1
|
Hofmann SG, Kasch C, Pereira B, Barbosa C, Andreoli G. The risks versus the benefits of pharmacological intervention in social anxiety disorder in children. Expert Rev Neurother 2025:1-12. [PMID: 39940114 DOI: 10.1080/14737175.2025.2461763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION Many children are affected by social anxiety disorder (SAD). Pharmacotherapy, such as selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs), may be indicated, but a clear understanding of the risks and benefits associated with these pharmacological treatments is needed. AREAS COVERED This expert review explores the risks and benefits of pharmacotherapy for treating SAD in children. EXPERT OPINION Pharmacotherapy may be considered as a treatment when symptoms are complex or severe or when effective psychotherapy, such as cognitive behavioral therapy (CBT), is not accessible. We recommend that clinicians collaborate closely with parents, pediatricians, and psychiatrists in the treatment planning process, while monitoring the effects of pharmacotherapy. Future research should prioritize the personalization of treatments.
Collapse
Affiliation(s)
- Stefan G Hofmann
- Department of Psychology, Philipps University of Marburg, Marburg/Lahn, Germany
| | - Chantal Kasch
- Department of Psychology, Philipps University of Marburg, Marburg/Lahn, Germany
| | - Bruno Pereira
- Department of Psychology, Philipps University of Marburg, Marburg/Lahn, Germany
| | - Carolina Barbosa
- Department of Psychology, Philipps University of Marburg, Marburg/Lahn, Germany
| | - Giovanbattista Andreoli
- Department of Psychology, Philipps University of Marburg, Marburg/Lahn, Germany
- Department of Psychology, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Lakra MS, Taksande A, Lakra A, Meshram R, Prasad R. A Rare and Unusual Case of Severe Persistent Pulmonary Hypertension in a Newborn due to Accidental Drug Exposure in Mother. AL-RAFIDAIN JOURNAL OF MEDICAL SCIENCES ( ISSN 2789-3219 ) 2024; 7:138-141. [DOI: 10.54133/ajms.v7i2.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Persistent pulmonary hypertension is a life-threatening illness that can be fatal if not diagnosed early. Some medications, notably selective serotonin reuptake inhibitors (SSRIs), can cause severe persistent pulmonary hypertension in newborns if administered antenatally, especially after 20 weeks of gestation. We present a case in which the use of selective serotonin uptake inhibitors during pregnancy resulted in severe chronic pulmonary hypertension in a newborn. A 2.5-kilogram male newborn was delivered via caesarean section and was asymptomatic for one day. On day 2 of life, the baby suffered cyanosis and difficulties breathing, necessitating intubation. In retrospect, the mother was taking sertraline for the treatment of depression. Based on the clinical characteristics and presentation, an echocardiogram was performed, which revealed severe chronic pulmonary hypertension. The baby was successfully treated with pulmonary vasodilators and high flow oscillating ventilation.
Collapse
|
3
|
Koc D, Tiemeier H, Stricker BH, Muetzel RL, Hillegers M, El Marroun H. Prenatal Antidepressant Exposure and Offspring Brain Morphologic Trajectory. JAMA Psychiatry 2023; 80:1208-1217. [PMID: 37647036 PMCID: PMC10469300 DOI: 10.1001/jamapsychiatry.2023.3161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/13/2023] [Indexed: 09/01/2023]
Abstract
Importance Clinical decision-making on antidepressant treatment during pregnancy, particularly selective serotonin reuptake inhibitors (SSRIs), is challenging, as both prenatal SSRI exposure and maternal depressive symptoms may be associated with negative outcomes in offspring. Objective To investigate the association between intrauterine SSRI exposure and maternal depressive symptoms and structural brain development in offspring from mid-childhood to early puberty. Design, Setting, and Participants This prospective, population-based cohort study was embedded in the Generation R Study in Rotterdam, the Netherlands. All pregnant individuals with an expected delivery date between April 1, 2002, and January 31, 2006, were invited to participate. Data were analyzed from February 1 to September 30, 2022. Exposure Maternal-reported SSRI use verified by pharmacy records. In mid-pregnancy and 2 and 6 months after delivery, participants reported depressive symptoms using the Brief Symptom Inventory and were divided into 5 groups: SSRI use during pregnancy (n = 41; 80 scans), SSRI use only before pregnancy (n = 77; 126 scans), prenatal depressive symptoms without prenatal SSRI use (n = 257; 477 scans), postnatal depressive symptoms only (n = 74; 128 scans), and nonexposed control individuals (n = 2749; 4813 scans). Main Outcomes and Measures The main outcome was brain morphometry in offspring, including global and cortical brain volumes, measured at 3 magnetic resonance imaging assessments from 7 to 15 years of age. Results The study included 3198 mother-child dyads. A total of 3198 mothers (100%) identified as women; mean (SD) age at intake was 31.1 (4.7) years. Children (1670 [52.2%] female) underwent brain imaging assessment from 7 to 15 years of age with 5624 total scans. Most brain gray matter volumes showed an inverted U-shaped trajectory. Compared with nonexposed controls, children prenatally exposed to SSRIs had less cerebral gray matter (β [SE], -20 212.2 [7285.6] mm3; P = .006), particularly within the corticolimbic circuit, which persisted up to 15 years of age. Children exposed to SSRIs prenatally showed a steeper increase in volumes of the amygdala (age interaction: β [SE], 43.3 [13.4] mm3; P = .006) and fusiform gyrus (age interaction: β [SE], 168.3 [51.4] mm3; P = .003) from 7 to 15 years of age. These volumetric differences in the amygdala and fusiform observed in childhood did not persist until early adolescence. Prenatal depression was associated with a smaller volume in the rostral anterior cingulate gyrus (β [SE], -166.3 [65.1] mm3; P = .006), and postnatal depression was associated with a reduced fusiform gyrus (β [SE], -480.5 [189.2] mm3; P = .002). No association of SSRI use before pregnancy with brain outcomes was observed. Conclusions and Relevance The results of this cohort study suggest that prenatal SSRI exposure may be associated with altered developmental trajectories of brain regions involved in emotional regulation in offspring. Further research on the functional implications of these findings is needed.
Collapse
Affiliation(s)
- Dogukan Koc
- Generation R Study Group, Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Bruno H. Stricker
- Department of Epidemiology, Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Ryan L. Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Manon Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Hanan El Marroun
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Moreau AL, Voss M, Hansen I, Paul SE, Barch DM, Rogers CE, Bogdan R. Prenatal Selective Serotonin Reuptake Inhibitor Exposure, Depression, and Brain Morphology in Middle Childhood: Results From the ABCD Study. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:243-254. [PMID: 37124359 PMCID: PMC10140451 DOI: 10.1016/j.bpsgos.2022.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background Prenatal selective serotonin reuptake inhibitor (SSRI) exposure has been inconsistently linked to depression, and little is known about neural correlates. We examined whether prenatal SSRI exposure is associated with depressive symptoms and brain structure during middle childhood. Methods Prenatal SSRI exposure (retrospective caregiver report), depressive symptoms (caregiver-reported Child Behavior Checklist), and brain structure (magnetic resonance imaging-derived subcortical volume; cortical thickness and surface area) were assessed in children (analytic ns = 5420-7528; 235 with prenatal SSRI exposure; 9-10 years of age) who completed the baseline Adolescent Brain Cognitive Development Study session. Linear mixed-effects models nested data. Covariates included familial, pregnancy, and child variables. Matrix spectral decomposition adjusted for multiple testing. Results Prenatal SSRI exposure was not independently associated with depression after accounting for recent maternal depressive symptoms. Prenatal SSRI exposure was associated with greater left superior parietal surface area (b = 145.3 mm2, p = .00038) and lateral occipital cortical thickness (b = 0.0272 mm, p = .0000079); neither was associated with child depressive symptoms. Child depression was associated with smaller global brain structure. Conclusions Our findings, combined with adverse outcomes of exposure to maternal depression and the utility of SSRIs for treating depression, suggest that risk for depression during middle childhood should not discourage SSRI use during pregnancy. Associations between prenatal SSRI exposure and brain structure were small in magnitude and not associated with depression. It will be important for future work to examine associations between prenatal SSRI exposure and depression through young adulthood, when risk for depression increases.
