1
|
Pisani A, Paciello F, Del Vecchio V, Malesci R, De Corso E, Cantone E, Fetoni AR. The Role of BDNF as a Biomarker in Cognitive and Sensory Neurodegeneration. J Pers Med 2023; 13:jpm13040652. [PMID: 37109038 PMCID: PMC10140880 DOI: 10.3390/jpm13040652] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a crucial function in the central nervous system and in sensory structures including olfactory and auditory systems. Many studies have highlighted the protective effects of BDNF in the brain, showing how it can promote neuronal growth and survival and modulate synaptic plasticity. On the other hand, conflicting data about BDNF expression and functions in the cochlear and in olfactory structures have been reported. Several clinical and experimental research studies showed alterations in BDNF levels in neurodegenerative diseases affecting the central and peripheral nervous system, suggesting that BDNF can be a promising biomarker in most neurodegenerative conditions, including Alzheimer's disease, shearing loss, or olfactory impairment. Here, we summarize current research concerning BDNF functions in brain and in sensory domains (olfaction and hearing), focusing on the effects of the BDNF/TrkB signalling pathway activation in both physiological and pathological conditions. Finally, we review significant studies highlighting the possibility to target BDNF as a biomarker in early diagnosis of sensory and cognitive neurodegeneration, opening new opportunities to develop effective therapeutic strategies aimed to counteract neurodegeneration.
Collapse
Affiliation(s)
- Anna Pisani
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Valeria Del Vecchio
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| | - Rita Malesci
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| | - Eugenio De Corso
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Elena Cantone
- Department of Neuroscience, Reproductive Sciences and Dentistry-ENT Section, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
2
|
Rahimian B, Jambarsang S, Mehrparvar AH. The relationship between noise-induced hearing loss and cognitive function. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2023:1-6. [PMID: 36744757 DOI: 10.1080/19338244.2023.2174927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
INTRODUCTION NIHL may affect some domains of cognitive function. This study was conducted to assess the relationship between NIHL and working memory, attention and response time. MATERIALS AND METHODS This was a cross-sectional study on 154 textile workers with exposure to noise higher than 85dBA in a textile factory. The participants were divided into two groups: with and without NIHL and some domains of cognitive function were compared between two groups. Wechsler working memory test and Stroop color-word test were used to measure working memory, selective attention and response time. Data were analyzed by SPSS (ver. 24) using student's T test, and multiple linear regression model. RESULTS Totally, 154 workers entered the study (77 with NIHL and 77 without NIHL). All participants were males. Working memory score and response time were higher and interference score was lower in NIHL group, although only the difference in working memory was significant. Due to the significant difference of age and work history between case and control groups, cognitive parameters were compared between two groups after adjusting for these two variables, but the significance was not changed. CONCLUSION This study showed that noised-exposed middle-aged males with NIHL had probably a lower working memory span than their counterparts without NIHL.
Collapse
Affiliation(s)
- Behnaz Rahimian
- International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Jambarsang
- Research Center of Prevention and Epidemiology of Non-Communicable Diseases, Department of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
3
|
Paciello F, Ripoli C, Fetoni AR, Grassi C. Redox Imbalance as a Common Pathogenic Factor Linking Hearing Loss and Cognitive Decline. Antioxidants (Basel) 2023; 12:antiox12020332. [PMID: 36829891 PMCID: PMC9952092 DOI: 10.3390/antiox12020332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Experimental and clinical data suggest a tight link between hearing and cognitive functions under both physiological and pathological conditions. Indeed, hearing perception requires high-level cognitive processes, and its alterations have been considered a risk factor for cognitive decline. Thus, identifying common pathogenic determinants of hearing loss and neurodegenerative disease is challenging. Here, we focused on redox status imbalance as a possible common pathological mechanism linking hearing and cognitive dysfunctions. Oxidative stress plays a critical role in cochlear damage occurring during aging, as well as in that induced by exogenous factors, including noise. At the same time, increased oxidative stress in medio-temporal brain regions, including the hippocampus, is a hallmark of neurodegenerative disorders like Alzheimer's disease. As such, antioxidant therapy seems to be a promising approach to prevent and/or counteract both sensory and cognitive neurodegeneration. Here, we review experimental evidence suggesting that redox imbalance is a key pathogenetic factor underlying the association between sensorineural hearing loss and neurodegenerative diseases. A greater understanding of the pathophysiological mechanisms shared by these two diseased conditions will hopefully provide relevant information to develop innovative and effective therapeutic strategies.
