek L. Current causes of mesothelioma: how has the asbestos ban changed the perspective? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2023. [PMID: 36883200 DOI: 10.5507/bp.2023.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
The association of mesothelioma, a lethal lung disease, with asbestos has led to an absolute ban on asbestos in at least 55 countries worldwide. The purpose of this paper is to review residual exposure to asbestos as well as other emerging causes of mesothelioma outside asbestos. The review provides detailed description of asbestos minerals, their geographical locations, mesothelioma in these areas, as well as contemporary possible sources of asbestos exposure. Second, we examine other emerging causes of mesothelioma including: ionizing radiation as the second most important risk factor after asbestos, particularly relevant to patients undergoing radiotherapy, third, carbon nanotubes which are under investigation and fourth, Simian virus 40. In the case of asbestos per se, the greatest risk is from occupational exposure during mining and subsequent processing. Of the non-occupational exposures, environmental exposure is most serious, followed by exposure from indoor asbestos minerals and secondary familial exposure. Overall, asbestos is still a major risk factor, but alternative causes should not be neglected, especially in young people, in women and those with a history of radiotherapy or living in high-risk locations.
Collapse
Affiliation(s)
- Magdalena Janosikova
- Department of Occupational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czech Republic
| | - Marie Nakladalova
- Department of Occupational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czech Republic
| | - Ladislav Stepanek
- Department of Occupational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czech Republic
| |
Collapse
|
12
|
Domenech J, Annangi B, Marcos R, Hernández A, Catalán J. Insights into the potential carcinogenicity of micro- and nano-plastics. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 791:108453. [PMID: 36739075 DOI: 10.1016/j.mrrev.2023.108453] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
There is a growing concern regarding the potential health effects that continuous exposure to environmental micro- and nano-plastics (MNPLs) may cause on humans. Due to their persistent nature, MNPLs may accumulate in different organs and tissues and may induce in the long term the development of cancer. The present study aimed to review the existing literature on the carcinogenic potential of MNPLs. As studies directly assessing carcinogenicity were expected to be scarce, studies dealing with indirect outcomes associated with the carcinogenic process were considered in the literature search. Of the 126 studies screened, 19 satisfied the inclusion criteria. Besides, 7 additional cross-referenced articles, identified through a careful reading of the previously selected papers, also met the inclusion criteria and, consequently, were included in the review. Most of the selected studies were performed using in vitro models whereas about 40% of the studies were done in rodents, although none of them included a 2-year carcinogenicity assay. Most of the reviewed studies pointed out the potential of MNPLs to induce inflammation and genotoxicity, the latter being recognized as a strong predictor of carcinogenicity. These, along with other important findings such as the MNPLs' ability to accumulate into cells and tissues, or their capacity to induce fibrosis, may suggest an association between MNPLs exposures and the carcinogenic potential. Nevertheless, the limited number of available studies precludes reaching clear conclusions. Therefore, this review also provides several recommendations to cover the current knowledge gaps and address the future evaluation of the MNPLs' carcinogenic risk.
Collapse
Affiliation(s)
- Josefa Domenech
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, Helsinki 00032, Finland
| | - Balasubramanyam Annangi
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Julia Catalán
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, Helsinki 00032, Finland; Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain.
| |
Collapse
|
13
|
Belitsky GA, Kirsanov KI, Lesovaya EA, Yakubovskaya MG. Mechanisms of the carcinogenicity of nanomaterials. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-4-8-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials become more widespread in the different areas of human life, forming the new technosphere philosophy, in particular, new approaches for development and usage of these materials in everyday life, manufacture, medicine etc.The physicochemical characteristics of nanomaterials differ significantly from the corresponding indicators of aggregate materials and at least some of them are highly reactive and / or highly catalytic. This suggests their aggressiveness towards biological systems, including involvement in carcinogenesis. The review considers the areas of use of modern nanomaterials, with special attention paid to the description of medicine production using nanotechnologies, an analysis of the mechanisms of action of a number of nanomaterials already recognized as carcinogenic, and also presents the available experimental and mechanistic data obtained from the study of the carcinogenic / procarcinogenic effects of various groups of nanomaterials currently not classified as carcinogenic to humans.Preparing the review, information bases of biomedical literature were analysed: Scopus (307), PubMed (461), Web of Science (268), eLibrary.ru (190) were used. To obtain full-text documents, the electronic resources of PubMed Central (PMC), Science Direct, Research Gate, Sci-Hub and eLibrary.ru databases were used.
Collapse
Affiliation(s)
- G. A. Belitsky
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - K. I. Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
| | - E. A. Lesovaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; I.P. Pavlov Ryazan State Medical University
| | - M. G. Yakubovskaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| |
Collapse
|
14
|
Moro J, Sobrero S, Cartia CF, Ceraolo S, Rapanà R, Vaisitti F, Ganio S, Mellone F, Rudella S, Scopis F, La Paglia D, Cacciatore CC, Ruffini E, Leo F. Diagnostic and Therapeutic Challenges of Malignant Pleural Mesothelioma. Diagnostics (Basel) 2022; 12:3009. [PMID: 36553016 PMCID: PMC9776695 DOI: 10.3390/diagnostics12123009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Malignant pleural mesothelioma is a rare cancer characterized by a very poor prognosis. Exposure to asbestos is the leading cause of malignant pleural mesothelioma. The preinvasive lesions, the mesothelial hyperplasia and its possible evolution are the focus of the majority of the studies aiming to identify the treatable phase of the disease. The role of BAP-1 and MTAP in the diagnosis of mesothelioma in situ and in the prognosis of malignant pleural mesothelioma is the main topic of recent studies. The management of preinvasive lesions in mesothelioma is still unclear and many aspects are the subject of debate. The diagnosis, the disease staging and the accurate, comprehensive assessment of patients are three key instants for an appropriate management of patients/the disease.
Collapse
Affiliation(s)
- Jacopo Moro
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Simona Sobrero
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | | | - Simona Ceraolo
- Nursing Degree Program, Department of Clinical and Biological Sciences, University of Turin, 10124 Torino, Italy
| | - Roberta Rapanà
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Federico Vaisitti
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Stefano Ganio
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Federica Mellone
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Stefano Rudella
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Federico Scopis
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Danilo La Paglia
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Carola Crystel Cacciatore
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Enrico Ruffini
- Division of Thoracic Surgery, Department of Surgical Sciences, Città della Salute Hospital Turin, University of Turin, 10126 Torino, Italy
| | - Francesco Leo
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
15
|
Indirect mediators of systemic health outcomes following nanoparticle inhalation exposure. Pharmacol Ther 2022; 235:108120. [PMID: 35085604 PMCID: PMC9189040 DOI: 10.1016/j.pharmthera.2022.108120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
The growing field of nanoscience has shed light on the wide diversity of natural and anthropogenic sources of nano-scale particulates, raising concern as to their impacts on human health. Inhalation is the most robust route of entry, with nanoparticles (NPs) evading mucociliary clearance and depositing deep into the alveolar region. Yet, impacts from inhaled NPs are evident far outside the lung, particularly on the cardiovascular system and highly vascularized organs like the brain. Peripheral effects are partly explained by the translocation of some NPs from the lung into the circulation; however, other NPs largely confined to the lung are still accompanied by systemic outcomes. Omic research has only just begun to inform on the complex myriad of molecules released from the lung to the blood as byproducts of pulmonary pathology. These indirect mediators are diverse in their molecular make-up and activity in the periphery. The present review examines systemic outcomes attributed to pulmonary NP exposure and what is known about indirect pathological mediators released from the lung into the circulation. Further focus was directed to outcomes in the brain, a highly vascularized region susceptible to acute and longer-term outcomes. Findings here support the need for big-data toxicological studies to understand what drives these health outcomes and better predict, circumvent, and treat the potential health impacts arising from NP exposure scenarios.
Collapse
|
16
|
Hojo M, Maeno A, Sakamoto Y, Ohnuki A, Tada Y, Yamamoto Y, Ikushima K, Inaba R, Suzuki J, Taquahashi Y, Yokota S, Kobayashi N, Ohnishi M, Goto Y, Numano T, Tsuda H, Alexander DB, Kanno J, Hirose A, Inomata A, Nakae D. Two-year intermittent exposure of a multiwalled carbon nanotube by intratracheal instillation induces lung tumors and pleural mesotheliomas in F344 rats. Part Fibre Toxicol 2022; 19:38. [PMID: 35590372 PMCID: PMC9118836 DOI: 10.1186/s12989-022-00478-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A mounting number of studies have been documenting the carcinogenic potential of multiwalled carbon nanotubes (MWCNTs); however, only a few studies have evaluated the pulmonary carcinogenicity of MWCNTs in vivo. A 2-year inhalation study demonstrated that MWNT-7, a widely used MWCNT, was a pulmonary carcinogen in rats. In another 2-year study, rats administered MWNT-7 by intratracheal instillation at the beginning of the experimental period developed pleural mesotheliomas but not lung tumors. To obtain data more comparable with rats exposed to MWNT-7 by inhalation, we administered MWNT-7 to F344 rats by intratracheal instillation once every 4-weeks over the course of 2 years at 0, 0.125, and 0.5 mg/kg body weight, allowing lung burdens of MWNT-7 to increase over the entire experimental period, similar to the inhalation study. RESULTS Absolute and relative lung weights were significantly elevated in both MWNT-7-treated groups. Dose- and time-dependent toxic effects in the lung and pleura, such as inflammatory, fibrotic, and hyperplastic lesions, were found in both treated groups. The incidences of lung carcinomas, lung adenomas, and pleural mesotheliomas were significantly increased in the high-dose group compared with the control group. The pleural mesotheliomas developed mainly at the mediastinum. No MWNT-7-related neoplastic lesions were noted in the other organs. Cytological and biochemical parameters of the bronchoalveolar lavage fluid (BALF) were elevated in both treated groups. The lung burden of MWNT-7 was dose- and time-dependent, and at the terminal necropsy, the average value was 0.9 and 3.6 mg/lung in the low-dose and high-dose groups, respectively. The number of fibers in the pleural cavity was also dose- and time-dependent. CONCLUSIONS Repeated administration of MWNT-7 by intratracheal instillation over the 2 years indicates that MWNT-7 is carcinogenic to both the lung and pleura of rats, which differs from the results of the 2 carcinogenicity tests by inhalation or intratracheal instillation.