Collapse
Affiliation(s)
- Allison L. Moreau
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Michaela Voss
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Isabella Hansen
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Sarah E. Paul
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Deanna M. Barch
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Cynthia E. Rogers
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
5
|
Wang J, Cosci F. Neonatal Withdrawal Syndrome following Late in utero Exposure to Selective Serotonin Reuptake Inhibitors: A Systematic Review and Meta-Analysis of Observational Studies. PSYCHOTHERAPY AND PSYCHOSOMATICS 2021; 90:299-307. [PMID: 33971648 DOI: 10.1159/000516031] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/20/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION A clear picture of neonatal withdrawal signs due to in utero selective serotonin reuptake inhibitor (SSRI) exposure and its consequences is still missing. OBJECTIVE A systematic review and a meta-analysis were performed to provide an overview of neonatal withdrawal signs following late in utero exposure to SSRIs and to quantify the corresponding risks. METHODS MEDLINE, Web of Science, and Embase were searched from inception to January 2021. The Meta-Analysis of Observational Studies in Epidemiology (MOOSE) guidelines were followed. English-language observational studies reporting on acute postpartum outcomes following late in utero exposure to SSRIs or SSRIs/venlafaxine were evaluated. RESULTS Of 2,269 citations reviewed, 79 studies were assessed for eligibility; 13 were included in the qualitative analysis of the literature, which allowed us to identify 26 signs. A meta-analysis was run separately for studies on SSRI exposure (n = 3) and those on SSRI/venlafaxine exposure (n = 6). Hypoglycemia was identified as a withdrawal sign based on the SSRI studies. Tremors, hypotonia, tachycardia, rapid breathing, respiratory distress, and hypertonia were identified as withdrawal signs based on the SSRI/venlafaxine studies. CONCLUSIONS The present work provides a framework for the identification of neonatal SSRI withdrawal syndrome. Tapering and discontinuation of antidepressant drugs before and during the early phase of pregnancy are worth attempting to prevent the occurrence of this syndrome.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Fiammetta Cosci
- Department of Health Sciences, University of Florence, Florence, Italy.,Clinical Pharmacopsychology Laboratory, University of Florence, Florence, Italy.,Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Hanswijk SI, Spoelder M, Shan L, Verheij MMM, Muilwijk OG, Li W, Liu C, Kolk SM, Homberg JR. Gestational Factors throughout Fetal Neurodevelopment: The Serotonin Link. Int J Mol Sci 2020; 21:E5850. [PMID: 32824000 PMCID: PMC7461571 DOI: 10.3390/ijms21165850] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
Serotonin (5-HT) is a critical player in brain development and neuropsychiatric disorders. Fetal 5-HT levels can be influenced by several gestational factors, such as maternal genotype, diet, stress, medication, and immune activation. In this review, addressing both human and animal studies, we discuss how these gestational factors affect placental and fetal brain 5-HT levels, leading to changes in brain structure and function and behavior. We conclude that gestational factors are able to interact and thereby amplify or counteract each other's impact on the fetal 5-HT-ergic system. We, therefore, argue that beyond the understanding of how single gestational factors affect 5-HT-ergic brain development and behavior in offspring, it is critical to elucidate the consequences of interacting factors. Moreover, we describe how each gestational factor is able to alter the 5-HT-ergic influence on the thalamocortical- and prefrontal-limbic circuitry and the hypothalamo-pituitary-adrenocortical-axis. These alterations have been associated with risks to develop attention deficit hyperactivity disorder, autism spectrum disorders, depression, and/or anxiety. Consequently, the manipulation of gestational factors may be used to combat pregnancy-related risks for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sabrina I. Hanswijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Marcia Spoelder
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Ling Shan
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands;
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Otto G. Muilwijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Weizhuo Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Chunqing Liu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Sharon M. Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, The Netherlands;
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| |
Collapse
|
7
|
Bellissima V, Visser GHA, Ververs T, Pluchinotta F, Varrica A, Baryshnikova E, Gabriella Tina L, Nigro F, Gavilanes D, Godos J, Gazzolo D. Antenatal maternal antidepressants drugs treatment affects S100B levels in maternal-fetal biological fluids in a dose dependent manner. Clin Chim Acta 2020; 501:20-26. [PMID: 31809746 DOI: 10.1016/j.cca.2019.11.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The increased use of antidepressant treatment during pregnancy occurred without firm evidence on safety/efficacy. The present study investigated the correlation among S100B and paroxetine blood levels with the occurrence of short-term post-natal neurological abnormalities. METHODS We conducted a cross-sectional study in 50 pregnant women using paroxetine because of depression and in 150 controls. Standard laboratory parameters and S100B were measured at seven monitoring time-points (maternal blood: T1, 16-20 wks; T2, 27-30 wks; T3, 35-40 wks; T4, at delivery; amniotic fluid, T5; venous and arterial cord blood, T6-T7). Paroxetine levels were measured at T1-T6. Neurological outcome was set at 7th day from birth. RESULTS Higher S100B concentrations at T1-T7 were found in the paroxetine-treated group. S100B correlated with paroxetine blood levels. The paroxetine/S100B ratio cut-off of 1.31 at T2 achieved sensitivity 100%, specificity 96.5% and positive/negative predictive values 87.5-100, respectively, as a single marker to predict adverse neonatal neurological outcome. CONCLUSIONS The present study offers additional support to the usefulness of longitudinal S100B and drug level monitoring in depressed pregnant women and in the early detection of cases at risk for short-term neurological abnormalities. Results open the way at further investigations correlating antidepressant drugs and neurobiomarkers in the maternal bloodstream.
Collapse
Affiliation(s)
| | - Gerard H A Visser
- Department of Obstetrics, Utrecht Medical Center, Utrecht, The Netherlands
| | - Tessa Ververs
- Department of Pharmacology Utrecht Medical Center, Utrecht, The Netherlands
| | - Francesca Pluchinotta
- Department of Pediatric Cardiovascular Surgery, Policlinico San Donato, San Donato Milanese, Italy
| | - Alessandro Varrica
- Department of Pediatric Cardiovascular Surgery, Policlinico San Donato, San Donato Milanese, Italy
| | - Ekaterina Baryshnikova
- Department of Pediatric Cardiovascular Surgery, Policlinico San Donato, San Donato Milanese, Italy
| | | | - Francesco Nigro
- Neonatal Intensive Care Unit, Garibaldi Hospital, Catania, Italy
| | - Danilo Gavilanes
- Department of Pediatrics and Neonatology, Maastricht University, Maastricht, The Netherlands
| | | | - Diego Gazzolo
- AO SS Antonio, Biagio e C. Arrigo Hospital, Alessandria, Italy.
| |
Collapse
|
8
|
Selective serotonin reuptake inhibitor effects on neural biomarkers of perinatal depression. Arch Womens Ment Health 2019; 22:431-435. [PMID: 30506371 DOI: 10.1007/s00737-018-0931-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/16/2018] [Indexed: 01/14/2023]
Abstract
The effect of perinatal selective serotonin reuptake inhibitors (SSRIs) on brain-derived neurotrophic factor (BDNF) and S100 calcium binding protein B (S100B) has not been investigated. Using a cohort of 86 pregnant women, we found that SSRIs significantly increase BDNF levels in late pregnancy and that S100B, but not BDNF, is associated with maternal depression in SSRI-treated women only. This shows that serum S100B could be a unique biomarker to determine efficacy of SSRIs during gestation.