Collapse
Affiliation(s)
- Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-0630154966
| | - Anna Rita Fetoni
- Unit of Audiology, Department of Neuroscience, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
4
|
Patel SV, DeCarlo CM, Book SA, Schormans AL, Whitehead SN, Allman BL, Hayes SH. Noise exposure in early adulthood causes age-dependent and brain region-specific impairments in cognitive function. Front Neurosci 2022; 16:1001686. [PMID: 36312027 PMCID: PMC9606802 DOI: 10.3389/fnins.2022.1001686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Hearing loss is a chronic health condition that affects millions of people worldwide. In addition to age-related hearing impairment, excessive noise exposure is a leading cause of hearing loss. Beyond the devastating effects of hearing impairment itself, epidemiological studies have identified hearing loss as a major risk factor for age-related cognitive decline, including dementia. At present, we currently lack a full understanding of the brain regions and underlying molecular changes that are responsible for mediating the link between hearing loss and cognitive impairment across aging. In the present study, we exposed 6-month-old rats to an occupational-like noise (100 dB SPL, 4 h/day × 30 days) or sham exposure and investigated both hippocampal-dependent (i.e., spatial learning and memory, assessed using the Morris water maze) and striatal-dependent (i.e., visuomotor associative learning, assessed using an operant-conditioning task) cognitive function across aging at 7, 10, and 13 months of age. We also investigated brain region-specific changes in microglial expression following noise/sham exposure in order to assess the potential contribution of this cell type to noise-induced cognitive impairments. Consistent with human studies, the occupational-like noise exposure resulted in high-frequency hearing loss, evidenced by a significant increase in hearing thresholds at 20 kHz. Ultimately, our results suggest that not all higher-level cognitive tasks or their associated brain regions appear to be equally susceptible to noise-induced deficits during aging, as the occupational-like noise exposure caused an age-dependent deficit in spatial but not visuomotor associative learning, as well as altered microglial expression in the hippocampus but not the striatum. Interestingly, we found no significant relationships between spatial learning ability and the level of hearing loss or altered microglial density in the hippocampus following noise exposure, suggesting that other changes in the brain likely contribute to hippocampal-dependent cognitive dysfunction following noise exposure. Lastly, we found that a subset of younger animals also showed noise-induced deficits in spatial learning; findings which suggest that noise exposure may represent an increased risk for cognitive impairment in vulnerable subjects. Overall, our findings highlight that even a mild occupational-like noise exposure earlier in adulthood can have long lasting implications for cognitive function later in life.
Collapse
|
5
|
Zhang L, Wang J, Sun H, Feng G, Gao Z. Interactions between the hippocampus and the auditory pathway. Neurobiol Learn Mem 2022; 189:107589. [DOI: 10.1016/j.nlm.2022.107589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/12/2022] [Accepted: 01/29/2022] [Indexed: 12/22/2022]
|
6
|
Paciello F, Rinaudo M, Longo V, Cocco S, Conforto G, Pisani A, Podda MV, Fetoni AR, Paludetti G, Grassi C. Auditory sensory deprivation induced by noise exposure exacerbates cognitive decline in a mouse model of Alzheimer's disease. eLife 2021; 10:70908. [PMID: 34699347 PMCID: PMC8547960 DOI: 10.7554/elife.70908] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
Although association between hearing impairment and dementia has been widely documented by epidemiological studies, the role of auditory sensory deprivation in cognitive decline remains to be fully understood. To address this issue we investigated the impact of hearing loss on the onset and time-course of cognitive decline in an animal model of Alzheimer's disease (AD), that is the 3×Tg-AD mice and the underlying mechanisms. We found that hearing loss induced by noise exposure in the 3×Tg-AD mice before the phenotype is manifested caused persistent synaptic and morphological alterations in the auditory cortex. This was associated with earlier hippocampal dysfunction, increased tau phosphorylation, neuroinflammation, and redox imbalance, along with anticipated memory deficits compared to the expected time-course of the neurodegenerative phenotype. Our data suggest that a mouse model of AD is more vulnerable to central damage induced by hearing loss and shows reduced ability to counteract noise-induced detrimental effects, which accelerates the neurodegenerative disease onset.
Collapse
Affiliation(s)
- Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Longo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Cocco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Conforto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Pisani
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Vittoria Podda
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Rita Fetoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
7
|
Huang L, Zhang Y, Wang Y, Lan Y. Relationship Between Chronic Noise Exposure, Cognitive Impairment, and Degenerative Dementia: Update on the Experimental and Epidemiological Evidence and Prospects for Further Research. J Alzheimers Dis 2021; 79:1409-1427. [PMID: 33459723 DOI: 10.3233/jad-201037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Degenerative dementia, of which Alzheimer's disease is the most common form, is characterized by the gradual deterioration of cognitive function. The events that trigger and promote degenerative dementia are not clear, and treatment options are limited. Experimental and epidemiological studies have revealed chronic noise exposure (CNE) as a potential risk factor for cognitive impairment and degenerative dementia. Experimental studies have indicated that long-term exposure to noise might accelerate cognitive dysfunction, amyloid-β deposition, and tau hyperphosphorylation in different brain regions such as the hippocampus and cortex. Epidemiological studies are increasingly examining the possible association between external noise exposure and dementia. In this review, we sought to construct a comprehensive summary of the relationship between CNE, cognitive dysfunction, and degenerative dementia. We also present the limitations of existing evidence as a guide regarding important prospects for future research.
Collapse
Affiliation(s)
- Lei Huang
- Department of Environmental Health and Occupational Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,Department of Occupational Hazard Assessment, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yang Zhang
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yongwei Wang
- Department of Occupational Hazard Assessment, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yajia Lan
- Department of Environmental Health and Occupational Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
8
|
Manukyan AL, Grigoryan AS, Hunanyan LS, Harutyunyan HA, Manukyan MV, Mkrtchyan VS, Melkonyan MM. Alfa2-adrenoblockers attenuate the elevated plasma cholesterol, anxiety levels and restore impaired spatial memory of rats under the chronic noise exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140390. [PMID: 32927557 DOI: 10.1016/j.scitotenv.2020.140390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Noise is considered one of the environmental hazards that negatively affect health. It can cause damage to the auditory, neurological, hormonal and cardiovascular systems, in addition to impairing psychological and cognitive functions. Considering the significance of vascular disturbances and oxidative stress in the development of the aforementioned negative effects, the purpose of our investigation was to study the level of high density lipoprotein-cholesterol (HDL-Cl), low density lipoprotein-cholesterol (LDL-Cl), and total cholesterol (TCl) in plasma, in addition to the behavioral characteristics of white rats, and the effects of the α2-adrenoblockers beditin and mesedin to reveal their antiatherogenic effect during noise exposure. The "Open field" and "Y-maze" tests were used in order to evaluate the behavioral states of the rats. Investigations were carried out on albino rats divided into 4 groups. The 1st group of rats served as a control. The 2nd, 3rd and 4th groups were exposed to 91 dBA of noise; the duration of exposure was 8 h per day for 60 days. The 3rd group was injected with beditin and the 4th group with mesedin, both intraperitoneally and repeatedly. According to our results, the chronic exposure to high-volume noise leads to the increase of plasma TCl and LDL-Cl concentrations and the decrease of HDL-Cl levels, resulting in increase of the atherogenic coefficient, which is estimated to be one of the main cardiovascular disease risk factors. The "Open field" and "Y-maze" tests revealed that chronic noise exposure caused disturbances in the behavioral activity, a noise duration-dependent delay in movement and orientation, increased anxiety and deficit in the animals' spatial memory. The administration of α2-adrenoblockers to the noise-exposed animals had a regulatoryeffects of varying intensities, depending on the medication used and the studied parameters under the conditions of chronic acoustic stress.