Collapse
Affiliation(s)
- Motoki Hojo
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan.
| | - Ai Maeno
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Yoshimitsu Sakamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Aya Ohnuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Yukie Tada
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Yukio Yamamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Kiyomi Ikushima
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Ryota Inaba
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Jin Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Yuhji Taquahashi
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Satoshi Yokota
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Norihiro Kobayashi
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Makoto Ohnishi
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa, Japan
| | - Yuko Goto
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa, Japan
| | | | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, Aichi, Japan
| | | | - Jun Kanno
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Akihiko Hirose
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Akiko Inomata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Dai Nakae
- Animal Medical Course, Department of Medical Sports, Faculty of Health Care and Medical Sports, Teikyo Heisei University, 4-1 Uruido-Minami, Ichihara, Chiba, 290-0193, Japan. .,Department of Nutritional Science and Food Safety, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan.
| |
Collapse
|
17
|
Saleh DM, Luo S, Ahmed OHM, Alexander DB, Alexander WT, Gunasekaran S, El-Gazzar AM, Abdelgied M, Numano T, Takase H, Ohnishi M, Tomono S, Hady RHAE, Fukamachi K, Kanno J, Hirose A, Xu J, Suzuki S, Naiki-Ito A, Takahashi S, Tsuda H. Assessment of the toxicity and carcinogenicity of double-walled carbon nanotubes in the rat lung after intratracheal instillation: a two-year study. Part Fibre Toxicol 2022; 19:30. [PMID: 35449069 PMCID: PMC9026941 DOI: 10.1186/s12989-022-00469-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Considering the expanding industrial applications of carbon nanotubes (CNTs), safety assessment of these materials is far less than needed. Very few long-term in vivo studies have been carried out. This is the first 2-year in vivo study to assess the effects of double walled carbon nanotubes (DWCNTs) in the lung and pleura of rats after pulmonary exposure. METHODS Rats were divided into six groups: untreated, Vehicle, 3 DWCNT groups (0.12 mg/rat, 0.25 mg/rat and 0.5 mg/rat), and MWCNT-7 (0.5 mg/rat). The test materials were administrated by intratracheal-intrapulmonary spraying (TIPS) every other day for 15 days. Rats were observed without further treatment until sacrifice. RESULTS DWCNT were biopersistent in the rat lung and induced marked pulmonary inflammation with a significant increase in macrophage count and levels of the chemotactic cytokines CCL2 and CCL3. In addition, the 0.5 mg DWCNT treated rats had significantly higher pulmonary collagen deposition compared to the vehicle controls. The development of carcinomas in the lungs of rats treated with 0.5 mg DWCNT (4/24) was not quite statistically higher (p = 0.0502) than the vehicle control group (0/25), however, the overall incidence of lung tumor development, bronchiolo-alveolar adenoma and bronchiolo-alveolar carcinoma combined, in the lungs of rats treated with 0.5 mg DWCNT (7/24) was statistically higher (p < 0.05) than the vehicle control group (1/25). Notably, two of the rats treated with DWCNT, one in the 0.25 mg group and one in the 0.5 mg group, developed pleural mesotheliomas. However, both of these lesions developed in the visceral pleura, and unlike the rats administered MWCNT-7, rats administered DWCNT did not have elevated levels of HMGB1 in their pleural lavage fluids. This indicates that the mechanism by which the mesotheliomas that developed in the DWCNT treated rats is not relevant to humans. CONCLUSIONS Our results demonstrate that the DWCNT fibers we tested are biopersistent in the rat lung and induce chronic inflammation. Rats treated with 0.5 mg DWCNT developed pleural fibrosis and lung tumors. These findings demonstrate that the possibility that at least some types of DWCNTs are fibrogenic and tumorigenic cannot be ignored.
Collapse
Affiliation(s)
- Dina Mourad Saleh
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Shengyong Luo
- College of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Omnia Hosny Mohamed Ahmed
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - David B Alexander
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - William T Alexander
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Sivagami Gunasekaran
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Ahmed M El-Gazzar
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Abdelgied
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
- Department of Pediatrics and Human Development, Michigan State University, Michigan, USA
| | - Takamasa Numano
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Hiroshi Takase
- Core Laboratory, Graduate School of Medicine, Nagoya City University, Nagoya, Japan
| | - Makoto Ohnishi
- Japan Industrial Safety and Health Association, Japan Bioassay Research Center, Hadano, Kanagawa, Japan
| | - Susumu Tomono
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Randa Hussein Abd El Hady
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Katsumi Fukamachi
- Department of Neurotoxicology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Jun Kanno
- National Institute Hygienic Sciences, Kawasaki, Japan
| | | | - Jiegou Xu
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shugo Suzuki
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroyuki Tsuda
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan.
| |
Collapse
|
18
|
Sager TM, Umbright CM, Mustafa GM, Roberts JR, Orandle MS, Cumpston JL, McKinney WG, Boots T, Kashon ML, Joseph P. Pulmonary toxicity and gene expression changes in response to whole-body inhalation exposure to multi-walled carbon nanotubes in rats. Inhal Toxicol 2022; 34:200-218. [PMID: 35648795 PMCID: PMC9885491 DOI: 10.1080/08958378.2022.2081386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Purpose: To investigate the molecular mechanisms underlying the pulmonary toxicity induced by exposure to one form of multi-walled carbon nanotubes (MWCNT-7).Materials and methods: Rats were exposed, by whole-body inhalation, to air or an aerosol containing MWCNT-7 particles at target cumulative doses (concentration x time) ranging from 22.5 to 180 (mg/m3)h over a three-day (6 hours/day) period and toxicity and global gene expression profiles were determined in the lungs.Results: MWCNT-7 particles, associated with alveolar macrophages (AMs), were detected in rat lungs following the exposure. Mild to moderate lung pathological changes consisting of increased cellularity, thickening of the alveolar wall, alveolitis, fibrosis, and granuloma formation were detected. Bronchoalveolar lavage (BAL) toxicity parameters such as lactate dehydrogenase activity, number of AMs and polymorphonuclear leukocytes (PMNs), intracellular oxidant generation by phagocytes, and levels of cytokines were significantly (p < 0.05) increased in response to exposure to MWCNT-7. Global gene expression profiling identified several significantly differentially expressed genes (fold change >1.5 and FDR p value <0.05) in all the MWCNT-7 exposed rats. Bioinformatic analysis of the gene expression data identified significant enrichment of several diseases/biological function categories (for example, cancer, leukocyte migration, inflammatory response, mitosis, and movement of phagocytes) and canonical pathways (for example, kinetochore metaphase signaling pathway, granulocyte and agranulocyte adhesion and diapedesis, acute phase response, and LXR/RXR activation). The alterations in the lung toxicity parameters and gene expression changes exhibited a dose-response to the MWCNT exposure.Conclusions: Taken together, the data provided insights into the molecular mechanisms underlying the pulmonary toxicity induced by inhalation exposure of rats to MWCNT-7.
Collapse
Affiliation(s)
- Tina M. Sager
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Christina M. Umbright
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Gul Mehnaz Mustafa
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Jenny R. Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Marlene S. Orandle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Jared L. Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Walter G. McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Theresa Boots
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Michael L. Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Pius Joseph
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| |
Collapse
|
19
|
Enomoto M, Iwata H, Iida M. Contribution of toxicologic pathologists for the safety of human health in biomedical research-past, present, and future of the JSTP. J Toxicol Pathol 2021; 34:275-282. [PMID: 34629730 PMCID: PMC8484924 DOI: 10.1293/tox.2021-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/19/2022] Open
Abstract
The research field of “Toxicologic Pathology” evaluates potentially toxic chemical
exposures and chemically mediated illnesses in humans and experimental animals.
Comparative studies of chemical exposures between model organisms and humans are essential
for the risk assessment of chemicals and human health. Here we review the development and
activities of the Japanese Society of Toxicologic Pathology (JSTP) during its 37-year
history. Toxicological pathology studies provide many interesting and valuable findings.
Rodent cancer bioassay data demonstrate the importance of dose levels, times, and duration
of exposures to chemicals that possibly cause human cancers. Studies of toxic injuries in
the nasal cavity demonstrate that specific chemical compounds affect different target
cells and tissues. These observations are relevant for current air pollution studies in
the preventive medicine field. Future toxicological pathology studies will be enhanced by
applying molecular pathology with advanced observation techniques. In addition to the
nasal cavity, another sense organ such as the tongue should be a potential next program of
our mission for risk assessment of inhaled and ingested chemicals. As a message to the
younger members of the JSTP, interdisciplinary and global cooperation should be
emphasized. Elucidating the mechanisms of toxicologic pathology with a combination of
advanced expertise in genetics and molecular biology offers promise for future advances by
JSTP members.