Collapse
|
9
|
Nguyen TA, Chow T, Riggs W, Rurak D. Postnatal outcomes in lambs exposed antenatally and acutely postnatally to fluoxetine. Pediatr Res 2019; 85:1032-1040. [PMID: 30739124 DOI: 10.1038/s41390-019-0309-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/31/2018] [Accepted: 01/16/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Approximately 1/3 of newborns exposed antenatally to selective serotonin reuptake inhibitors (SSRIs) exhibit poor neonatal adaptation. Although several potential mechanisms have been proposed, the actual mechanism has not been elucidated. METHODS We investigated outcomes in neonatal lambs exposed prenatally or postnatally to fluoxetine (FX). Daily FX injections (50 mg) were given intravenously (i.v.) to five pregnant ewes via implanted catheters beginning at 131-132 days gestation (term = 147 days) for 2 weeks. In another group, lambs with implanted vascular catheters had sterile water (n = 9) or FX (1 mg/kg, n = 12) injected i.v. on ~postnatal day (PND) 4. RESULTS Prenatal FX-exposed lambs (n = 7) were hyperactive during PND 4 to 14 and their heart rate variability (HRV) was significantly lower than in control lambs (n = 7) on PND 2. In contrast, arterial pressure, heart rate, electrocardiogram, arterial blood gases, pH, glucose, lactate, cortisol, and sleep-activity cycles were not altered following postnatal FX injection. CONCLUSION This abnormal postnatal hyperactivity with antenatal FX exposure may reflect increased maturity in terms of locomotory activity. The results suggest that altered brain development may be involved in the poor neonatal adaptation in human infants exposed to FX in utero.
Collapse
Affiliation(s)
- Tuan Anh Nguyen
- Department of Obstetrics and Gynecology, Faculty of Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy Chow
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wayne Riggs
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Dan Rurak
- Department of Obstetrics and Gynecology, Faculty of Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Kott J, Brummelte S. Trick or treat? Evaluating contributing factors and sex-differences for developmental effects of maternal depression and its treatment. Horm Behav 2019; 111:31-45. [PMID: 30658054 DOI: 10.1016/j.yhbeh.2019.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/14/2018] [Accepted: 01/11/2019] [Indexed: 11/29/2022]
Abstract
Maternal depression and treatment with selective serotonin reuptake inhibitors (SSRIs), the most common form of pharmaceutical intervention, can both have an impact on infant development. As such, it is difficult for healthcare providers to recommend a course of treatment to expectant mothers suffering from depression, or to women on antidepressant medication prior to pregnancy. This review will discuss the existing research on the developmental impacts of maternal depression and its treatment with SSRIs, with a particular focus on contributing factors that complicate our attempt to disentangle the consequences of maternal depression and its treatment such as the timing or severity of the depression. We will explore avenues for translational animal models to help address the question of "Trick or Treat", i.e.: which is worse for offspring development: exposure to maternal depression, or the SSRI treatment? Further, we will explore sex-dependent outcomes for the offspring in human and animal studies as male and female offspring may react differently to the presence of maternal depression or antidepressant treatment. Without more clinical and preclinical data, it remains difficult for women to make an informed decision regarding their depression treatment before, during, and after their pregnancy.
Collapse
Affiliation(s)
- Jennifer Kott
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
11
|
Developmental outcomes after gestational antidepressant treatment with sertraline and its discontinuation in an animal model of maternal depression. Behav Brain Res 2019; 366:1-12. [PMID: 30836156 DOI: 10.1016/j.bbr.2019.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/04/2019] [Accepted: 03/01/2019] [Indexed: 01/21/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed to women before or during pregnancy to manage their depressive symptoms. However, there is still little knowledge regarding the long-term development effects of SSRI exposure for the fetus or the effects of discontinuing SSRI treatment during pregnancy. This study utilized a translational animal model of maternal depression (based on giving high levels of corticosterone (CORT, 40 mg/kg, s.c.) or vehicle (Oil) for 21 days prior to conception) to investigate the effects of sertraline (a frequently prescribed SSRI; 20 mg/kg p.o., treatment started ∼7 days prior to conception) and its discontinuation during pregnancy (on gestational day 16) compared to vehicle (water) treatment on the development of the offspring. Our results revealed that both corticosterone exposure prior to pregnancy and sertraline administration and its discontinuation during gestation had sex-specific effects on behavior in the adult offspring. In particular, pre-conceptional maternal corticosterone treatment impacted the stress response, anxiety-like behavior and cognitive performance in adult female offspring, while gestational SSRI exposure and its discontinuation compared to full-term exposure affected impulsivity in females, and exploratory behavior in males. More research is needed on the effects of exposure to antidepressant medication and its discontinuation compared to depression during pregnancy and how each impacts development to better help women make informed decisions about their medication use during pregnancy.
Collapse
|
12
|
The Ca 2+-Binding S100B Protein: An Important Diagnostic and Prognostic Neurobiomarker in Pediatric Laboratory Medicine. Methods Mol Biol 2019; 1929:701-728. [PMID: 30710306 DOI: 10.1007/978-1-4939-9030-6_44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In recent decades a significant scientific effort has focused on projects regarding the use of neurobiomarkers in perinatal medicine with a view to understanding the mechanisms that interfere with physiological patterns of brain development and lead to ominous effects in several human diseases. Numerous potential neurobiomarkers have been proposed for use in monitoring high-risk fetuses and newborns, including markers of oxidative stress, neuroproteins, and vasoactive agents. Nonetheless, the use of these markers in clinical practice remains a matter of debate. Recently, the calcium-binding S100B protein has been proposed as being an ideal neurobiomarker, thanks to its simple availability and easy reproducibility, to the possibility of detecting it noninvasively in biological fluids with good reproducibility, and to the possibility of a longitudinal evaluation in relation to reference curves. The present chapter contains an overview of the most significant studies on the assessment of S100B in different biological fluids as a trophic factor and/or marker of brain damage in high-risk fetuses and newborns.
Collapse
|
13
|
Pawluski JL, Gemmel M. Perinatal SSRI medications and offspring hippocampal plasticity: interaction with maternal stress and sex. Hormones (Athens) 2018; 17:15-24. [PMID: 29858853 DOI: 10.1007/s42000-018-0011-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There is growing use of selective serotonin reuptake inhibitor antidepressant (SSRI) medications during the perinatal period to treat maternal affective disorders. Perinatal SSRI exposure can have a long-term impact on offspring neuroplasticity and behavioral development that remains to be fully elucidated. This mini-review will summarize what is known about the effects of perinatal SSRIs on plasticity in the developing hippocampus, taking into account the role that maternal stress and depression may have. Emerging clinical findings and research in animal models will be discussed. In addition, sexually differentiated effects will be highlighted, as recent work shows that male offspring are often more sensitive to the effects of maternal stress, whereas female offspring can be more sensitive to perinatal SSRIs. Potential mechanisms behind these changes and aims for future research will also be discussed. Understanding the impact of perinatal SSRIs on neuroplasticity will provide better insight into the long-term effects of such medications on the health and well-being of both mother and child and may improve therapeutic approaches for maternal mood disorders during the perinatal period.