Collapse
Affiliation(s)
- A L Manukyan
- Department of Medical Chemistry Yerevan State Medical University after M. Heratsi, Armenia.
| | - A S Grigoryan
- Department of Pathophysiology Yerevan State Medical University after M. Heratsi, Armenia
| | - L S Hunanyan
- Department of Medical Chemistry Yerevan State Medical University after M. Heratsi, Armenia
| | - H A Harutyunyan
- Science Research Canter, YSMU Yerevan State Medical University M. Heratsi, Armenia.
| | - M V Manukyan
- Graduate Student of Yerevan State Medical University after M. Heratsi, Armenia
| | - V S Mkrtchyan
- Graduate Student of Yerevan State Medical University after M. Heratsi, Armenia
| | - M M Melkonyan
- Department of Medical Chemistry Yerevan State Medical University after M. Heratsi, Armenia
| |
Collapse
|
9
|
Neuroanatomical changes of the medial prefrontal cortex of male pups of Wistar rat after prenatal and postnatal noise stress. Acta Histochem 2020; 122:151589. [PMID: 32778245 DOI: 10.1016/j.acthis.2020.151589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022]
Abstract
Recent evidences showed that, noise stress causes abnormal changes in structure and function of central nervous system (CNS). The Current study was conducted to evaluate some stereological parameters of the medial prefrontal cortex (mPFC) of male pups of Wistar rat after prenatal and early postnatal noise stress. 18 pregnant Wistar rats were randomly divided into prenatal noise-exposed (NE) group, postnatal NE group, and controls. Male pups of NE groups were exposed to noise 100 dB at the frequency ranges of 500-8000 Hz, 4 h per day from gestational day one (GD1) to GD21 for the prenatal NE group, and from postnatal day one (PND1) to PND21 in the postnatal NE group. The Control group animals were maintained under standard condition without noise stimulation. Corticosterone level in plasma was measured using ELISA technique. Changes of the neurons and non-neurons cells number and volume of the mPFC were evaluated by stereological analysis. Tunnel assay was also used for detection of apoptotic cells. Increase in plasma corticosterone level, decrease in the number of neurons, and increase in the apoptotic cells number were observed in both NE groups. Decrease in volume of mPFC and also in non-neurons cells number was observed in the prenatal NE group. An increase in the non-neurons number was seen in the postnatal NE group. Data of the current comparative study showed that, noise stress during prenatal and early postnatal periods can induce the abnormal alteration in some stereological parameters of mPFC in male pups of Wistar rat. These negative alterations were more remarkable after prenatal noise stress.
Collapse
|
10
|
Nadhimi Y, Llano DA. Does hearing loss lead to dementia? A review of the literature. Hear Res 2020; 402:108038. [PMID: 32814645 DOI: 10.1016/j.heares.2020.108038] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022]
Abstract
Recent studies have revealed a correlation between aging-related hearing loss and the likelihood of developing Alzheimer Disease. However, it is not yet known if the correlation simply reflects the fact that these two disorders share common risk factors or whether there is a causal link between them. The answer to this question carries therapeutic implications. Unfortunately, it is not possible to study the question of causality between aging-related hearing loss and dementia in human subjects. Here, we evaluate the research surrounding induced-hearing loss in animal models on non-auditory cognition to help infer if there is any causal evidence linking hearing loss and a more general dementia. We find ample evidence that induction of hearing loss in animals produces cognitive decline, particularly hippocampal dysfunction. The data suggest that noise-exposure produces a toxic milieu in the hippocampus consisting of a spike in glucocorticoid levels, elevations of mediators of oxidative stress and excitotoxicity, which as a consequence induce cessation of neurogenesis, synaptic loss and tau hyperphosphorylation. These data suggest that hearing loss can lead to pathological hallmarks similar to those seen in Alzheimer's Disease and other dementias. However, the rodent data do not establish that hearing loss on its own can induce a progressive degenerative dementing illness. Therefore, we conclude that an additional "hit", such as aging, APOE genotype, microvascular disease or others, may be necessary to trigger an ongoing degenerative process such as Alzheimer Disease.