Collapse
Affiliation(s)
- Makoto Enomoto
- Former Vice-President, An-pyo Center, 582-2 Shioshinden, Iwata-city, Shizuoka, Japan
| | - Hijiri Iwata
- Laboratory of Toxicologic Pathology, LunaPath LLC, 3-5-1 Aoihigashi, Naka-ku, Hamamatsu-shi, Shizuoka, Japan
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR3136, Madison, WI 53705, USA
| |
Collapse
|
20
|
Ju L, Zhu L, Wu H, Yu M, Yin X, Jia Z, Feng L, Ying S, Xia H, Zhang S, Lou J, Yang J. miR221 regulates cell migration by targeting annexin a1 expression in human mesothelial MeT-5A cells neoplastic-like transformed by multi-walled carbon nanotube. Genes Environ 2021; 43:34. [PMID: 34340715 PMCID: PMC8327461 DOI: 10.1186/s41021-021-00209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Background Multi-walled carbon nanotube (MWCNT) is one of the most widely used manufactured nanomaterials, however, its potential harmful effect on human health is of great concern. Previously we have shown the acute and chronic exposure to MWCNT induced different responses in human mesothelial MeT-5A cells. In the current study, MeT-5A cells were continuously subjected to MWCNT exposure at 10 μg/cm2 for 48 h per passage, up to a whole year, to further clarify the carcinogesis and its potential mechanisms of MWCNT. Results After one-year MWCNT treatment, MeT-5A cells exhibited neoplastic-like properties, including morphological changes, anchorage-independent growth, increased cell proliferation and cell migration. Further examination revealed the expression of microRNA 221 (miR221) was gradually decreased, while the annexin a1 expression was increased at both the mRNA and protein level during the exposure. Bioinformatic analysis indicated that annexin a1 is a target for miR221 regulation, and it was confirmed by transfecting cells with miR221 mimics, which resulted in the downregulation of annexin a1. Detailed analyses demonstrated miR221 was involved in the regulation of cell migration, e.g., downregulation of miR221 or overexpression of ANNEXIN A1, contributed to the increased cell migration. In contrast, overexpression of miR221 or downregulation of ANNEXIN A1 slowed cell migration. Conclusions Taken together, these results point to a neoplastic-transforming property of MWCNT, and the miR221-annexin a1 axis is involved in the regulation of cell migration in the transformed cells. Supplementary Information The online version contains supplementary material available at 10.1186/s41021-021-00209-y.
Collapse
Affiliation(s)
- Li Ju
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Lijin Zhu
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Hao Wu
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Min Yu
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Xianhong Yin
- Jiading District Center for Disease Control and Prevention, Shanghai, 201800, China
| | - Zhenyu Jia
- Hangzhou Medical College, Hangzhou, 310013, China
| | | | - Shibo Ying
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Hailing Xia
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Shuzhi Zhang
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Jianlin Lou
- Hangzhou Medical College, Hangzhou, 310013, China.
| | - Jun Yang
- Hangzhou Normal University, School of Public Health, Hangzhou, 310036, China.
| |
Collapse
|
21
|
Alfei S, Schito AM, Zuccari G. Nanotechnological Manipulation of Nutraceuticals and Phytochemicals for Healthy Purposes: Established Advantages vs. Still Undefined Risks. Polymers (Basel) 2021; 13:2262. [PMID: 34301020 PMCID: PMC8309409 DOI: 10.3390/polym13142262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous foods, plants, and their bioactive constituents (BACs), named nutraceuticals and phytochemicals by experts, have shown many beneficial effects including antifungal, antiviral, anti-inflammatory, antibacterial, antiulcer, anti-cholesterol, hypoglycemic, immunomodulatory, and antioxidant activities. Producers, consumers, and the market of food- and plant-related compounds are increasingly attracted by health-promoting foods and plants, thus requiring a wider and more fruitful exploitation of the healthy properties of their BACs. The demand for new BACs and for the development of novel functional foods and BACs-based food additives is pressing from various sectors. Unfortunately, low stability, poor water solubility, opsonization, and fast metabolism in vivo hinder the effective exploitation of the potential of BACs. To overcome these issues, researchers have engineered nanomaterials, obtaining food-grade delivery systems, and edible food- and plant-related nanoparticles (NPs) acting as color, flavor, and preservative additives and natural therapeutics. Here, we have reviewed the nanotechnological transformations of several BACs implemented to increase their bioavailability, to mask any unpleasant taste and flavors, to be included as active ingredients in food or food packaging, to improve food appearance, quality, and resistance to deterioration due to storage. The pending issue regarding the possible toxic effect of NPs, whose knowledge is still limited, has also been discussed.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 6, I-16132 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| |
Collapse
|
22
|
Opitz I, Scherpereel A, Berghmans T, Psallidas I, Glatzer M, Rigau D, Astoul P, Bölükbas S, Boyd J, Coolen J, De Bondt C, De Ruysscher D, Durieux V, Faivre-Finn C, Fennell DA, Galateau-Salle F, Greillier L, Hoda MA, Klepetko W, Lacourt A, McElnay P, Maskell NA, Mutti L, Pairon JC, Van Schil P, van Meerbeeck JP, Waller D, Weder W, Putora PM, Cardillo G. ERS/ESTS/EACTS/ESTRO guidelines for the management of malignant pleural mesothelioma. Eur J Cardiothorac Surg 2021; 58:1-24. [PMID: 32448904 DOI: 10.1093/ejcts/ezaa158] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The European Respiratory Society (ERS)/European Society of Thoracic Surgeons (ESTS)/European Association for Cardio-Thoracic Surgery (EACTS)/European Society for Radiotherapy and Oncology (ESTRO) task force brought together experts to update previous 2009 ERS/ESTS guidelines on management of malignant pleural mesothelioma (MPM), a rare cancer with globally poor outcome, after a systematic review of the 2009-2018 literature. The evidence was appraised using the Grading of Recommendations, Assessment, Development and Evaluation approach. The evidence syntheses were discussed and recommendations formulated by this multidisciplinary group of experts. Diagnosis: pleural biopsies remain the gold standard to confirm the diagnosis, usually obtained by thoracoscopy but occasionally via image-guided percutaneous needle biopsy in cases of pleural symphysis or poor performance status. Pathology: standard staining procedures are insufficient in ∼10% of cases, justifying the use of specific markers, including BAP-1 and CDKN2A (p16) for the separation of atypical mesothelial proliferation from MPM. Staging: in the absence of a uniform, robust and validated staging system, we advise using the most recent 2016 8th TNM (tumour, node, metastasis) classification, with an algorithm for pretherapeutic assessment. Monitoring: patient's performance status, histological subtype and tumour volume are the main prognostic factors of clinical importance in routine MPM management. Other potential parameters should be recorded at baseline and reported in clinical trials. Treatment: (chemo)therapy has limited efficacy in MPM patients and only selected patients are candidates for radical surgery. New promising targeted therapies, immunotherapies and strategies have been reviewed. Because of limited data on the best combination treatment, we emphasize that patients who are considered candidates for a multimodal approach, including radical surgery, should be treated as part of clinical trials in MPM-dedicated centres.
Collapse
Affiliation(s)
- Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Arnaud Scherpereel
- Department of Pulmonary and Thoracic Oncology, French National Network of Clinical Expert Centers for Malignant Pleural Mesothelioma Management (Mesoclin), Lille, France.,Department of Pulmonary and Thoracic Oncology, University Lille, CHU Lille, INSERM U1189, OncoThAI, Lille, France
| | | | - Ioannis Psallidas
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Markus Glatzer
- Department of Radiation Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - David Rigau
- Iberoamerican Cochrane Center, Barcelona, Spain
| | - Philippe Astoul
- Department of Thoracic Oncology, Pleural Diseases and Interventional Pulmonology, Hôpital Nord, Aix-Marseille University, Marseille, France
| | - Servet Bölükbas
- Department of Thoracic Surgery, Evang, Kliniken Essen-Mitte, Essen, Germany
| | | | - Johan Coolen
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Charlotte De Bondt
- Department of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center+, GROW Research Institute, Maastricht, Netherlands
| | - Valerie Durieux
- Bibliothèque des Sciences de la Santé, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Corinne Faivre-Finn
- The Christie NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Dean A Fennell
- Leicester Cancer Research Centre, University of Leicester and University of Leicester Hospitals NHS Trust, Leicester, UK
| | - Francoise Galateau-Salle
- Department of Biopathology, National Reference Center for Pleural Malignant Mesothelioma and Rare Peritoneal Tumors MESOPATH, Centre Leon Berard, Lyon, France
| | - Laurent Greillier
- Department of Multidisciplinary Oncology and Therapeutic Innovations, Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Inserm UMR1068, CNRS UMR7258, Marseille, France
| | - Mir Ali Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Aude Lacourt
- University Bordeaux, INSERM, Bordeaux Population Health Research Center, Team EPICENE, UMR 1219, Bordeaux, France
| | | | - Nick A Maskell
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luciano Mutti
- Teaching Hospital Vercelli/Gruppo Italiano, Vercelli, Italy
| | - Jean-Claude Pairon
- INSERM U955, GEIC2O, Université Paris-Est Créteil, Service de Pathologies professionnelles et de l'Environnement, Institut Santé -Travail Paris-Est, CHI Créteil, Créteil, France
| | - Paul Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Jan P van Meerbeeck
- Department of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - David Waller
- Barts Thorax Centre, St Bartholomew's Hospital, London, UK
| | - Walter Weder
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Paul Martin Putora
- Department of Radiation Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Department of Radiation Oncology, University of Bern, Bern, Switzerland
| | - Giuseppe Cardillo
- Unit of Thoracic Surgery, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| |
Collapse
|
23
|
Barbarino M, Giordano A. Assessment of the Carcinogenicity of Carbon Nanotubes in the Respiratory System. Cancers (Basel) 2021; 13:cancers13061318. [PMID: 33804168 PMCID: PMC7998467 DOI: 10.3390/cancers13061318] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
In 2014, the International Agency for Research on Cancer (IARC) classified the first type of carbon nanotubes (CNTs) as possibly carcinogenic to humans, while in the case of other CNTs, it was not possible to ascertain their toxicity due to lack of evidence. Moreover, the physicochemical heterogeneity of this group of substances hamper any generalization on their toxicity. Here, we review the recent relevant toxicity studies produced after the IARC meeting in 2014 on an homogeneous group of CNTs, highlighting the molecular alterations that are relevant for the onset of mesothelioma. Methods: The literature was searched on PubMed and Web of Science for the period 2015-2020, using different combinations keywords. Only data on normal cells of the respiratory system after exposure to fully characterized CNTs for their physico-chemical characteristics were included. Recent studies indicate that CNTs induce a sustained inflammatory response, oxidative stress, fibrosis and histological alterations. The development of mesothelial hyperplasia, mesothelioma, and lungs tumors have been also described in vivo. The data support a strong inflammatory potential of CNTs, similar to that of asbestos, and provide evidence that CNTs exposure led to molecular alterations known to have a key role in mesothelioma onset. These evidences call for an urgent improvement of studies on exposed human populations and adequate systems for monitoring the health of workers exposed to this putative carcinogen.