Collapse
Affiliation(s)
- Jodi L Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.
| | - Mary Gemmel
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| |
Collapse
|
14
|
Gemmel M, Bögi E, Ragan C, Hazlett M, Dubovicky M, van den Hove DL, Oberlander TF, Charlier TD, Pawluski JL. Perinatal selective serotonin reuptake inhibitor medication (SSRI) effects on social behaviors, neurodevelopment and the epigenome. Neurosci Biobehav Rev 2018; 85:102-116. [DOI: 10.1016/j.neubiorev.2017.04.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
|
15
|
Gemmel M, Kokras N, Dalla C, Pawluski JL. Perinatal fluoxetine prevents the effect of pre-gestational maternal stress on 5-HT in the PFC, but maternal stress has enduring effects on mPFC synaptic structure in offspring. Neuropharmacology 2018; 128:168-180. [DOI: 10.1016/j.neuropharm.2017.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/04/2017] [Accepted: 10/07/2017] [Indexed: 01/29/2023]
|
16
|
Millard SJ, Weston-Green K, Newell KA. The effects of maternal antidepressant use on offspring behaviour and brain development: Implications for risk of neurodevelopmental disorders. Neurosci Biobehav Rev 2017. [PMID: 28629713 DOI: 10.1016/j.neubiorev.2017.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Approximately 10% of pregnant women are prescribed antidepressant drugs (ADDs), with selective serotonin reuptake inhibitors (SSRIs) the most widely prescribed. SSRIs bind to the serotonin transporter (SERT), blocking the reabsorption of serotonin by the presynaptic neuron and increasing serotonin levels in the synaptic cleft. The serotonergic system regulates a range of brain development processes including neuronal proliferation, migration, differentiation and synaptogenesis. Given the presence of SERT in early brain development, coupled with the ability of SSRIs to cross the placenta and also enter breast milk, concerns have been raised regarding the effects of SSRI exposure on the developing foetus and newborns. In this review, we evaluate preclinical and clinical studies that have examined the effects of maternal SSRI exposure and the risk for altered neurodevelopment and associated behaviours in offspring. While the current body of evidence suggests that maternal SSRI treatment may cause perturbations to the neurobiology, behaviour and ultimately risk for neurodevelopmental disorders in exposed offspring, conflicting findings do exist and the evidence is not conclusive. However, given the increasing incidence of depression and number of women prescribed ADDs during pregnancy, further investigation into this area is warranted.
Collapse
Affiliation(s)
- Samuel J Millard
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| | - Katrina Weston-Green
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| | - Kelly A Newell
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| |
Collapse
|
17
|
Abstract
OBJECTIVE Infants exposed to selective antidepressants (SADs) in utero are at risk to develop poor neonatal adaptation (PNA) postpartum. As symptoms are non-specific and the aetiology of PNA is unknown, the diagnostic process is hampered. We hypothesised that the serotonin metabolism plays a role in the aetiology of PNA. METHODS In this controlled study, infants admitted postpartum from February 2012 to August 2013 were included and followed for 3 days. Infants exposed to SADs during at least the last 2 weeks of fetal life were included in the patient group (n=63). Infants not exposed to psychotropic medication and admitted postpartum for another reason were included in the control group (n=126). The neonatal urinary 5-hydroxyindoleacetid acid (5-HIAA) levels of SAD-exposed infants who developed PNA, SAD-exposed infants who did not develop PNA and control infants were compared. RESULTS The course of the 5-HIAA levels over the first 3 days postpartum differed between infants with and without PNA (p≤0.001) with higher 5-HIAA levels in infants with PNA on day 1 (2.42 mmol/mol, p=0.001). Presence of maternal psychological distress modified this relationship. CONCLUSIONS A transient disturbance of the neonatal serotonergic system may play a role in the aetiology of PNA. Other factors, including the presence of maternal psychological distress, also seem to play a role.
Collapse
|
18
|
Viuff ACF, Pedersen LH, Kyng K, Staunstrup NH, Børglum A, Henriksen TB. Antidepressant medication during pregnancy and epigenetic changes in umbilical cord blood: a systematic review. Clin Epigenetics 2016; 8:94. [PMID: 27610205 PMCID: PMC5015265 DOI: 10.1186/s13148-016-0262-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/30/2016] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Epigenetic mechanisms are important for the regulation of gene expression and differentiation in the fetus and the newborn child. Symptoms of maternal depression and antidepressant use affects up to 20 % of pregnant women, and may lead to epigenetic changes with life-long impact on child health. The aim of this review is to investigate whether there is an association between exposure to maternal antidepressants during pregnancy and epigenetic changes in the newborn. MATERIAL AND METHODS Systematic literature searches were performed in MEDLINE and EMBASE combining MeSH terms covering epigenetic changes, use of antidepressant medication, pregnancy and newborns. A keyword search was also performed. We included studies on pregnant women and their children where there was a history of maternal depressed mood or anxiety, a reported use of antidepressant medication, and measurements of epigenetic changes in umbilical cord blood. Studies using genome-wide or candidate-based epigenetic analyses were included. Citations and references from the included articles were investigated to locate further relevant articles. The completeness of reporting as well as the risk of bias and confounding was assessed. RESULTS Six studies were included. They all investigated methylation changes. Genome-wide methylation changes were examined in 184 children and methylation status in specific genes was examined in 96 children exposed to antidepressant medication. Three of the studies found an association between use of antidepressant medication during pregnancy and methylation status at various CpG sites measured in cord blood of the newborn. One of these studies found an association in African-Americans, but not Caucasians. The remaining three studies found associations between maternal mood and epigenetic changes in umbilical cord blood but no association between epigenetic changes and maternal use of antidepressant medication. CONCLUSION The included studies have not established a clear association between use of antidepressant medication during pregnancy and epigenetic changes in the cord blood. Future studies using newer, more wide-ranging epigenetic methods could discover possible new differentially methylated sites. Larger sample sizes and good validity of exposures are warranted in order to adjust for level of maternal depression, other maternal illness, maternal use of other types of medication, and maternal ethnicity. PROSPERO registration number: CRD42015026575.
Collapse
Affiliation(s)
- Anne-Cathrine F. Viuff
- Perinatal Epidemiology Research Unit, Pediatric Department, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Lars Henning Pedersen
- Department of Obstetrics and Gynecology, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Kasper Kyng
- Perinatal Epidemiology Research Unit, Pediatric Department, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Nicklas Heine Staunstrup
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Risskov, Denmark
- Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, University of Aarhus, Aarhus C, 8000 Denmark
- Translational Neuropsychiatric Unit, Aarhus University Hospital, Risskov, 8240 Denmark
| | - Anders Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Risskov, Denmark
- Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, University of Aarhus, Aarhus C, 8000 Denmark
| | - Tine Brink Henriksen
- Perinatal Epidemiology Research Unit, Pediatric Department, Aarhus University Hospital Skejby, Aarhus, Denmark
| |
Collapse
|
19
|
Making Sense Out of the Controversy: Use of SSRIs in Pregnancy. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2016. [DOI: 10.1007/s13669-016-0173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Gentile S, Fusco ML. Placental and fetal effects of antenatal exposure to antidepressants or untreated maternal depression. J Matern Fetal Neonatal Med 2016; 30:1189-1199. [PMID: 27379818 DOI: 10.1080/14767058.2016.1209184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To assess systematically the effects of antidepressants and untreated maternal depression on human placenta and the developing fetus. METHODS Pertinent medical literature information was identified using MEDLINE/PubMed, SCOPUS and EMBASE. Electronic searches, limited to human studies published in English, provided 21 studies reporting primary data on placental and fetal effects of antidepressant exposure or untreated gestational depression. RESULTS The impact of antidepressants and non-medicated maternal depression on placental functioning and fetal biochemical architecture seems to be demonstrated, although its clinical significance remains unclear. More robust data seem to indicate that exposure to either antidepressants or untreated maternal depression may induce epigenetic changes and interfere with the physiological fetal behavior. Two cases of iatrogenic fetal tachyarrhythmia have also been reported. CONCLUSIONS Future research should clarify the clinical relevance of the impact of antidepressant and untreated maternal depression exposure on placental functioning. Moreover, ultrasound studies investigating fetal responses to antidepressants or maternal depressive symptoms are mandatory. This assessment should be performed during the whole duration of gestational period, when different fetal behavioral patterns become progressively detectable. Analyses of biochemical and epigenetic modifications associated with maternal mood symptoms and antidepressant treatment should also be implemented.