Collapse
Affiliation(s)
- Yosra Nadhimi
- Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, USA
| | - Daniel A Llano
- Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, USA; Carle Neuroscience Institute, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, Urbana, IL, USA.
| |
Collapse
|
11
|
Di G, Liu G, Xu Y, Kim H. Effects of combined traffic noise on the synaptic ultrastructure and expressions of p-CaMKII and NMDAR1 in the hippocampus of young SD rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22030-22039. [PMID: 31140091 DOI: 10.1007/s11356-019-05457-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
In order to explore the effects of combined traffic noise (CTN) on learning and memory function, young Sprague-Dawley (SD) rats were exposed to CTN from highway and high-speed railway for 52 days, whose day-night equivalent continuous A-weighted sound pressure level (Ldn) was 70 dB(A) (corresponding sound pressure level was 80 dB). The synaptic ultrastructure and the expressions of phosphorylated calcium/calmodulin-dependent protein kinase II (p-CaMKII) and N-methyl-D-aspartate receptor 1 (NMDAR1 or NR1) in the hippocampus were tested by transmission electron microscopy (TEM) and Western blot, respectively. Results showed that there was no significant difference in the synaptic ultrastructure and the expressions of p-CaMKII and NR1 in the hippocampus of young rats between the experimental group and control group. Compared with single high-speed railway noise (HSRN) with Ldn of 70 dB(A), CTN had less influences on learning and memory function, which was closely related to smaller intermittency of CTN and less anxiety caused by CTN. In comparison with white noise with a sound pressure level of 80 dB, CTN had less impacts on learning and memory function, which was mainly associated with CTN's smaller R-weighted sound pressure level based on rats' auditory sensitivity.
Collapse
Affiliation(s)
- Guoqing Di
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China.
| | - Guangxiang Liu
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Yaqian Xu
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Hakbong Kim
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
12
|
Attenuation of adverse effects of noise induced hearing loss on adult neurogenesis and memory in rats by intervention with Adenosine A2A receptor agonist. Brain Res Bull 2019; 147:47-57. [DOI: 10.1016/j.brainresbull.2019.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/21/2019] [Accepted: 02/07/2019] [Indexed: 01/11/2023]
|
13
|
Neuroprotective effects of Tualang honey against oxidative stress and memory decline in young and aged rats exposed to noise stress. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1080/16583655.2018.1465275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Frenzilli G, Ryskalin L, Ferrucci M, Cantafora E, Chelazzi S, Giorgi FS, Lenzi P, Scarcelli V, Frati A, Biagioni F, Gambardella S, Falleni A, Fornai F. Loud Noise Exposure Produces DNA, Neurotransmitter and Morphological Damage within Specific Brain Areas. Front Neuroanat 2017; 11:49. [PMID: 28694773 PMCID: PMC5483448 DOI: 10.3389/fnana.2017.00049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
Exposure to loud noise is a major environmental threat to public health. Loud noise exposure, apart from affecting the inner ear, is deleterious for cardiovascular, endocrine and nervous systems and it is associated with neuropsychiatric disorders. In this study we investigated DNA, neurotransmitters and immune-histochemical alterations induced by exposure to loud noise in three major brain areas (cerebellum, hippocampus, striatum) of Wistar rats. Rats were exposed to loud noise (100 dBA) for 12 h. The effects of noise on DNA integrity in all three brain areas were evaluated by using Comet assay. In parallel studies, brain monoamine levels and morphology of nigrostriatal pathways, hippocampus and cerebellum were analyzed at different time intervals (24 h and 7 days) after noise exposure. Loud noise produced a sudden increase in DNA damage in all the brain areas under investigation. Monoamine levels detected at 7 days following exposure were differently affected depending on the specific brain area. Namely, striatal but not hippocampal dopamine (DA) significantly decreased, whereas hippocampal and cerebellar noradrenaline (NA) was significantly reduced. This is in line with pathological findings within striatum and hippocampus consisting of a decrease in striatal tyrosine hydroxylase (TH) combined with increased Bax and glial fibrillary acidic protein (GFAP). Loud noise exposure lasting 12 h causes immediate DNA, and long-lasting neurotransmitter and immune-histochemical alterations within specific brain areas of the rat. These alterations may suggest an anatomical and functional link to explain the neurobiology of diseases which prevail in human subjects exposed to environmental noise.
Collapse
Affiliation(s)
- Giada Frenzilli
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Emanuela Cantafora
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Silvia Chelazzi
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Filippo S Giorgi
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Vittoria Scarcelli
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico IRCCS NeuromedIsernia, Italy
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico IRCCS NeuromedIsernia, Italy
| | - Stefano Gambardella
- Istituto di Ricovero e Cura a Carattere Scientifico IRCCS NeuromedIsernia, Italy
| | - Alessandra Falleni
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico IRCCS NeuromedIsernia, Italy
| |
Collapse
|
15
|
Guo L, Li PH, Li H, Colicino E, Colicino S, Wen Y, Zhang R, Feng X, Barrow TM, Cayir A, Baccarelli AA, Byun HM. Effects of environmental noise exposure on DNA methylation in the brain and metabolic health. ENVIRONMENTAL RESEARCH 2017; 153:73-82. [PMID: 27914298 DOI: 10.1016/j.envres.2016.11.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 05/17/2023]
Abstract
Environmental noise exposure is associated with adverse effects on human health including hearing loss, heart disease, and changes in stress-related hormone levels. Alteration in DNA methylation in response to environmental exposures is a well-known phenomenon and it is implicated in many human diseases. Understanding how environmental noise exposures affect DNA methylation patterns may help to elucidate the link between noise and adverse effects on health. In this pilot study we examined the effects of environmental noise exposure on DNA methylation of genes related to brain function and investigated whether these changes are related with metabolic health. We exposed four groups of male Wistar rats to moderate intensity noise (70-75dB with 20-4000Hz) at night for three days as short-term exposure, and for three weeks as long-term exposure. Noise exposure was limited to 45dB during the daytime. Control groups were exposed to only 45dB, day and night. We measured DNA methylation in the Bdnf, Comt, Crhr1, Mc2r, and Snca genes in tissue from four brain regions of the rats (hippocampus, frontal lobe, medulla oblongata, and inferior colliculus). Further, we measured blood pressure and body weight after long-term noise exposure. We found that environmental noise exposure is associated with gene-specific DNA methylation changes in specific regions of the brain. Changes in DNA methylation are significantly associated with changes in body weight (between Bdnf DNA methylation and Δ body weight: r=0.59, p=0.018; and between LINE-1 ORF DNA methylation and Δ body weight: =-0.80, p=0.0004). We also observed that noise exposure decreased blood pressure (p=0.038 for SBP, p=0.017 for DBP and p 0. 017 for MAP) and decreased body weight (β=-26g, p=0.008). In conclusion, environmental noise exposures can induce changes in DNA methylation in the brain, which may be associated with adverse effects upon metabolic health through modulation of response to stress-related hormones.