Collapse
Affiliation(s)
- Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence:
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
24
|
Adedara IA, Awogbindin IO, Maduako IC, Ajeleti AO, Owumi SE, Owoeye O, Patlolla AK, Farombi EO. Kolaviron suppresses dysfunctional reproductive axis associated with multi-walled carbon nanotubes exposure in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:354-364. [PMID: 32812151 DOI: 10.1007/s11356-020-10324-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Reproductive toxicity associated with excessive exposure to multi-walled carbon nanotubes (MWCNTs), which are commonly used in medicine as valuable drug delivery systems, is well documented. Kolaviron, a bioflavonoid isolated from Garcinia kola seeds, elicits numerous health beneficial effects related to its anti-inflammatory, anti-genotoxic activities, anti-apoptotic, and antioxidant properties. However, information on the role of kolaviron in MWCNTs-induced reproductive toxicity is not available in the literature. Herein, we assessed the protective effects of kolaviron on MWCNTs-induced dysfunctional reproductive axis in rats following exposure to MWCNTs (1 mg/kg) and concurrent treatment with kolaviron (50 or 100 mg/kg body weight) for 15 successive days. Results showed that MWCNTs-induced dysfunctional reproductive axis as evidenced by deficits in pituitary and testicular hormones, marker enzymes of testicular function, and sperm functional characteristics were abrogated in rats co-administered with kolaviron. Moreover, co-administration of kolaviron-abated MWCNTs-induced inhibition of antioxidant enzyme activities increases in oxidative stress and inflammatory indices. This is evidenced by diminished levels of tumor necrosis factor-alpha, nitric oxide, lipid peroxidation, reactive oxygen, and nitrogen species as well as reduced activity of myeloperoxidase in testes, epididymis, and hypothalamus of the rats. Biochemical data on the chemoprotection of MWCNTs-induced reproductive toxicity were corroborated by histological findings. Taken together, kolaviron suppressed dysfunctional reproductive axis associated with MWCNTs exposure via abrogation of oxidative stress and inflammation in male rats.
Collapse
Affiliation(s)
- Isaac Adegboyega Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ifeoluwa Oluleke Awogbindin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ikenna Chukwuemeka Maduako
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Solomon Eduviere Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Anita Kumari Patlolla
- College of Science Engineering and Technology, NIH-RCMI Center for Environmental Health, Jackson State University, Jackson, MS, USA
| | - Ebenezer Olatunde Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
25
|
de Sousa Victor R, Marcelo da Cunha Santos A, Viana de Sousa B, de Araújo Neves G, Navarro de Lima Santana L, Rodrigues Menezes R. A Review on Chitosan's Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4995. [PMID: 33171898 PMCID: PMC7664280 DOI: 10.3390/ma13214995] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Chitosan, derived from chitin, is a biopolymer consisting of arbitrarily distributed β-(1-4)-linked D-glucosamine and N-acetyl-D-glucosamine that exhibits outstanding properties- biocompatibility, biodegradability, non-toxicity, antibacterial activity, the capacity to form films, and chelating of metal ions. Most of these peculiar properties are attributed to the presence of free protonable amino groups along the chitosan backbone, which also gives it solubility in acidic conditions. Moreover, this biopolymer can also be physically modified, thereby presenting a variety of forms to be developed. Consequently, this polysaccharide is used in various fields, such as tissue engineering, drug delivery systems, and cancer treatment. In this sense, this review aims to gather the state-of-the-art concerning this polysaccharide when used as a biomaterial, providing information about its characteristics, chemical modifications, and applications. We present the most relevant and new information about this polysaccharide-based biomaterial's applications in distinct fields and also the ability of chitosan and its various derivatives to selectively permeate through the cancer cell membranes and exhibit anticancer activity, and the possibility of adding several therapeutic metal ions as a strategy to improve the therapeutic potential of this polymer.
Collapse
Affiliation(s)
- Rayssa de Sousa Victor
- Graduate Program in Materials Science and Engineering, Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Adillys Marcelo da Cunha Santos
- Center for Science and Technology in Energy and Sustainability (CETENS), Federal University of Recôncavo da Bahia (UFRB), Feira de Santana 44042-280, Brazil;
| | - Bianca Viana de Sousa
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil;
| | - Gelmires de Araújo Neves
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Lisiane Navarro de Lima Santana
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| |
Collapse
|
26
|
Terry C, Yan Z, Corvaro M, Gehen SC. A retrospective study on EU harmonised classifications for carcinogenicity to guide future research. Regul Toxicol Pharmacol 2020; 119:104800. [PMID: 33129916 DOI: 10.1016/j.yrtph.2020.104800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Under European Regulation (EC) No 1272/2008 on the classification, labelling and packaging of substances and mixtures (CLP), chemicals can be classified as carcinogenic if they are considered to induce tumours, increase tumour incidence and/or malignancy, or shorten the time to tumour occurrence. Cancer classifications are divided into different hazard categories: Carc. 1A (known human carcinogen), Carc. 1B (presumed human carcinogen), Carc. 2 (suspected human carcinogen), and chemicals not classified for carcinogenicity. Selecting which classification is appropriate can be challenging, as judgements need to be made both on the existing hazard data and on its relevance to humans. One aspect to be considered in defining human relevance is a chemical's mode of action (MoA); the series of necessary key events that lead from an exposure to the adverse effect (in this case, tumours). This work aims to identify and discuss some of the features that have led ECHA's Committee for Risk Assessment (RAC) to decide upon harmonised cancer classifications for chemicals, and to prioritise future research on MoA and/or human relevance. RAC bases its decisions on cancer classification on both the weight-of-evidence (WoE) and strength-of-evidence (SoE) of this particular activity. Multiple factors contribute, including the species in which tumours are seen, and the relevance of the MoA to human health.
Collapse
Affiliation(s)
- Claire Terry
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, USA.
| | - Zhongyu Yan
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, USA.
| | - Marco Corvaro
- Corteva Agriscience, 3B Milton Park Square, OX14 4RN, Abingdon, UK.
| | - Sean C Gehen
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, USA.
| |
Collapse
|
27
|
Korchevskiy A. Using benchmark dose modeling for the quantitative risk assessment: Carbon nanotubes, asbestos, glyphosate. J Appl Toxicol 2020; 41:148-160. [PMID: 33040390 DOI: 10.1002/jat.4063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 11/12/2022]
Abstract
Benchmark dose method is one of the most famous quantitative approaches available for toxicological risks prediction. However, it is not fully clear how occupational health professionals can use it for specific workplace scenarios requiring carcinogen risk assessment. The paper explores the hypothesis that benchmark dose method allows to effectively approximate dose-response data on carcinogenic response, providing reasonable estimations of risks in the situations when a choice between more complex models is not warranted for practical purposes. Three case studies were analyzed for the agents with different levels of scientific confidence in human carcinogenicity: carbon nanotubes, amosite asbestos, and glyphosate. For each agent, a critical study was determined, and a dose-response slope factor was quantified, based on the weighted average lower bound benchmark dose. The linear slope factors of 0.111 lifetime excess cases of lung carcinoma per mg/m3 of MWCNT-7 (in rats exposure equivalent), 0.009 cases of mesothelioma per f/cc-years of cumulative exposure to amosite asbestos, and 0.000094 cases of malignant lymphoma per mg/kg/day of glyphosate (in mice equivalent) were determined. The correlations between the proposed linear predictive models and observed data points were R = 0.96 (R2 = 0.92) for carbon nanotubes, R = 0.97 (R2 = 0.95) for amosite asbestos, and R = 0.89 (R2 = 0.79) for glyphosate. In all three cases, the linear extrapolation yielded comparable level of risk estimations with the "best fit" nonlinear model; for nanoparticles and amosite asbestos, linear estimations were more conservative. By performing a simulation study, it was demonstrated that a weighted average benchmark dose expressed the highest correlation with multistage and quantal-linear models.