Collapse
Affiliation(s)
- Salvatore Gentile
- a ASL Salerno, Department of Mental Health, Mental Health Center Cava de' Tirreni, Vietri sul Mare , Salerno , Italy.,b Department of Neurosciences , Division of Perinatal Psychiatry, Medical School "Federico II", University of Naples , Naples , Italy
| | - Maria Luigia Fusco
- c Mental Health Institute, Torre Annunziata , Naples , Italy , and.,d Department of Developmental Psychology , Post-Graduate School of Psychotherapy (SIPGI), Torre Annunziata, Naples , Italy
| |
Collapse
|
21
|
Boulle F, Pawluski JL, Homberg JR, Machiels B, Kroeze Y, Kumar N, Steinbusch HWM, Kenis G, van den Hove DLA. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring. Horm Behav 2016; 80:47-57. [PMID: 26844865 DOI: 10.1016/j.yhbeh.2016.01.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/16/2015] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Fabien Boulle
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200, MD, Maastricht, The Netherlands; Center for Psychiatry and Neuroscience, INSERM, U894, University Pierre and Marie Curie, Paris, France
| | - Jodi L Pawluski
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200, MD, Maastricht, The Netherlands; University of Liege, GIGA-Neurosciences, 1 avenue de l'Hôpital (Bat. B36), B-4000 Liège, Belgium.
| | - Judith R Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Radboud University Medical Centre, Department of Cognitive Neuroscience, Geert Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Barbie Machiels
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200, MD, Maastricht, The Netherlands
| | - Yvet Kroeze
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Radboud University Medical Centre, Department of Cognitive Neuroscience, Geert Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Neha Kumar
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200, MD, Maastricht, The Netherlands
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200, MD, Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200, MD, Maastricht, The Netherlands
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200, MD, Maastricht, The Netherlands; Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany
| |
Collapse
|
22
|
Brummelte S, Mc Glanaghy E, Bonnin A, Oberlander TF. Developmental changes in serotonin signaling: Implications for early brain function, behavior and adaptation. Neuroscience 2016; 342:212-231. [PMID: 26905950 DOI: 10.1016/j.neuroscience.2016.02.037] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 02/07/2023]
Abstract
The neurotransmitter serotonin (5-HT) plays a central role in brain development, regulation of mood, stress reactivity and risk of psychiatric disorders, and thus alterations in 5-HT signaling early in life have critical implications for behavior and mental health across the life span. Drawing on preclinical and emerging human evidence this narrative review paper will examine three key aspects when considering the consequences of early life changes in 5-HT: (1) developmental origins of variations of 5-HT signaling; (2) influence of genetic and epigenetic factors; and (3) preclinical and clinical consequences of 5-HT-related changes associated with antidepressant exposure (SSRIs). The developmental consequences of altered prenatal 5-HT signaling varies greatly and outcomes depend on an ongoing interplay between biological (genetic/epigenetic variations) and environmental factors, both pre and postnatally. Emerging evidence suggests that variations in 5-HT signaling may increase sensitivity to risky home environments, but may also amplify a positive response to a nurturing environment. In this sense, factors that change central 5-HT levels may act as 'plasticity' rather than 'risk' factors associated with developmental vulnerability. Understanding the impact of early changes in 5-HT levels offers critical insights that might explain the variations in early typical brain development that underlies behavioral risk.
Collapse
Affiliation(s)
- S Brummelte
- Department of Psychology, Wayne State University, 5057 Woodward Avenue, Detroit, MI 48202, USA.
| | - E Mc Glanaghy
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - A Bonnin
- Zilkha Neurogenetic Institute and Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - T F Oberlander
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Boulle F, Pawluski JL, Homberg JR, Machiels B, Kroeze Y, Kumar N, Steinbusch HWM, Kenis G, Van den Hove DLA. Prenatal stress and early-life exposure to fluoxetine have enduring effects on anxiety and hippocampal BDNF gene expression in adult male offspring. Dev Psychobiol 2015; 58:427-38. [PMID: 26608001 DOI: 10.1002/dev.21385] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Abstract
With the growing use of selective serotonin reuptake inhibitor medications (SSRIs) for the treatment of depression during the perinatal period, questions have been raised about the longterm impact of these medications on development. We aimed to investigate how developmental SSRI exposure may alter affect-related behaviors and associated molecular processes in offspring using a rodent model of maternal stress and depression. For this purpose, prenatally stressed or non-stressed male offspring were exposed to fluoxetine (5 mg/kg/day) or vehicle, via lactation, until weaning. Primary results show that postnatal fluoxetine exposure differentially altered anxiety-like behavior by increasing anxiety in non-stressed offspring and decreasing anxiety in prenatally stressed offspring. In the hippocampus, developmental fluoxetine exposure decreased BDNF IV and TrkB mRNA expression. Prenatal stress alone also decreased escape behaviors and decreased hippocampal BDNF IV mRNA expression. These data provide important evidence for the long-term programming effects of early-life exposure to SSRIs on brain and behavior.
Collapse
Affiliation(s)
- Fabien Boulle
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200 MD, Maastricht, The Netherlands.,Center for Psychiatry and Neuroscience, INSERM U894, University Pierre and Marie Curie, Paris, France
| | - Jodi L Pawluski
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200 MD, Maastricht, The Netherlands.,University of Liege, GIGA-Neurosciences, 1 avenue de l'Hôpital (Bat. B36), B-4000 Liège, Belgium
| | - Judith R Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Radboud University Medical Centre, Department of Cognitive Neuroscience, Geert Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Barbie Machiels
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200 MD, Maastricht, The Netherlands
| | - Yvet Kroeze
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Radboud University Medical Centre, Department of Cognitive Neuroscience, Geert Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Neha Kumar
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200 MD, Maastricht, The Netherlands
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200 MD, Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200 MD, Maastricht, The Netherlands
| | - Daniel L A Van den Hove
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200 MD, Maastricht, The Netherlands.,Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany
| |
Collapse
|
24
|
Gemmel M, Rayen I, Lotus T, van Donkelaar E, Steinbusch HW, De Lacalle S, Kokras N, Dalla C, Pawluski JL. Developmental fluoxetine and prenatal stress effects on serotonin, dopamine, and synaptophysin density in the PFC and hippocampus of offspring at weaning. Dev Psychobiol 2015; 58:315-27. [DOI: 10.1002/dev.21372] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/07/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Mary Gemmel
- Department of Biological Sciences; Ohio University; Athens OH
| | - Ine Rayen
- School for Mental Health and Neuroscience; Maastricht University; Maastricht Netherlands
| | - Tiffany Lotus
- Department of Biological Sciences; Ohio University; Athens OH
| | - Eva van Donkelaar
- School for Mental Health and Neuroscience; Maastricht University; Maastricht Netherlands
| | - Harry W. Steinbusch
- School for Mental Health and Neuroscience; Maastricht University; Maastricht Netherlands
| | | | - Nikolaos Kokras
- Department of Pharmacology, Medical School; University of Athens; Athens Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School; University of Athens; Athens Greece
| | - Jodi L. Pawluski
- Department of Biological Sciences; Ohio University; Athens OH
- School for Mental Health and Neuroscience; Maastricht University; Maastricht Netherlands
- University of Rennes 1, IRSET-INSERM U1085; Rennes Cedex France
| |
Collapse
|
25
|
Serpero LD, Pluchinotta F, Gazzolo D. The clinical and diagnostic utility of S100B in preterm newborns. Clin Chim Acta 2015; 444:193-198. [PMID: 25704302 DOI: 10.1016/j.cca.2015.02.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 02/06/2015] [Accepted: 02/14/2015] [Indexed: 11/18/2022]
Abstract
Preterm birth is still the most important cause of perinatal mortality and morbidity. Follow-up studies showed that the majority of neurological abnormalities during childhood are already present in the first week after birth. In this light, the knowledge of the timing of the insult and/or of the contributing factors is of utmost relevance in order to avoid adverse neurological outcome. Notwithstanding, the considerable advances in perinatal clinical care and monitoring, the early detection of cases at risk for brain damage is still a challenge because, when radiological pictures are still negative, brain damage may be already at a subclinical stage, with symptoms hidden by therapeutic strategies. Thus, it could be very relevant to measure quantitative parameters, such as neuroproteins, able to detect subclinical lesions at a stage when routine brain monitoring procedures are still silent. In the last decade, the assay of the brain-specific protein S100B in different biological fluids proved useful information on brain function and damage in the perinatal period. Therefore, the present study provides an overview of the most recent findings on S100B role as a reliable marker of brain development/damage in preterm high risk fetuses and newborns.