Collapse
Affiliation(s)
- Liqiong Guo
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Peng-Hui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hua Li
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Elena Colicino
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Silvia Colicino
- Respiratory Epidemiology, Occupational Medicine and Public Health, Imperial College, London, United Kingdom
| | - Yi Wen
- Department of Radiology, No. 531 Hospital of the PLA, Tonghua, Jilin 134000, China
| | - Ruiping Zhang
- Department of Radiology, No. 531 Hospital of the PLA, Tonghua, Jilin 134000, China
| | - Xiaotian Feng
- Department of Bioengineering, School of Mineral Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Timothy M Barrow
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Akin Cayir
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Hyang-Min Byun
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
16
|
Tualang Honey Attenuates Noise Stress-Induced Memory Deficits in Aged Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1549158. [PMID: 27119005 PMCID: PMC4826941 DOI: 10.1155/2016/1549158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/13/2016] [Indexed: 12/24/2022]
Abstract
Ageing and stress exposure may lead to memory impairment while oxidative stress is thought to be one of the underlying mechanisms involved. This study aimed to investigate the potential protective effects of Tualang honey supplementation on memory performance in aged rats exposed to noise stress. Tualang honey supplementation was given orally, 200 mg/kg body weight for 28 days. Rats in the stress group were subjected to loud noise, 100 dB(A), 4 hours daily for 14 days. All rats were subjected to novel object recognition test for evaluation of memory performance. It was observed that the rats subjected to noise stress exhibited significantly lower memory performance and higher oxidative stress as evident by elevated malondialdehyde and protein carbonyl levels and reduction of antioxidant enzymes activities compared to the nonstressed rats. Tualang honey supplementation was able to improve memory performance, decrease oxidative stress levels, increase brain-derived neurotrophic factor (BDNF) concentration, decrease acetylcholinesterase activity, and enhance neuronal proliferation in the medial prefrontal cortex (mPFC) and hippocampus. In conclusion, Tualang honey protects against memory decline due to stress exposure and/or ageing via enhancement of mPFC and hippocampal morphology possibly secondary to reduction in brain oxidative stress and/or upregulation of BDNF concentration and cholinergic system.
Collapse
|
17
|
Liu L, Shen P, He T, Chang Y, Shi L, Tao S, Li X, Xun Q, Guo X, Yu Z, Wang J. Noise induced hearing loss impairs spatial learning/memory and hippocampal neurogenesis in mice. Sci Rep 2016; 6:20374. [PMID: 26842803 PMCID: PMC4740884 DOI: 10.1038/srep20374] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/23/2015] [Indexed: 12/11/2022] Open
Abstract
Hearing loss has been associated with cognitive decline in the elderly and is considered to be an independent risk factor for dementia. One of the most common causes for acquired sensorineural hearing loss is exposure to excessive noise, which has been found to impair learning ability and cognitive performance in human subjects and animal models. Noise exposure has also been found to depress neurogenesis in the hippocampus. However, the effect is mainly attributed to the oxidant stress of noise on the cognitive brain. In the present study, young adult CBA/CAJ mice (between 1.5 and 2 months of age) were briefly exposed a high sound level to produce moderate-to-severe hearing loss. In both the blood and hippocampus, only transient oxidative stress was observed after noise exposure. However, a deficit in spatial learning/memory was revealed 3 months after noise exposure. Moreover, the deficit was correlated with the degree of hearing loss and was associated with a decrease in neurogenesis in the hippocampus. We believe that the observed effects were likely due to hearing loss rather than the initial oxidant stress, which only lasted for a short period of time.
Collapse
Affiliation(s)
- Lijie Liu
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Pei Shen
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Tingting He
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Ying Chang
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Lijuan Shi
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Shan Tao
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Xiaowei Li
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Qingying Xun
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Xiaojing Guo
- Department of Physiology, Medical College of Southeast University, Nanjing China.,Children's medical center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiping Yu
- School of Human Communication Disorders, Dalhousie University, Halifax, Canada
| | - Jian Wang
- Department of Physiology, Medical College of Southeast University, Nanjing China.,School of Human Communication Disorders, Dalhousie University, Halifax, Canada
| |
Collapse
|
18
|
Noise exposure of immature rats can induce different age-dependent extra-auditory alterations that can be partially restored by rearing animals in an enriched environment. Brain Res 2016; 1636:52-61. [PMID: 26851548 DOI: 10.1016/j.brainres.2016.01.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/29/2015] [Accepted: 01/27/2016] [Indexed: 02/01/2023]
Abstract
It has been previously shown that different extra-auditory alterations can be induced in animals exposed to noise at 15 days. However, data regarding exposure of younger animals, that do not have a functional auditory system, have not been obtained yet. Besides, the possibility to find a helpful strategy to restore these changes has not been explored so far. Therefore, the aims of the present work were to test age-related differences in diverse hippocampal-dependent behavioral measurements that might be affected in noise-exposed rats, as well as to evaluate the effectiveness of a potential neuroprotective strategy, the enriched environment (EE), on noise-induced behavioral alterations. Male Wistar rats of 7 and 15 days were exposed to moderate levels of noise for two hours. At weaning, animals were separated and reared either in standard or in EE cages for one week. At 28 days of age, different hippocampal-dependent behavioral assessments were performed. Results show that rats exposed to noise at 7 and 15 days were differentially affected. Moreover, EE was effective in restoring all altered variables when animals were exposed at 7 days, while a few were restored in rats exposed at 15 days. The present findings suggest that noise exposure was capable to trigger significant hippocampal-related behavioral alterations that were differentially affected, depending on the age of exposure. In addition, it could be proposed that hearing structures did not seem to be necessarily involved in the generation of noise-induced hippocampal-related behaviors, as they were observed even in animals with an immature auditory pathway. Finally, it could be hypothesized that the differential restoration achieved by EE rearing might also depend on the degree of maturation at the time of exposure and the variable evaluated, being younger animals more susceptible to environmental manipulations.