Collapse
|
28
|
Alfei S, Marengo B, Zuccari G. Nanotechnology application in food packaging: A plethora of opportunities versus pending risks assessment and public concerns. Food Res Int 2020; 137:109664. [PMID: 33233243 DOI: 10.1016/j.foodres.2020.109664] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/11/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
Environmental factors, oxidation and microorganisms contamination, are the major causes for food spoilage, which leads to sensory features alteration, loss of quality, production of harmful chemicals and growth of foodborne pathogens capable to cause severe illness. Synthetic preservatives, traditional conserving methods and food packaging (FP), although effective in counteracting food spoilage, do not allow the real-time monitoring of food quality during storage and transportation and assent a relatively short shelf life. In addition, FP may protect food by the spoilage caused by external contaminations, but is ineffective against foodborne microorganisms. FP preservative functionalities could be improved adding edible natural antioxidants and antimicrobials, but such chemicals are easily degradable. Nowadays, thanks to nanotechnology techniques, it is possible to improve the FP performances, formulating and inserting more stable antioxidant/antimicrobial ingredients, improving mechanical properties and introducing intelligent functions. The state-of-the-art in the field of nanomaterial-based improved FP, the advantages that might derive from their extensive introduction on the market and the main concerns associated to the possible migration and toxicity of nanomaterials, frequently neglected in existing reviews, have been herein discussed.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Genova (GE), Viale Cembrano, 4, I-16148, Italy.
| | - Barbara Marengo
- Department of Experimental Medicine - DIMES, University of Genoa, Genova (GE), Via Alberti L.B. 2, I- 16132, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DiFAR), University of Genoa, Genova (GE), Viale Cembrano, 4, I-16148, Italy
| |
Collapse
|
29
|
Huang X, Tian Y, Shi W, Chen J, Yan L, Ren L, Zhang X, Zhu J. Role of inflammation in the malignant transformation of pleural mesothelial cells induced by multi-walled carbon nanotubes. Nanotoxicology 2020; 14:947-967. [PMID: 32574520 DOI: 10.1080/17435390.2020.1777477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are one of the most widely used types of novel nano-fiber materials. The aim of this study was to establish an experimental system based on actual exposure dosage and environments and explore the roles and mechanisms of inflammation in the malignant transformation of pleural mesothelial cells induced by MWCNTs after low doses and long-term exposure. Here, we established an in vitro system by co-culturing macrophages and mesothelial cells and exposing these cells to high aspect ratio MWCNTs (0.1 μg/mL) for three months. Results indicated that IL-1β, secreted by macrophages stimulated by MWCNTs, may significantly enhance the release of inflammatory cytokines, such as IL-8, TNF-α, and IL-6, from mesothelial cells. Results obtained from proliferation, migration, invasion, colony formation, and chromosomal aberration studies indicated that MWCNTs may promote malignant transformation of mesothelial cells after long-term and low-dose exposure via inflammation. Furthermore, the obtained results demonstrated that the NF-κB/IL-6/STAT3 pathway was active in the malignant transformation of Met 5A cells, induced by MWCNTs, and played an important role in the process. In conclusion, our results showed that the NF-κB (p65)/IL-6/STAT3 molecular pathway, which was mediated by inflammation, played an important role in the malignant transformation of pleural mesothelial cells induced by MWCNTs. These findings also provide novel ideas and references for the treatment of mesothelioma and offers options for the occupational safety of nanomaterial practitioners.
Collapse
Affiliation(s)
- Xiaopei Huang
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Yijun Tian
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Wenjing Shi
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Jikuai Chen
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Lang Yan
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Lijun Ren
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Xiaofang Zhang
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Jiangbo Zhu
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| |
Collapse
|
30
|
Scherpereel A, Opitz I, Berghmans T, Psallidas I, Glatzer M, Rigau D, Astoul P, Bölükbas S, Boyd J, Coolen J, De Bondt C, De Ruysscher D, Durieux V, Faivre-Finn C, Fennell D, Galateau-Salle F, Greillier L, Hoda MA, Klepetko W, Lacourt A, McElnay P, Maskell NA, Mutti L, Pairon JC, Van Schil P, van Meerbeeck JP, Waller D, Weder W, Cardillo G, Putora PM. ERS/ESTS/EACTS/ESTRO guidelines for the management of malignant pleural mesothelioma. Eur Respir J 2020; 55:13993003.00953-2019. [PMID: 32451346 DOI: 10.1183/13993003.00953-2019] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/17/2019] [Indexed: 12/23/2022]
Abstract
The European Respiratory Society (ERS)/European Society of Thoracic Surgeons (ESTS)/European Association for Cardio-Thoracic Surgery (EACTS)/European Society for Radiotherapy and Oncology (ESTRO) task force brought together experts to update previous 2009 ERS/ESTS guidelines on management of malignant pleural mesothelioma (MPM), a rare cancer with globally poor outcome, after a systematic review of the 2009-2018 literature. The evidence was appraised using the Grading of Recommendations, Assessment, Development and Evaluation approach. The evidence syntheses were discussed and recommendations formulated by this multidisciplinary group of experts. Diagnosis: pleural biopsies remain the gold standard to confirm the diagnosis, usually obtained by thoracoscopy but occasionally via image-guided percutaneous needle biopsy in cases of pleural symphysis or poor performance status. Pathology: standard staining procedures are insufficient in ∼10% of cases, justifying the use of specific markers, including BAP-1 and CDKN2A (p16) for the separation of atypical mesothelial proliferation from MPM. Staging: in the absence of a uniform, robust and validated staging system, we advise using the most recent 2016 8th TNM (tumour, node, metastasis) classification, with an algorithm for pre-therapeutic assessment. Monitoring: patient's performance status, histological subtype and tumour volume are the main prognostic factors of clinical importance in routine MPM management. Other potential parameters should be recorded at baseline and reported in clinical trials. Treatment: (chemo)therapy has limited efficacy in MPM patients and only selected patients are candidates for radical surgery. New promising targeted therapies, immunotherapies and strategies have been reviewed. Because of limited data on the best combination treatment, we emphasise that patients who are considered candidates for a multimodal approach, including radical surgery, should be treated as part of clinical trials in MPM-dedicated centres.
Collapse
Affiliation(s)
- Arnaud Scherpereel
- Pulmonary and Thoracic Oncology, Univ. Lille, CHU Lille, INSERM U1189, OncoThAI, Lille, France .,French National Network of Clinical Expert Centers for Malignant Pleural Mesothelioma Management (Mesoclin), Lille, France
| | - Isabelle Opitz
- Dept of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | - Ioannis Psallidas
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Markus Glatzer
- Dept of Radiation Oncology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - David Rigau
- Iberoamerican Cochrane Center, Barcelona, Spain
| | - Philippe Astoul
- Dept of Thoracic Oncology, Pleural Diseases and Interventional Pulmonology, Hôpital Nord, Aix-Marseille University, Marseille, France
| | - Servet Bölükbas
- Dept of Thoracic Surgery, Evang, Kliniken Essen-Mitte, Essen, Germany
| | | | - Johan Coolen
- Dept of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Charlotte De Bondt
- Dept of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Dirk De Ruysscher
- Dept of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center+, GROW Research Institute, Maastricht, The Netherlands
| | - Valerie Durieux
- Bibliothèque des Sciences de la Santé, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Corinne Faivre-Finn
- The Christie NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Dean Fennell
- Leicester Cancer Research Centre, University of Leicester and University of Leicester Hospitals NHS Trust, Leicester, UK
| | - Francoise Galateau-Salle
- National Reference Center for Pleural Malignant Mesothelioma and Rare Peritoneal Tumors MESOPATH, Dept of Biopathology, Centre Leon Berard, Lyon, France
| | - Laurent Greillier
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Inserm UMR1068, CNRS UMR7258, Dept of Multidisciplinary Oncology and Therapeutic Innovations, Marseille, France
| | - Mir Ali Hoda
- Dept of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Dept of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Aude Lacourt
- Univ. Bordeaux, INSERM, Bordeaux Population Health Research Center, team EPICENE, UMR 1219, Bordeaux, France
| | | | - Nick A Maskell
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luciano Mutti
- Teaching Hosp. Vercelli/Gruppo Italiano Mesotelioma, Italy
| | - Jean-Claude Pairon
- INSERM U955, Equipe 4, Université Paris-Est Créteil, and Service de Pathologies professionnelles et de l'Environnement, Institut Santé-Travail Paris-Est, CHI Créteil, Créteil, France
| | - Paul Van Schil
- Dept Thoracic and Vascular Surgery, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Jan P van Meerbeeck
- Dept of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - David Waller
- Barts Thorax Centre, St Bartholomew's Hospital, London, UK
| | - Walter Weder
- Dept of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Giuseppe Cardillo
- Unit of Thoracic Surgery, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - Paul Martin Putora
- Dept of Radiation Oncology, Kantonsspital St Gallen, St Gallen, Switzerland.,Dept of Radiation Oncology, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Prajapati SK, Malaiya A, Kesharwani P, Soni D, Jain A. Biomedical applications and toxicities of carbon nanotubes. Drug Chem Toxicol 2020; 45:435-450. [DOI: 10.1080/01480545.2019.1709492] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Payal Kesharwani
- Ram-Eesh Institute of Vocational and Technical Education, Knowledge Park I, Greater Noida, Uttar Pradesh, India
| | - Deeksha Soni
- Rawatpura Sarkar Institute of Pharmacy, Datia, Madhya Pradesh, India
| | - Aakanchha Jain
- Bhagyodaya Tirth Pharmacy College, Sagar, Madhya Pradesh, India
| |
Collapse
|
32
|
Atilhan M, Costa LT, Aparicio S. On the interaction between carbon nanomaterials and lipid biomembranes. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Siegrist KJ, Reynolds SH, Porter DW, Mercer RR, Bauer AK, Lowry D, Cena L, Stueckle TA, Kashon ML, Wiley J, Salisbury JL, Mastovich J, Bunker K, Sparrow M, Lupoi JS, Stefaniak AB, Keane MJ, Tsuruoka S, Terrones M, McCawley M, Sargent LM. Mitsui-7, heat-treated, and nitrogen-doped multi-walled carbon nanotubes elicit genotoxicity in human lung epithelial cells. Part Fibre Toxicol 2019; 16:36. [PMID: 31590690 PMCID: PMC6781364 DOI: 10.1186/s12989-019-0318-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