Collapse
Affiliation(s)
- Laura D Serpero
- Dept. of Maternal Fetal and Neonatal Medicine C. Arrigo Children's Hospital, Alessandria, Italy
| | - Francesca Pluchinotta
- Dept. of Pediatric Cardiovascular Surgery, IRCCS San Donato Milanese Hospital, San Donato Milanese, Italy
| | - Diego Gazzolo
- Dept. of Maternal Fetal and Neonatal Medicine C. Arrigo Children's Hospital, Alessandria, Italy.
| |
Collapse
|
26
|
Developmental exposure to SSRIs, in addition to maternal stress, has long-term sex-dependent effects on hippocampal plasticity. Psychopharmacology (Berl) 2015; 232:1231-44. [PMID: 25304865 DOI: 10.1007/s00213-014-3758-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 09/23/2014] [Indexed: 12/12/2022]
Abstract
RATIONALE During pregnancy and postpartum period, 20 % of women are affected by depression, which is a growing health concern. Selective serotonin reuptake inhibitor (SSRI) medications are popular treatments for maternal depression; however, the effect of maternal depression and perinatal SSRI exposure on offspring's neural development needs further investigation. OBJECTIVES This study aims to determine the role of developmental fluoxetine exposure on hippocampal plasticity in the adult offspring. METHODS Sprague-Dawley rat offspring were exposed to fluoxetine beginning on postnatal day 1. Offspring were also exposed to prenatal maternal stress. Four groups of male and female offspring were used: (1) prenatal stress + fluoxetine, (2) prenatal stress + vehicle, (3) fluoxetine alone, and (4) vehicle alone. Hippocampi were analyzed for levels of cell proliferation, immature neurons, and new cell survival (3 weeks after 5-bromo-2-deoxyuridine injection) in the granule cell layer, as well as synaptophysin density in the CA3 region and granule cell layer. TPH staining was assessed in the dorsal raphe nucleus. RESULTS Developmental fluoxetine exposure to prenatally stressed offspring reversed the effect of prenatal stress or fluoxetine exposure alone on the number of immature neurons. Prenatal stress alone, regardless of developmental exposure to fluoxetine, markedly decreased hippocampal cell proliferation and tended to decrease new cell survival. Furthermore, in adult female offspring, developmental fluoxetine exposure greatly increased new cell survival and significantly decreased synaptophysin density in the granule cell layer. CONCLUSIONS There are long-term effects of developmental SSRI exposure on hippocampal plasticity that is differentially affected by expose to maternal adversity and offspring sex.
Collapse
|
27
|
|
28
|
Hermansen TK, Melinder A. Prenatal SSRI exposure: Effects on later child development. Child Neuropsychol 2014; 21:543-69. [DOI: 10.1080/09297049.2014.942727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Bourke CH, Stowe ZN, Owens MJ. Prenatal antidepressant exposure: clinical and preclinical findings. Pharmacol Rev 2014; 66:435-65. [PMID: 24567054 PMCID: PMC3973612 DOI: 10.1124/pr.111.005207] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pharmacological treatment of any maternal illness during pregnancy warrants consideration of the consequences of the illness and/or medication for both the mother and unborn child. In the case of major depressive disorder, which affects up to 10-20% of pregnant women, the deleterious effects of untreated depression on the offspring can be profound and long lasting. Progress has been made in our understanding of the mechanism(s) of action of antidepressants, fetal exposure to these medications, and serotonin's role in development. New technologies and careful study designs have enabled the accurate sampling of maternal serum, breast milk, umbilical cord serum, and infant serum psychotropic medication concentrations to characterize the magnitude of placental transfer and exposure through human breast milk. Despite this progress, the extant clinical literature is largely composed of case series, population-based patient registry data that are reliant on nonobjective means and retrospective recall to determine both medication and maternal depression exposure, and limited inclusion of suitable control groups for maternal depression. Conclusions drawn from such studies often fail to incorporate embryology/neurotransmitter ontogeny, appropriate gestational windows, or a critical discussion of statistically versus clinically significant. Similarly, preclinical studies have predominantly relied on dosing models, leading to exposures that may not be clinically relevant. The elucidation of a defined teratological effect or mechanism, if any, has yet to be conclusively demonstrated. The extant literature indicates that, in many cases, the benefits of antidepressant use during pregnancy for a depressed pregnant woman may outweigh potential risks.
Collapse
|
30
|
Hanley GE, Oberlander TF. The effect of perinatal exposures on the infant: Antidepressants and depression. Best Pract Res Clin Obstet Gynaecol 2014; 28:37-48. [DOI: 10.1016/j.bpobgyn.2013.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/16/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
|
31
|
Knaepen L, Pawluski JL, Patijn J, van Kleef M, Tibboel D, Joosten EA. Perinatal maternal stress and serotonin signaling: Effects on pain sensitivity in offspring. Dev Psychobiol 2013; 56:885-96. [DOI: 10.1002/dev.21184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 11/13/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Liesbeth Knaepen
- Department of Anesthesiology/Pain Management; University Pain Center Maastricht; Maastricht University Medical Center; Universiteitssingel 50 6229 ER Maastricht Maastricht The Netherlands
- School for Mental Health and Neuroscience; Maastricht University; Maastricht The Netherlands
| | - Jodi L. Pawluski
- School for Mental Health and Neuroscience; Maastricht University; Maastricht The Netherlands
- University of Liège; GIGA-Neurosciences; 1 Avenue de l'Hôpital (Bat. B36) B-4000 Liège Belgium
| | - Jacob Patijn
- Department of Anesthesiology/Pain Management; University Pain Center Maastricht; Maastricht University Medical Center; Universiteitssingel 50 6229 ER Maastricht Maastricht The Netherlands
| | - Maarten van Kleef
- Department of Anesthesiology/Pain Management; University Pain Center Maastricht; Maastricht University Medical Center; Universiteitssingel 50 6229 ER Maastricht Maastricht The Netherlands
| | - Dick Tibboel
- Intensive Care; Erasmus MC-Sophia; Rotterdam The Netherlands
- Department of Pediatric Surgery; Erasmus MC-Sophia; Rotterdam The Netherlands
| | - Elbert A. Joosten
- Department of Anesthesiology/Pain Management; University Pain Center Maastricht; Maastricht University Medical Center; Universiteitssingel 50 6229 ER Maastricht Maastricht The Netherlands
- School for Mental Health and Neuroscience; Maastricht University; Maastricht The Netherlands
| |
Collapse
|
32
|
Weikum WM, Mayes LC, Grunau RE, Brain U, Oberlander TF. The impact of prenatal serotonin reuptake inhibitor (SRI) antidepressant exposure and maternal mood on mother–infant interactions at 3 months of age. Infant Behav Dev 2013; 36:485-93. [DOI: 10.1016/j.infbeh.2013.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/28/2013] [Accepted: 04/30/2013] [Indexed: 01/30/2023]
|
33
|
Central nervous system effects of prenatal selective serotonin reuptake inhibitors: sensing the signal through the noise. Psychopharmacology (Berl) 2013; 227:567-82. [PMID: 23681158 PMCID: PMC3838633 DOI: 10.1007/s00213-013-3115-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Women are increasingly prescribed selective serotonin reuptake inhibitors (SSRIs) during pregnancy, with potential implications for neurodevelopment. Whether prenatal SSRI exposure has an effect on neurodevelopment and behavior in the offspring is an important area of investigation. OBJECTIVES The aim of this paper was to review the existing preclinical and clinical literature of prenatal SSRI exposure on serotonin-related behaviors and markers in the offspring. The goal is to determine if there is a signal in the literature that could guide clinical care and/or inform research. RESULTS Preclinical studies (n = 4) showed SSRI exposure during development enhanced depression-like behavior. Half of rodent studies examining anxiety-like behavior (n = 13) noted adverse effects with SSRI exposure. A majority of studies of social behavior (n = 4) noted a decrease in sociability in SSRI exposed offspring. Human studies (n = 4) examining anxiety in the offspring showed no adverse effects of prenatal SSRI exposure. The outcome of one study suggested that children with autism were more likely to have a mother who was prescribed an SSRI during pregnancy. CONCLUSIONS Preclinical findings in rodents exposed to SSRIs during development point to an increase in depression- and anxiety-like behavior and alteration in social behaviors in the offspring, though both the methods used and the findings were not uniform. These data are not robust enough to discourage use of SSRIs during human pregnancy, particularly given the known adverse effects of maternal mental illness on pregnancy outcomes and infant neurodevelopment. Future research should focus on consistent animal models and prospective human studies with larger samples.