Collapse
|
19
|
Wang S, Yu Y, Feng Y, Zou F, Zhang X, Huang J, Zhang Y, Zheng X, Huang XF, Zhu Y, Liu Y. Protective effect of the orientin on noise-induced cognitive impairments in mice. Behav Brain Res 2015; 296:290-300. [PMID: 26392065 DOI: 10.1016/j.bbr.2015.09.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 01/10/2023]
Abstract
There is increasing evidence that chronic noise stress impairs cognition and induces oxidative stress in the brain. Recently, orientin, a phenolic compound abundant in some fruits, millet, and herbs, has been shown to have antioxidant properties. This study investigated the potential effects of orientin against chronic noise-induced cognitive decline and its underlying mechanisms. A moderate-intensity noise exposure model was used to investigate the effects of orientin on behavior and biochemical alterations in mice. After 3 weeks of the noise exposure, the mice were treated with orientin (20mg/kg and 40 mg/kg, oral gavage) for 3 weeks. The chronic noise exposure impaired the learning and memory in mice in the Morris water maze and step-through tests. The noise exposure also decreased exploration and interest in a novel environment in the open field test. The administration of orientin significantly reversed noise-induced alterations in these behavior tests. Moreover, the orientin treatment significantly improved the noise-induced alteration of serum corticosterone and catecholamine levels and oxidative stress in the hippocampus and prefrontal cortex. Furthermore, the orientin treatment ameliorated the noise-induced decrease in brain-derived neurotrophic factor and synapse-associated proteins (synaptophysin and postsynaptic density protein 95) in the hippocampus and prefrontal cortex. Thus, orientin exerts protective effects on noise-induced cognitive decline in mice, specifically by improving central oxidative stress, neurotransmission, and increases synapse-associated proteins. Therefore, supplementation with orientin-enriched food or fruit could be beneficial as a preventive strategy for chronic noise-induced cognitive decline.
Collapse
Affiliation(s)
- Shuting Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Yinghua Yu
- Schizophrenia Research Institute (SRI), 405 Liverpool St., Sydney, NSW 2010, Australia; Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, NSW 2522, Australia
| | - Yan Feng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Fang Zou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Xiaofei Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Jie Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Yuyun Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Xian Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Xu-Feng Huang
- Schizophrenia Research Institute (SRI), 405 Liverpool St., Sydney, NSW 2010, Australia; Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, NSW 2522, Australia
| | - Yufu Zhu
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province, China.
| | - Yi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
20
|
Xu Y, Cheng X, Cui X, Wang T, Liu G, Yang R, Wang J, Bo X, Wang S, Zhou W, Zhang Y. Effects of 5-h multimodal stress on the molecules and pathways involved in dendritic morphology and cognitive function. Neurobiol Learn Mem 2015; 123:225-38. [DOI: 10.1016/j.nlm.2015.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 11/25/2022]
|
21
|
Tao S, Liu L, Shi L, Li X, Shen P, Xun Q, Guo X, Yu Z, Wang J. Spatial learning and memory deficits in young adult mice exposed to a brief intense noise at postnatal age. J Otol 2015; 10:21-28. [PMID: 29937778 PMCID: PMC6002560 DOI: 10.1016/j.joto.2015.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/14/2015] [Indexed: 02/07/2023] Open
Abstract
Noise pollution is a major hazardous factor to human health and is likely harmful for vulnerable groups such as pre-term infants under life-support system in an intensive care unit. Previous studies have suggested that noise exposure impairs children's learning ability and cognitive performance and cognitive functions in animal models in which the effect is mainly attributed to the oxidant stress of noise on the cognitive brain. The potential role of noise induced hearing loss (NIHL), rather than the oxidant stress, has also been indicated by a depression of neurogenesis in the hippocampus long after a brief noise exposure, which produces only a tentative oxidant stress. It is not clear if noise exposure and NIHL during early development exerts a long term impact on cognitive function and neurogenesis towards adulthood. In the present study, a brief noise exposure at high sound level was performed in neonatal C57BL/6J mice (15 days after birth) to produce a significant amount of permanent hearing loss as proved 2 months after the noise. At this age, the noise-exposed animals showed deteriorated spatial learning and memory abilities and a reduction of hippocampal neurogenesis as compared with the control. The averaged hearing threshold was found to be strongly correlated with the scores for spatial learning and memory. We consider the effects observed are largely due to the loss of hearing sensitivity, rather than the oxidant stress, due to the long interval between noise exposure and the observations.