Background The unique physicochemical properties of multi-walled carbon nanotubes (MWCNT) have led to many industrial applications. Due to their low density and small size, MWCNT are easily aerosolized in the workplace making respiratory exposures likely in workers. The International Agency for Research on Cancer designated the pristine Mitsui-7 MWCNT (MWCNT-7) as a Group 2B carcinogen, but there was insufficient data to classify all other MWCNT. Previously, MWCNT exposed to high temperature (MWCNT-HT) or synthesized with nitrogen (MWCNT-ND) have been found to elicit attenuated toxicity; however, their genotoxic and carcinogenic potential are not known. Our aim was to measure the genotoxicity of MWCNT-7 compared to these two physicochemically-altered MWCNTs in human lung epithelial cells (BEAS-2B & SAEC). Results Dose-dependent partitioning of individual nanotubes in the cell nuclei was observed for each MWCNT material and was greatest for MWCNT-7. Exposure to each MWCNT led to significantly increased mitotic aberrations with multi- and monopolar spindle morphologies and fragmented centrosomes. Quantitative analysis of the spindle pole demonstrated significantly increased centrosome fragmentation from 0.024–2.4 μg/mL of each MWCNT. Significant aneuploidy was measured in a dose-response from each MWCNT-7, HT, and ND; the highest dose of 24 μg/mL produced 67, 61, and 55%, respectively. Chromosome analysis demonstrated significantly increased centromere fragmentation and translocations from each MWCNT at each dose. Following 24 h of exposure to MWCNT-7, ND and/or HT in BEAS-2B a significant arrest in the G1/S phase in the cell cycle occurred, whereas the MWCNT-ND also induced a G2 arrest. Primary SAEC exposed for 24 h to each MWCNT elicited a significantly greater arrest in the G1 and G2 phases. However, SAEC arrested in the G1/S phase after 72 h of exposure. Lastly, a significant increase in clonal growth was observed one month after exposure to 0.024 μg/mL MWCNT-HT & ND. Conclusions Although MWCNT-HT & ND cause a lower incidence of genotoxicity, all three MWCNTs cause the same type of mitotic and chromosomal disruptions. Chromosomal fragmentation and translocations have not been observed with other nanomaterials. Because in vitro genotoxicity is correlated with in vivo genotoxic response, these studies in primary human lung cells may predict the genotoxic potency in exposed human populations. Electronic supplementary material The online version of this article (10.1186/s12989-019-0318-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katelyn J Siegrist
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, Morgantown, WV, 26505, USA.,Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Steven H Reynolds
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, Morgantown, WV, 26505, USA
| | - Dale W Porter
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, Morgantown, WV, 26505, USA
| | - Robert R Mercer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, Morgantown, WV, 26505, USA
| | - Alison K Bauer
- Anschutz Medical Campus, Department of Environmental and Occupational Health, University of Colorado, Aurora, CO, 80045, USA
| | - David Lowry
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, Morgantown, WV, 26505, USA
| | - Lorenzo Cena
- Department of Health, West Chester University, West Chester, PA, 19383, USA
| | - Todd A Stueckle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, Morgantown, WV, 26505, USA
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, Morgantown, WV, 26505, USA
| | - John Wiley
- Department of Pediatrics, East Carolina University, Greenville, NC, 27834, USA
| | | | | | - Kristin Bunker
- RJ Lee Group, 350 Hochberg Road, Monroeville, PA, 15146, USA
| | - Mark Sparrow
- Independent Consultant, Allison Park, PA, 15101, USA
| | - Jason S Lupoi
- RJ Lee Group, 350 Hochberg Road, Monroeville, PA, 15146, USA
| | - Aleksandr B Stefaniak
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Michael J Keane
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, Morgantown, WV, 26505, USA
| | | | | | - Michael McCawley
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Linda M Sargent
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, Morgantown, WV, 26505, USA.
| |
Collapse
|
34
|
Ray JL, Fletcher P, Burmeister R, Holian A. The role of sex in particle-induced inflammation and injury. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1589. [PMID: 31566915 DOI: 10.1002/wnan.1589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
The use of engineered nanomaterials within various applications such as medicine, electronics, and cosmetics has been steadily increasing; therefore, the rate of occupational and environmental exposures has also increased. Inhalation is an important route of exposure to nanomaterials and has been shown to cause various respiratory diseases in animal models. Human lung disease frequently presents with a sex/gender-bias in prevalence or severity, but investigation of potential sex-differences in the adverse health outcomes associated with nanoparticle inhalation is greatly lacking. Only ~20% of basic research in the general sciences use both male and female animals and a substantial percentage of these do not address differences between sexes within their analyses. This has prevented researchers from fully understanding the impact of sex-based variables on health and disease, particularly the pathologies resulting from the inhalation of particles. The mechanisms responsible for sex-differences in respiratory disease remain unclear, but could be related to a number of variables including sex-differences in hormone signaling, lung physiology, or respiratory immune function. By incorporating sex-based analysis into respiratory nanotoxicology and utilizing human data from other relevant particles (e.g., asbestos, silica, particulate matter), we can improve our understanding of sex as a biological variable in nanoparticle exposures. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Jessica L Ray
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Paige Fletcher
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Rachel Burmeister
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Andrij Holian
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| |
Collapse
|
35
|
Numano T, Morioka M, Higuchi H, Uda K, Sugiyama T, Hagiwara T, Doi Y, Imai N, Kawabe M, Mera Y, Tamano S. Effects of administering different vehicles via single intratracheal instillation on responses in the lung and pleural cavity of Crl:CD(SD) rats. J Toxicol Pathol 2019; 33:11-19. [PMID: 32051660 PMCID: PMC7008201 DOI: 10.1293/tox.2019-0060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Intratracheal instillation is the introduction of a substance directly into the trachea. Intratracheal instillation has been used to investigate the lung toxicity of several chemicals and requires the suspension or dissolution of test material in a vehicle for even dispersal throughout the lung. Importantly, the toxicities of vehicles used in intratracheal instillation studies are generally considered to be insignificant. Hence, evaluating the influence of different vehicles on the lung due to intratracheal instillation is crucial. We examined the toxic effects of pure water, saline, phosphate buffered saline (PBS), 0.5% Kolliphor® P188 (KP188), 0.1% Tween 20 in saline, and 1.0% BSA in PBS. These vehicles were administered to male Crl:CD(SD) rats by a single intratracheal instillation. On day 3, broncho-alveolar lavage fluid (BALF) from the right lung was collected and processed for cell counting and biochemical analysis, while the left lung was used for histopathological examination. Accumulation of alveolar macrophages was observed in all vehicle-treated groups but was minimal in the group administered saline, somewhat higher in the groups administered pure water, PBS, 0.1% Tween 20, and 1% BSA, and notably higher in the group administered 0.5% KP188. The results from BALF analysis indicated that intratracheal instillation of 0.5% KP188 also induced alveolar damage. Additionally, administering pure water did not appear to cause tissue damage. Eosinophil infiltration in the interstitial regions was histopathologically observed. Altogether, the results of this study are helpful for the selection of appropriate vehicles for use in intratracheal instillation studies.
Collapse
Affiliation(s)
- Takamasa Numano
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Mai Morioka
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Hitomi Higuchi
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Kazunari Uda
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Taiki Sugiyama
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Teruaki Hagiwara
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Yuko Doi
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Norio Imai
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Mayumi Kawabe
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Yukinori Mera
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Seiko Tamano
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| |
Collapse
|
36
|
Senchukova M. A Brief Review about the Role of Nanomaterials, Mineral-Organic Nanoparticles, and Extra-Bone Calcification in Promoting Carcinogenesis and Tumor Progression. Biomedicines 2019; 7:65. [PMID: 31466331 PMCID: PMC6783842 DOI: 10.3390/biomedicines7030065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/04/2019] [Accepted: 08/21/2019] [Indexed: 02/05/2023] Open
Abstract
People come in contact with a huge number of nanoparticles (NPs) throughout their lives, which can be of both natural and anthropogenic origin and are capable of entering the body through swallowing, skin penetration, or inhalation. In connection with the expanding use of nanomaterials in various industrial processes, the question of whether there is a need to study the potentially adverse effects of NPs on human health becomes increasingly important. Despite the fact that the nature and the extent of damage caused depends on the chemical and the physical characteristics of individual NPs, there are also general mechanisms related to their toxicity. These mechanisms include the ability of NPs to translocate to various organs through endocytosis, as well as their ability to stimulate the production of reactive oxygen species (ROS), leading to oxidative stress, inflammation, genotoxicity, metabolic changes, and potentially carcinogenesis. In this review, we discuss the main characteristics of NPs and the effects they cause at both cellular and tissue levels. We also focus on possible mechanisms that underlie the relationship of NPs with carcinogenesis. We briefly summarize the main concepts related to the role of endogenous mineral organic NPs in the development of various human diseases and their participation in extra-bone calcification. Considering data from both our studies and those published in scientific literature, we propose the revision of some ideas concerning extra-bone calcification, since it may be one of the factors associated with the initiation of the mechanisms of immunological tolerance.