Collapse
|
34
|
Oberlander TF. Fetal serotonin signaling: setting pathways for early childhood development and behavior. J Adolesc Health 2012; 51:S9-16. [PMID: 22794534 DOI: 10.1016/j.jadohealth.2012.04.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 02/07/2023]
Abstract
Finely tuning levels of the key neurotransmitter serotonin (5-hydroxytryptamine [5-HT]) during early life is essential for brain development and setting pathways for health and disorder across the early life span. Given the central role of 5-HT in brain development, regulation of mood, stress reactivity, and risk for psychiatric disorders, alterations in 5-HT signaling early in life have critical implications for behavior and mental health in childhood and adolescence. This article reviews the developmental consequences of two key influences that alter fetal 5-HT signaling: (1) in utero exposure to 5-HT reuptake inhibitor antidepressants, and (2) genetic variations in the 5-HT transporter gene (SLC6A4). The consequences of altered prenatal 5-HT signaling vary greatly, and developmental outcomes depend on an ongoing interplay between biological (genetic/epigenetic variations), experiential (prenatal drug or maternal mood exposure), and contextual (postnatal social environment) variables. Emerging evidence suggests both exposure to 5-HT reuptake inhibitors and genetic variations that affect 5-HT signaling may increase sensitivity to negative social contexts for some individuals, whereas for others, they may confer sensitivity to positive life circumstances. In this sense, factors that change central 5-HT levels may function less like influences that predict "vulnerability," but rather act like "plasticity factors." Understanding the impact of early changes in serotonergic programming offers critical insights that might explain patterns of individual differences in developmental risk and resilience.
Collapse
Affiliation(s)
- Tim F Oberlander
- Department of Pediatrics, Child and Family Research Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
35
|
Hanley GE, Oberlander TF. Neurodevelopmental outcomes following prenatal exposure to serotonin reuptake inhibitor antidepressants: A “social teratogen” or moderator of developmental risk? ACTA ACUST UNITED AC 2012; 94:651-9. [DOI: 10.1002/bdra.23032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/28/2012] [Accepted: 04/19/2012] [Indexed: 11/10/2022]
|
36
|
Michetti F, Corvino V, Geloso MC, Lattanzi W, Bernardini C, Serpero L, Gazzolo D. The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem 2012; 120:644-659. [PMID: 22145907 DOI: 10.1111/j.1471-4159.2011.07612.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
S100B is a calcium-binding protein concentrated in glial cells, although it has also been detected in definite extra-neural cell types. Its biological role is still debated. When secreted, S100B is believed to have paracrine/autocrine trophic effects at physiological concentrations, but toxic effects at higher concentrations. Elevated S100B levels in biological fluids (CSF, blood, urine, saliva, amniotic fluid) are thus regarded as a biomarker of pathological conditions, including perinatal brain distress, acute brain injury, brain tumors, neuroinflammatory/neurodegenerative disorders, psychiatric disorders. In the majority of these conditions, high S100B levels offer an indicator of cell damage when standard diagnostic procedures are still silent. The key question remains as to whether S100B is merely leaked from injured cells or is released in concomitance with both physiological and pathological conditions, participating at high concentrations in the events leading to cell injury. In this respect, S100B levels in biological fluids have been shown to increase in physiological conditions characterized by stressful physical and mental activity, suggesting that it may be physiologically regulated and raised during conditions of stress, with a putatively active role. This possibility makes this protein a candidate not only for a biomarker but also for a potential therapeutic target.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica Sacro Cuore, Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
Pawluski JL. Perinatal selective serotonin reuptake inhibitor exposure: impact on brain development and neural plasticity. Neuroendocrinology 2012; 95:39-46. [PMID: 21893935 DOI: 10.1159/000329293] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/27/2011] [Indexed: 11/19/2022]
Abstract
Selective serotonin reuptake inhibitor (SSRI) medications are the most common antidepressant treatment used during pregnancy and the postpartum period. Up to 10% of pregnant women are prescribed SSRIs. Serotonin plays an integral part in neurodevelopment, and questions have been raised about the placental transfer of SSRIs and the effects of preventing reuptake of presynaptic serotonin on fetal neurodevelopment. Preclinical data is beginning to document a role of early exposure to SSRIs in long-term developmental outcomes related to a number of brain regions, such as the hippocampus, cortex and cerebellum. To date, the majority of preclinical work has investigated the developmental effects of SSRIs in the offspring of healthy mothers; however, more research is needed on the effects of these medications in the face of maternal adversity. This minireview will highlight emerging evidence from clinical and preclinical studies investigating the impact of perinatal SSRI exposure on brain development and neural plasticity.
Collapse
Affiliation(s)
- Jodi L Pawluski
- Department of Neuroscience, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands. j.pawluski @ maastrichtuniversity.nl
| |
Collapse
|
38
|
Rayen I, van den Hove DL, Prickaerts J, Steinbusch HW, Pawluski JL. Fluoxetine during development reverses the effects of prenatal stress on depressive-like behavior and hippocampal neurogenesis in adolescence. PLoS One 2011; 6:e24003. [PMID: 21912658 PMCID: PMC3164681 DOI: 10.1371/journal.pone.0024003] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 07/28/2011] [Indexed: 12/31/2022] Open
Abstract
Depression during pregnancy and the postpartum period is a growing health problem, which affects up to 20% of women. Currently, selective serotonin reuptake inhibitor (SSRIs) medications are commonly used for treatment of maternal depression. Unfortunately, there is very little research on the long-term effect of maternal depression and perinatal SSRI exposure on offspring development. Therefore, the aim of this study was to determine the role of exposure to fluoxetine during development on affective-like behaviors and hippocampal neurogenesis in adolescent offspring in a rodent model of maternal depression. To do this, gestationally stressed and non-stressed Sprague-Dawley rat dams were treated with either fluoxetine (5 mg/kg/day) or vehicle beginning on postnatal day 1 (P1). Adolescent male and female offspring were divided into 4 groups: 1) prenatal stress+fluoxetine exposure, 2) prenatal stress+vehicle, 3) fluoxetine exposure alone, and 4) vehicle alone. Adolescent offspring were assessed for anxiety-like behavior using the Open Field Test and depressive-like behavior using the Forced Swim Test. Brains were analyzed for endogenous markers of hippocampal neurogenesis via immunohistochemistry. Results demonstrate that maternal fluoxetine exposure reverses the reduction in immobility evident in prenatally stressed adolescent offspring. In addition, maternal fluoxetine exposure reverses the decrease in hippocampal cell proliferation and neurogenesis in maternally stressed adolescent offspring. This research provides important evidence on the long-term effect of fluoxetine exposure during development in a model of maternal adversity.