Collapse
Affiliation(s)
- Shan Tao
- Department of Physiology, Medical College of Southeast University, Nanjing, China
| | - Lijie Liu
- Department of Physiology, Medical College of Southeast University, Nanjing, China
| | - Lijuan Shi
- Department of Physiology, Medical College of Southeast University, Nanjing, China
| | - Xiaowei Li
- Department of Physiology, Medical College of Southeast University, Nanjing, China
| | - Pei Shen
- Department of Physiology, Medical College of Southeast University, Nanjing, China
| | - Qingying Xun
- Department of Physiology, Medical College of Southeast University, Nanjing, China
| | - Xiaojing Guo
- Department of Physiology, Medical College of Southeast University, Nanjing, China.,Children's Medical Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiping Yu
- School of Human Communication Disorders, Dalhousie University, Halifax, Canada
| | - Jian Wang
- Department of Physiology, Medical College of Southeast University, Nanjing, China.,School of Human Communication Disorders, Dalhousie University, Halifax, Canada
| |
Collapse
|
22
|
Azman KF, Zakaria R, AbdAziz C, Othman Z, Al-Rahbi B. Tualang honey improves memory performance and decreases depressive-like behavior in rats exposed to loud noise stress. Noise Health 2015; 17:83-9. [PMID: 25774610 PMCID: PMC4918659 DOI: 10.4103/1463-1741.153388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent evidence has exhibited dietary influence on the manifestation of different types of behavior induced by stressor tasks. The present study examined the effects of Tualang honey supplement administered with the goal of preventing or attenuating the occurrence of stress-related behaviors in male rats subjected to noise stress. Forty-eight adult male rats were randomly divided into the following four groups: i) nonstressed with vehicle, ii) nonstressed with Tualang honey, iii) stressed with vehicle, and iv) stressed with honey. The supplement was given once daily via oral gavage at 0.2 g/kg body weight. Two types of behavioral tests were performed, namely, the novel object recognition test to evaluate working memory and the forced swimming test to evaluate depressive-like behavior. Data were analyzed by a two-way analysis of variance (ANOVA) using IBM SPSS 18.0. It was observed that the rats subjected to noise stress expressed higher levels of depressive-like behavior and lower memory functions compared to the unexposed control rats. In addition, our results indicated that the supplementation regimen successfully counteracted the effects of noise stress. The forced swimming test indicated that climbing and swimming times were significantly increased and immobility times significantly decreased in honey-supplemented rats, thereby demonstrating an antidepressant-like effect. Furthermore, cognitive function was shown to be intensely affected by noise stress, but the effects were counteracted by the honey supplement. These findings suggest that subchronic exposure to noise stress induces depressive-like behavior and reduces cognitive functions, and that these effects can be attenuated by Tualang honey supplementation. This warrants further studies to examine the role of Tulang honey in mediating such effects.
Collapse
|
23
|
Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrity. Int J Dev Neurosci 2014; 37:41-51. [PMID: 24911434 DOI: 10.1016/j.ijdevneu.2014.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/30/2014] [Accepted: 06/01/2014] [Indexed: 11/24/2022] Open
Abstract
Sound is an important part of man's contact with the environment and has served as critical means for survival throughout his evolution. As a result of exposure to noise, physiological functions such as those involving structures of the auditory and non-auditory systems might be damaged. We have previously reported that noise-exposed developing rats elicited hippocampal-related histological, biochemical and behavioral changes. However, no data about the time lapse of these changes were reported. Moreover, measurements of auditory pathway function were not performed in exposed animals. Therefore, with the present work, we aim to test the onset and the persistence of the different extra-auditory abnormalities observed in noise-exposed rats and to evaluate auditory pathway integrity. Male Wistar rats of 15 days were exposed to moderate noise levels (95-97 dB SPL, 2 h a day) during one day (acute noise exposure, ANE) or during 15 days (sub-acute noise exposure, SANE). Hippocampal biochemical determinations as well as short (ST) and long term (LT) behavioral assessments were performed. In addition, histological and functional evaluations of the auditory pathway were carried out in exposed animals. Our results show that hippocampal-related behavioral and biochemical changes (impairments in habituation, recognition and associative memories as well as distortion of anxiety-related behavior, decreases in reactive oxygen species (ROS) levels and increases in antioxidant enzymes activities) induced by noise exposure were almost completely restored by PND 90. In addition, auditory evaluation shows that increased cochlear thresholds observed in exposed rats were re-established at PND 90, although with a remarkable supra-threshold amplitude reduction. These data suggest that noise-induced hippocampal and auditory-related alterations are mostly transient and that the effects of noise on the hippocampus might be, at least in part, mediated by the damage on the auditory pathway. However, we cannot exclude that a different mechanism might be responsible for the observed hippocampal-related changes.
Collapse
|
24
|
|
25
|
Spasojevic N, Jovanovic P, Dronjak S. Molecular basis of chronic stress-induced hippocampal lateral asymmetry in rats and impact on learning and memory. ACTA ACUST UNITED AC 2014; 100:388-94. [PMID: 24317346 DOI: 10.1556/aphysiol.100.2013.4.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neurochemical lateralization has been demonstrated in the rat brain suggesting that such lateralization might contribute to behavior. Thus, the aim of the present study was to examine neurochemical asymmetry in the hippocampus, molecular basis of neurochemical lateralization and its impact on spatial learning and memory. Changes in noradrenaline content, tyrosine hydroxylase (TH) were studied in the right and left hippocampus of naive control and chronically isolated rats, by applying TaqMan RT-PCR and Western blot analysis. Hippocampal-based spatial learning and memory were evaluated using the Barnes maze. In control rats an asymmetrical right-left distribution of noradrenaline content and gene expression of catecholamine synthesizing enzyme was found. Chronic psychosocial stress further emphasized asymmetry. Isolation stress reduced noradrenaline content only in the right hippocampus. No changes were observed in gene expression and protein levels of TH in the right hippocampus, whereas expression of catecholamine synthesizing enzyme was elevated in the left hippocampus. Reduced noradrenaline content in the right hippocampus did not cause impairment in spatial learning and memory. Our findings suggest that chronic psychosocial stress reduces noradrenaline stores in the right hippocampus which may be caused by molecular asymmetry, but it does not affect spatial learning and memory.