Collapse
Affiliation(s)
- Marina Senchukova
- Department of Oncology, Orenburg State Medical University, 460000 Orenburg, Russia.
| |
Collapse
|
37
|
Numano T, Higuchi H, Alexander DB, Alexander WT, Abdelgied M, El-Gazzar AM, Saleh D, Takase H, Hirose A, Naiki-Ito A, Suzuki S, Takahashi S, Tsuda H. MWCNT-7 administered to the lung by intratracheal instillation induces development of pleural mesothelioma in F344 rats. Cancer Sci 2019; 110:2485-2492. [PMID: 31265162 PMCID: PMC6676138 DOI: 10.1111/cas.14121] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/18/2019] [Accepted: 06/15/2019] [Indexed: 01/23/2023] Open
Abstract
Multi‐walled carbon nanotube‐7 (MWCNT‐7) fibers are biopersistent and have a structure similar to asbestos. MWCNT‐7 has been shown to induce malignant mesothelioma when administered by intrascrotal or intraperitoneal injection in rats and mice, and an inhalation study demonstrated that rats exposed to respirable MWCNT‐7 developed lung tumors. MWCNT‐N, which is similar to MWCNT‐7, was shown to induce both lung tumors and malignant mesothelioma in rats when administered by trans‐tracheal intrapulmonary spraying (TIPS). The present study was performed to investigate the carcinogenicity of MWCNT‐7 when administered by the TIPS method. Ten‐week‐old male F344/Crj rats were divided into 3 groups and administered 0.5 mL vehicle, 0.250 μg/mL MWCNT‐7 or 0.250 μg/mL crocidolite once a week for 12 weeks (total doses of 1.5 mg/rat) and then observed for up to 104 weeks. Rats in the MWCNT‐7 group began to die from pathologies associated with the development of malignant mesothelioma 35 weeks after the final TIPS administration. Overall, the incidence of malignant mesothelioma in the MWCNT‐7 group was significantly higher than in the vehicle or crocidolite groups.
Collapse
Affiliation(s)
- Takamasa Numano
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| | - Hitomi Higuchi
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| | | | | | - Mohamed Abdelgied
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan.,Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni Suef University, Beni-Suef, Egypt
| | - Ahmed M El-Gazzar
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan.,Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Dina Saleh
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hiroshi Takase
- Core Laboratory, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akihiko Hirose
- Division of Risk Assessment, National Institute of Health Sciences, Tokyo, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shugo Suzuki
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| |
Collapse
|
38
|
Medvecky L, Giretova M, Kralikova R, Medvecka S, Briancin J. In vitro cytotoxicity of calcium phosphate cement reinforced with multiwalled carbon nanotubes. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:54. [PMID: 31041537 DOI: 10.1007/s10856-019-6256-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
The in vitro cytotoxicity of both the multiwalled carbon nanotubes (MWCNT) in suspension with culture medium and the tetracalcium phosphate/monetite cement with addition of 0.8 wt% of MWCNTs on fibroblasts and osteoblasts were studied. The cytotoxicity was evaluated by MTS test (formazan) and live/dead staining. No cytotoxicity of MWCNT extract was measured contrary to about 60% reduction in proliferation of fibroblasts in MWCNT suspension as compared with negative control. The several contact cytotoxicity of MWCNT composite cement surfaces on seeded cells was demonstrated by MTS test and live/dead staining of damaged fibroblasts and dead osteoblasts after 72 h of culture. The detailed microstructure analysis showed a significant refinement of the surface texture due to the formation of thin needle-like hydroxyapatite particles on MWCNTs and this effect could be responsible for cytotoxicity of composites.
Collapse
Affiliation(s)
- Lubomir Medvecky
- Institute of Materials Research of SAS, Watsonova 47, Kosice, 040 01, Slovakia.
| | - Maria Giretova
- Institute of Materials Research of SAS, Watsonova 47, Kosice, 040 01, Slovakia
| | - Ruzena Kralikova
- Department of Process and Environmetal Engineering, Faculty of Mechanical Engineering, Technical University of Kosice, Letna 9, Kosice, 040 01, Slovakia
| | - Simona Medvecka
- Department of Process and Environmetal Engineering, Faculty of Mechanical Engineering, Technical University of Kosice, Letna 9, Kosice, 040 01, Slovakia
| | - Jaroslav Briancin
- Institute of Geotechnics of SAS, Watsonova 43, Kosice, 040 01, Slovakia
| |
Collapse
|
39
|
Kasai T, Umeda Y, Sasaki T, Fukushima S. Thinking on occupational exposure assessment of multi-walled carbon nanotube carcinogenicity. J Occup Health 2019; 61:208-210. [PMID: 30801936 PMCID: PMC6499350 DOI: 10.1002/1348-9585.12045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/18/2019] [Indexed: 11/28/2022] Open
Affiliation(s)
- Tatsuya Kasai
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa, Japan
| | - Yumi Umeda
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa, Japan
| | - Toshiaki Sasaki
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa, Japan
| | - Shoji Fukushima
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa, Japan.,Association for Promotion of Research on Risk Assessment, Nagoya, Japan
| |
Collapse
|
40
|
Yoshida GJ. Beyond Stanton and Pott hypothesis; carbon nanotubes-induced malignant mesothelioma as a disease of gene loss. J Occup Health 2019; 61:203-205. [PMID: 30773744 PMCID: PMC6499342 DOI: 10.1002/1348-9585.12019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/29/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Go J Yoshida
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
41
|
The Short-Term Inhalation Study (STIS) as a Range Finder and Screening Tool in a Tiered Grouping Strategy. CURRENT TOPICS IN ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE 2019. [DOI: 10.1007/978-981-13-8433-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Wu L, Dell'Anno I, Lapidot M, Sekido Y, Chan ML, Kohno M, Serre-Beinier V, Felley-Bosco E, de Perrot M. Progress of malignant mesothelioma research in basic science: A review of the 14th international conference of the international mesothelioma interest group (iMig2018). Lung Cancer 2018; 127:138-145. [PMID: 30642542 DOI: 10.1016/j.lungcan.2018.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/25/2018] [Indexed: 02/03/2023]
Abstract
Here we summarize the most recent update of mesothelioma research in basic science presented at the 14th iMig2018 international conference. The symposium of basic science track mainly focused on the drivers of mesothelioma initiation and progression, molecular pathogenesis, and perspectives on potential therapeutic approaches. This review covers several promising fields including strategies efficiently inhibiting YAP/TAZ functions or their critical downstream targets, heparanase inhibitors, RAN depletion, and MIF/CD74 inhibitors that may be developed as novel therapeutic approaches. In addition, targeting mesothelioma stem cells by depleting M2-polarized macrophages in tumor microenvironment or blocking Tnfsf18 (GITRL)-GITR signalling might be translated into therapeutic modalities in mesothelioma treatment.
Collapse
Affiliation(s)
- Licun Wu
- Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery and Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
| | - Irene Dell'Anno
- Department of Biology, University of Pisa, Via Derna 1, Pisa, Italy
| | - Moshe Lapidot
- Division of Thoracic Surgery, Lung Center and International Mesothelioma Program, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Kanokoden 1-1, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Mei-Lin Chan
- Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery and Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
| | - Mikihiro Kohno
- Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery and Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
| | - Veronique Serre-Beinier
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, 1211 Geneva 4, Switzerland
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, University Hospital Zurich, University of Zurich, 8044, Zürich, Switzerland
| | - Marc de Perrot
- Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery and Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada.
| |
Collapse
|
43
|
El-Gazzar AM, Abdelgied M, Alexander DB, Alexander WT, Numano T, Iigo M, Naiki A, Takahashi S, Takase H, Hirose A, Kannno J, Elokle OS, Nazem AM, Tsuda H. Comparative pulmonary toxicity of a DWCNT and MWCNT-7 in rats. Arch Toxicol 2018; 93:49-59. [PMID: 30341734 PMCID: PMC6343020 DOI: 10.1007/s00204-018-2336-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/10/2018] [Indexed: 12/19/2022]
Abstract
Very little is known about the in vivo toxicity of inhaled double-walled carbon nanotubes (DWCNTs). In the present study, we compared the pulmonary toxicity of DWCNT to MWCNT-7, a well-known multi-walled carbon nanotube. Rats were divided into six groups: untreated, vehicle, low-dose DWCNT, high-dose DWCNT, low-dose MWCNT-7, and high-dose MWCNT-7. The test materials were administered by intra-tracheal intra-pulmonary spraying (TIPS) every other day for 15 days: the low-dose and high-dose groups were administered final total doses of 0.25 and 0.50 mg/rat of the test material. The animals were sacrificed 1 and 6 weeks after the final TIPS administration. Six weeks after the final TIPS administration, rats administered MWCNT-7 had high levels of macrophage infiltration into the lung with dense alveolar wall fibrous thickening throughout the lung; significant elevation of lactate dehydrogenase activity, alkaline phosphatase activity, and total protein concentration in the bronchioalveolar lavage fluid; an increase in the pulmonary cell PCNA index; slightly elevated levels of 8-OHdG DNA adducts in lung tissue DNA; a small but significant increase in protein concentration in the pleural cavity lavage fluid and an increase in the visceral mesothelial cell PCNA index. None of these parameters was increased in rats administered DWCNT. The primary lesion in rats administered DWCNT was scattered formation of granulation tissue containing internalized DWCNT fibers. Our data indicate that DWCNT has lower pulmonary and pleural toxicity than MWCNT-7.
Collapse
Affiliation(s)
- Ahmed M El-Gazzar
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan.,Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Abdelgied
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan.,Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni Suef University, Beni Suef, Egypt
| | | | | | - Takamasa Numano
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| | - Masaaki Iigo
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| | - Aya Naiki
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroshi Takase
- Core Laboratory, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Akihiko Hirose
- Division of Risk Assessment, National Institute of Hygienic Sciences, Kawasaki, Japan
| | - Jun Kannno
- Bioassay Research Center, Japan Industrial Safety and Health Association, Kanagawa, Japan
| | - Osama Saeid Elokle
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ashraf Mohamed Nazem
- Department of Food Hygiene, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
44
|
Liao D, Wang Q, He J, Alexander DB, Abdelgied M, El-Gazzar AM, Futakuchi M, Suzui M, Kanno J, Hirose A, Xu J, Tsuda H. Persistent Pleural Lesions and Inflammation by Pulmonary Exposure of Multiwalled Carbon Nanotubes. Chem Res Toxicol 2018; 31:1025-1031. [PMID: 30212183 DOI: 10.1021/acs.chemrestox.8b00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Translocation of multiwalled carbon nanotubes (MWCNTs) from the lung to the pleural cavity, deposition of the fibers in the pleural tissue, induction of pleural fibrosis, and mesothelial proliferation have been found in rodents administered MWCNTs by different pulmonary exposure methods. However, whether the translocation and deposition and the subsequent pleural inflammation are associated with the pleural lesions is unclear. In the present study, male F344 rats were given 250 μg of two types of MWCNTs, with crocidolite as a positive control, 2 times/week for 4 weeks by intratracheal spraying. At 24 h and at 3 months after the last spraying, the rats were sacrificed for histological examination of the lung and chest wall; pleural cavity lavage was also collected at sacrifice for observation of pleural inflammatory reactions. The results indicated that intratracheally sprayed MWCNTs, like crocidolite fibers, translocated into the pleural cavity, deposited in the pleura, and induced persistent infiltration of immune cells into the pleural cavity, persistent pleural fibrosis, and mesothelial proliferation. The number of MWCNT fibers detected in the pleural cavity lavage was parallel to the number of infiltrating immune cells, which were mainly composed of macrophages. Analysis of cytokines in the fluids of the pleural cavity lavages by suspension array indicated that levels of IL-2, IL-18, and IP-10 were significantly increased both at 24 h and at 3 months after the last spraying. In vitro proliferation assays revealed that a mixture of IL-2, IL-18, and IP-10, but not any of these cytokines alone, promoted cell proliferation of human fibroblasts and mesothelial cells. These results suggest that translocated and deposited MWCNTs induce subsequent pleural inflammation and that increased IL-2, IL-18, and IP-10 synergistically promote the development of pleural fibrosis and mesothelial proliferation.
Collapse
Affiliation(s)
- Dongping Liao
- Department of Immunology , Anhui Medical University College of Basic Medical Sciences , Meishan Road 81 , Hefei 230032 , China
| | - Qiqi Wang
- Department of Immunology , Anhui Medical University College of Basic Medical Sciences , Meishan Road 81 , Hefei 230032 , China
| | - Jiali He
- Department of Immunology , Anhui Medical University College of Basic Medical Sciences , Meishan Road 81 , Hefei 230032 , China
| | - David B Alexander
- Nanotoxicology Project , Nagoya City University , 3-1 Tanabedohri , Mizuho-ku, Nagoya 467-8603 , Japan
| | - Mohamed Abdelgied
- Nanotoxicology Project , Nagoya City University , 3-1 Tanabedohri , Mizuho-ku, Nagoya 467-8603 , Japan
| | - Ahmed M El-Gazzar
- Nanotoxicology Project , Nagoya City University , 3-1 Tanabedohri , Mizuho-ku, Nagoya 467-8603 , Japan
| | | | | | | | | | - Jiegou Xu
- Department of Immunology , Anhui Medical University College of Basic Medical Sciences , Meishan Road 81 , Hefei 230032 , China.,Nanotoxicology Project , Nagoya City University , 3-1 Tanabedohri , Mizuho-ku, Nagoya 467-8603 , Japan
| | - Hiroyuki Tsuda
- Nanotoxicology Project , Nagoya City University , 3-1 Tanabedohri , Mizuho-ku, Nagoya 467-8603 , Japan
| |
Collapse
|
45
|
Dymacek JM, Snyder-Talkington BN, Raese R, Dong C, Singh S, Porter DW, Ducatman B, Wolfarth MG, Andrew ME, Battelli L, Castranova V, Qian Y, Guo NL. Similar and Differential Canonical Pathways and Biological Processes Associated With Multiwalled Carbon Nanotube and Asbestos-Induced Pulmonary Fibrosis: A 1-Year Postexposure Study. Int J Toxicol 2018; 37:276-284. [PMID: 29916280 DOI: 10.1177/1091581818779038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Respiratory exposure to multiwalled carbon nanotubes (MWCNT) or asbestos results in fibrosis; however, the mechanisms to reach this end point may be different. A previous study by our group identified pulmonary effects and significantly altered messenger RNA (mRNA) signaling pathways following exposure to 1, 10, 40, and 80 µg MWCNT and 120 µg crocidolite asbestos on mouse lungs over time at 1-month, 6-month, and 1-year postexposure following pulmonary aspiration. As a continuation to the above study, this current study took an in-depth look at the signaling pathways involved in fibrosis development at a single time point, 1 year, and exposure, 40 µg MWCNT, the lowest exposure at which fibrosis was pathologically evident. The 120 µg asbestos exposure was included to compare MWCNT-induced fibrosis with asbestos-induced fibrosis. A previously validated computational model was used to identify mRNAs with expression profiles matching the fibrosis pathology patterns from exposed mouse lungs. mRNAs that matched the pathology patterns were then input into ingenuity pathway analysis to determine potential signaling pathways and physiological disease functions inherent to MWCNT and asbestos exposure. Both MWCNT and asbestos exposure induced changes in mouse lungs regarding gene expression, cell proliferation, and survival, while MWCNT uniquely induced alterations in pathways involved in oxidative phosphorylation, mitochondrial dysfunction, and transcription. Asbestos exposure produced unique alterations in pathways involved in sustained inflammation. Although typically considered similar due to scale and fiber-like appearance, the different compositional properties inherent to either MWCNT or asbestos may play a role in their ability to induce fibrosis after pulmonary exposure.
Collapse
Affiliation(s)
- Julian M Dymacek
- 1 West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA.,2 Department of Mathematics and Computer Science, Longwood University, Farmville, VA, USA
| | | | - Rebecca Raese
- 1 West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Chunlin Dong
- 1 West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Salvi Singh
- 1 West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Dale W Porter
- 3 National Institute of Occupational and Environmental Safety and Health, Morgantown, WV, USA
| | - Barbara Ducatman
- 1 West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA.,4 Department of Pathology, West Virginia University, Morgantown, WV, USA
| | - Michael G Wolfarth
- 3 National Institute of Occupational and Environmental Safety and Health, Morgantown, WV, USA
| | - Michal E Andrew
- 3 National Institute of Occupational and Environmental Safety and Health, Morgantown, WV, USA
| | - Lori Battelli
- 3 National Institute of Occupational and Environmental Safety and Health, Morgantown, WV, USA
| | - Vincent Castranova
- 5 Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Yong Qian
- 3 National Institute of Occupational and Environmental Safety and Health, Morgantown, WV, USA
| | - Nancy L Guo
- 1 West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA.,6 Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
46
|
Arnoldussen YJ, Skaug V, Aleksandersen M, Ropstad E, Anmarkrud KH, Einarsdottir E, Chin-Lin F, Granum Bjørklund C, Kasem M, Eilertsen E, Apte RN, Zienolddiny S. Inflammation in the pleural cavity following injection of multi-walled carbon nanotubes is dependent on their characteristics and the presence of IL-1 genes. Nanotoxicology 2018; 12:522-538. [PMID: 29742950 DOI: 10.1080/17435390.2018.1465139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Upon inhalation, multi-walled carbon nanotubes (MWCNTs) may reach the subpleura and pleural spaces, and induce pleural inflammation and/or mesothelioma in humans. However, the mechanisms of MWCNT-induced pathology after direct intrapleural injections are still only partly elucidated. In particular, a role of the proinflammatory interleukin-1 (IL-1) cytokines in pleural inflammation has so far not been published. We examined the MWCNT-induced pleural inflammation, gene expression abnormalities, and the modifying role of IL-1α and β cytokines following intrapleural injection of two types of MWCNTs (CNT-1 and CNT-2) compared with crocidolite asbestos in IL-1 wild-type (WT) and IL-1α/β KO (IL1-KO) mice. Histopathological examination of the pleura 28 days post-exposure revealed mesothelial cell hyperplasia, leukocyte infiltration, and fibrosis occurring in the CNT-1 (Mitsui-7)-exposed group. The pleura of these mice also showed the greatest changes in mRNA and miRNA expression levels, closely followed by CNT-2. In addition, the CNT-1-exposed group also presented the greatest infiltrations of leukocytes and proliferation of fibrous tissue. WT mice were more prone to development of sustained inflammation and fibrosis than IL1-KO mice. Prominent differences in genetic and epigenetic changes were also observed between the two genotypes. In conclusion, the fibrotic response to MWCNTs in the pleura depends on the particles' physico-chemical properties and on the presence or absence of the IL-1 genes. Furthermore, we found that CNT-1 was the most potent inducer of inflammatory responses, followed by CNT-2 and crocidolite asbestos.
Collapse
Affiliation(s)
- Yke Jildouw Arnoldussen
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Vidar Skaug
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Mona Aleksandersen
- b Department of Basic Sciences and Aquatic Medicine , Faculty of Veterinary Medicine, Norwegian University of Life Sciences , Oslo , Norway
| | - Erik Ropstad
- c Department of Production Animal Clinical Sciences , Faculty of Veterinary Medicine, Norwegian University of Life Sciences , Oslo , Norway
| | - Kristine Haugen Anmarkrud
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Elin Einarsdottir
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Fang Chin-Lin
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Cesilie Granum Bjørklund
- c Department of Production Animal Clinical Sciences , Faculty of Veterinary Medicine, Norwegian University of Life Sciences , Oslo , Norway
| | - Mayes Kasem
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Einar Eilertsen
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Ron N Apte
- d The Shraga Segal Department of Microbiology, Immunology, and Genetics, The Faculty of Health Sciences , Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Shanbeh Zienolddiny
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| |
Collapse
|