Collapse
Affiliation(s)
- N Spasojevic
- University of Belgrade Institute of Nuclear Sciences "Vinca", Laboratory of Molecular Biology and Endocrinology 11000 Belgrade Serbia PO Box 522-090
| | | | | |
Collapse
|
26
|
Haider S, Naqvi F, Batool Z, Tabassum S, Perveen T, Saleem S, Haleem DJ. Decreased Hippocampal 5-HT and DA Levels Following Sub-Chronic Exposure to Noise Stress: Impairment in both Spatial and Recognition Memory in Male Rats. Sci Pharm 2012; 80:1001-11. [PMID: 23264946 PMCID: PMC3528056 DOI: 10.3797/scipharm.1207-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/07/2012] [Indexed: 11/22/2022] Open
Abstract
Mankind is exposed to a number of stressors, and among them noise is one which can cause intense stress. High levels of background noise can severely impair one’s ability to concentrate. The present study was aimed to investigate the effect of sub-chronic noise stress on cognitive behavior and hippocampal monoamine levels in male rats. The study was performed on 12 male Wistar rats, divided into two groups; the control and noise-exposed. The rats in the test group were subjected to noise stress, 4h daily for 15 days. Cognitive testing was performed by the Elevated Plus Maze test (EPM) and Novel Object Recognition test (NOR). HPLC-EC was used to determine hippocampal monoamine levels and their metabolites. The data obtained revealed a significant decrease in hippocampal serotonin (5-hydroxytryptamine; 5-HT) and dopamine (DA) levels, whereas turnover ratios of 5-HT and DA were significantly increased compared to the controls. Rats exposed to noise exhibited a significant decrement in spatial memory. A significantly decreased recognition index of rats exposed to noise as compared to the control was also observed in the NOR test. Results of the present findings suggest the role of decreased hippocampal 5-HT and DA in the impairment of cognitive function following noise exposure.
Collapse
Affiliation(s)
- Saida Haider
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi-75270, Pakistan
| | | | | | | | | | | | | |
Collapse
|
27
|
Uran S, Aon-Bertolino M, Caceres L, Capani F, Guelman L. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels. Brain Res 2012; 1471:1-12. [DOI: 10.1016/j.brainres.2012.06.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 12/21/2022]
|
28
|
Wang Z, Li J, Wang Z, Xue L, Zhang Y, Chen Y, Su J, Li Z. L-tyrosine improves neuroendocrine function in a mouse model of chronic stress. Neural Regen Res 2012; 7:1413-9. [PMID: 25657675 PMCID: PMC4308793 DOI: 10.3969/j.issn.1673-5374.2012.18.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/15/2012] [Indexed: 11/18/2022] Open
Abstract
Adult BALB/c mice, individually housed, were stimulated with nine different stressors, arranged randomly, for 4 continuous weeks to generate an animal model of chronic stress. In chronically stressed mice, spontaneous locomotor activity was significantly decreased, escape latency in the Morris water maze test was prolonged, serum levels of total thyrotropin and total triiodothyronine were significantly decreased, and dopamine and norepinephrine content in the pallium, hippocampus and hypothalamus were significantly reduced. All of these changes were suppressed, to varying degrees, by L-tyrosine supplementation. These findings indicate that the neuroendocrine network plays an important role in chronic stress, and that L-tyrosine supplementation has therapeutic effects.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Emergency, Second Affiliated Hospital of Kunming Medical College, Kunming 650221, Yunnan Province, China
| | - Jinghua Li
- Department of Ophthalmology, Second Affiliated Hospital of Kunming Medical College, Kunming 650221, Yunnan Province, China
| | - Zhiming Wang
- Department of Gastrointestinal Diseases, Yan-an Hospital, Kunming 650051, Yunnan Province, China
| | - Lingyan Xue
- Second Department of Internal Medicine of Wu-hua District People's Hospital of Kunming, Kunming 650051, Yunnan Province, China
| | - Yi Zhang
- Department of Emergency, Second Affiliated Hospital of Kunming Medical College, Kunming 650221, Yunnan Province, China
| | - Yingjie Chen
- Department of Anatomy, Kunming Medical University, Kunming 650031, Yunnan Province, China
| | - Jun Su
- Department of Orthopedics, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Zhongming Li
- Department of Anatomy, Kunming Medical University, Kunming 650031, Yunnan Province, China
| |
Collapse
|
29
|
Prisila Dulcy C, Singh HK, Preethi J, Emmanuvel Rajan K. Standardized extract of Bacopa monniera (BESEB CDRI-08) attenuates contextual associative learning deficits in the aging rat's brain induced by D-galactose. J Neurosci Res 2012; 90:2053-64. [DOI: 10.1002/jnr.23080] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/20/2012] [Accepted: 04/12/2012] [Indexed: 12/22/2022]
|
30
|
Kraus KS, Canlon B. Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus. Hear Res 2012; 288:34-46. [DOI: 10.1016/j.heares.2012.02.009] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/09/2011] [Accepted: 02/22/2012] [Indexed: 01/01/2023]
|