Collapse
Affiliation(s)
- Ine Rayen
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Daniël L. van den Hove
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jos Prickaerts
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Harry W. Steinbusch
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jodi L. Pawluski
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
39
|
Williams SK, Lauder JM, Johns JM. Prenatal Cocaine Disrupts Serotonin Signaling-Dependent Behaviors: Implications for Sex Differences, Early Stress and Prenatal SSRI Exposure. Curr Neuropharmacol 2011; 9:478-511. [PMID: 22379462 PMCID: PMC3151602 DOI: 10.2174/157015911796557957] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/31/2010] [Accepted: 01/07/2011] [Indexed: 02/06/2023] Open
Abstract
Prenatal cocaine (PC) exposure negatively impacts the developing nervous system, including numerous changes in serotonergic signaling. Cocaine, a competitive antagonist of the serotonin transporter, similar to selective serotonin reuptake inhibitors (SSRIs), also blocks dopamine and norepinephrine transporters, leaving the direct mechanism through which cocaine disrupts the developing serotonin system unclear. In order to understand the role of the serotonin transporter in cocaine's effect on the serotonergic system, we compare reports concerning PC and prenatal antidepressant exposure and conclude that PC exposure affects many facets of serotonergic signaling (serotonin levels, receptors, transporters) and that these effects differ significantly from what is observed following prenatal SSRI exposure. Alterations in serotonergic signaling are dependent on timing of exposure, test regimens, and sex. Following PC exposure, behavioral disturbances are observed in attention, emotional behavior and stress response, aggression, social behavior, communication, and like changes in serotonergic signaling, these effects depend on sex, age and developmental exposure. Vulnerability to the effects of PC exposure can be mediated by several factors, including allelic variance in serotonergic signaling genes, being male (although fewer studies have investigated female offspring), and experiencing the adverse early environments that are commonly coincident with maternal drug use. Early environmental stress results in disruptions in serotonergic signaling analogous to those observed with PC exposure and these may interact to produce greater behavioral effects observed in children of drug-abusing mothers. We conclude that based on past evidence, future studies should put a greater emphasis on including females and monitoring environmental factors when studying the impact of PC exposure.
Collapse
Affiliation(s)
- Sarah K Williams
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jean M Lauder
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Josephine M Johns
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
40
|
Wells T, Rough K, Carter DA. Transcription Mapping of Embryonic Rat Brain Reveals EGR-1 Induction in SOX2 Neural Progenitor Cells. Front Mol Neurosci 2011; 4:6. [PMID: 21629823 PMCID: PMC3099308 DOI: 10.3389/fnmol.2011.00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/02/2011] [Indexed: 01/04/2023] Open
Abstract
Neuronal expression of the early growth response-1 (EGR-1; NGFI-A/Zif268) transcription factor has been extensively studied in the adult mammalian brain and linked to aspects of mature physiological/behavioral function. In contrast, this factor has not been studied in detail in the embryonic brain. Here, we used a fluorescent protein-encoding Egr-1 transgene to map the cellular distribution of Egr-1 transcription in embryonic rat brain. We identified a novel, widely distributed population of GFP(+) cells, characterized as a precursor/stem cell phenotype by co-localization with SOX2/nestin/vimentin/S-100β and exclusion from other known cellular markers including DCX/BLBP/TBR2/NURR1. At both E18 and E20, these cells were located across the developing brain but concentrated in the subplate and intermediate zones. The transgene was also highly expressed in developing (NeuN(+)) striatal neurons. The authentic expression pattern that we observed for the rEgr-1 transgene sequence indicates that restriction to neuronal/precursor cells is largely driven by proximal 5(') sequence. Deletion of conserved Egr-1 silencer (neuron restrictive silencer factor) elements did not markedly alter transcriptional activity in transfected cells; this is consistent with a dominant role for positive factors in the control of cell-specific Egr-1 expression. Induction of Egr-1 in a population of SOX2(+) cells indicates a co-incidence of extrinsic (EGR-1) and cell-intrinsic (SOX2) cellular signals that may form a novel level of progenitor cell regulation. The wide distribution of EGR-1 signaling in SOX2(+) cells suggests an organizational role during late embryonic brain development.
Collapse
Affiliation(s)
- Timothy Wells
- School of Biosciences, Cardiff University Cardiff, Wales, UK
| | | | | |
Collapse
|
41
|
Sannia A, Risso FM, Serpero LD, Frulio R, Michetti F, Abella R, Frigiola A, Giamberti A, Gazzolo D. Antenatal glucocorticoid treatment affects preterm infants' S100B urine concentration in a dose-dependent manner. Clin Chim Acta 2010; 411:1539-1541. [PMID: 20570670 DOI: 10.1016/j.cca.2010.05.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/31/2010] [Accepted: 05/31/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND Maternal glucocorticoid (GC) treatment is widely used to prevent lung immaturity in preterm infants. There is growing evidence that GCs may be detrimental to the Central Nervous System (CNS). We investigated whether antenatal GC administration affects CNS function in a dose-dependent manner by measuring urine concentrations of a well-established brain damage marker, S100B. METHODS We conducted a case-control-study in 70 preterm infants (1 GC vs 1 control) whose mothers received a complete GC-course (GC2, n=16), half-course (GC1, n=19), and controls (n=35). At four predetermined time-points, in the first 72 h from birth, we assessed S100B urine concentrations, using a commercially available immunoluminometric assay (Lia-mat Sangtec 100, AB Sangtec Medical, Bromma, Sweden). Data were correlated with primary neonatal outcomes (incidence of respiratory distress syndrome, length of ventilatory support and hospital stay, incidence of intraventricular hemorrhage, adverse 7th day neurological follow-up and neonatal death). RESULTS S100B in GC2 group at all monitoring time-points was significantly lower (P<0.01) than controls and GC1 group, while no differences (P>0.05) were evident between controls and GC1 group. No significant differences (P>0.05) were shown in primary outcomes between half or complete GC-course treated groups. CONCLUSION S100B levels of infants antenatally treated with GCs differed in a dose-dependent manner. Data on primary outcomes suggest that lowering antenatal GC-course may be less detrimental for brain without affecting lung maturation. Further clinical trials are needed to elucidate the low GC-course issue.
Collapse
Affiliation(s)
- Andrea Sannia
- Dept. of Neonatology Obstetrics and Neuroscience, G Gaslini Children's University Hospital, Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Effects of S100B on Serotonergic Plasticity and Neuroinflammation in the Hippocampus in Down Syndrome and Alzheimer's Disease: Studies in an S100B Overexpressing Mouse Model. Cardiovasc Psychiatry Neurol 2010; 2010. [PMID: 20827311 PMCID: PMC2933893 DOI: 10.1155/2010/153657] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 06/01/2010] [Accepted: 07/02/2010] [Indexed: 12/17/2022] Open
Abstract
S100B promotes development and maturation in the mammalian brain. However, prolonged or extensive exposure can lead to neurodegeneration. Two important functions of S100B in this regard, are its role in the development and plasticity of the serotonergic neurotransmitter system, and its role in the cascade of glial changes associated with neuroinflammation. Both of these processes are therefore accelerated towards degeneration in disease processes wherein S100B is increased, notably, Alzheimer's disease (AD) and Down syndrome (DS).
In order to study the role of S100B in this context, we have examined S100B overexpressing transgenic mice. Similar to AD and DS, the transgenic animals show a profound change in serotonin innervation. By 28 weeks of age, there is a significant loss of terminals in the hippocampus. Similarly, the transgenic animals show neuroinflammatory changes analogous with AD and DS. These include decreased numbers of mature, stable astroglial cells, increased numbers of activated microglial cells and increased microglial expression of the cell surface receptor RAGE. Eventually, the S100B transgenic animals show neurodegeneration and the appearance of hyperphosphorylated tau structures, as seen in late stage DS and AD. The role of S100B in these conditions is discussed.
Collapse
|
43
|
Current awareness: Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2010. [DOI: 10.1002/pds.1849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
On categorizing gestational, birth, and neonatal complications following late pregnancy exposure to antidepressants: the prenatal antidepressant exposure syndrome. CNS Spectr 2010; 15:167-85. [PMID: 20414166 DOI: 10.1017/s1092852900027449] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Late in utero exposure to antidepressants has been suspected of adversely impacting pregnancy outcome and compromising neonatal adaptation. Hence, the necessity exists to analyze published information on antidepressant use during late pregnancy to individuate potential recurrent patterns of iatrogenic complications. METHODS Computerized searches on MEDLINE, PsycINFO, ENBASE, and Cochrane Library through February 10, 2010 were performed for selecting literature information and investigating the safety of antidepressants when used during late pregnancy. RESULTS Antidepressant treatment during late pregnancy may increase the rates of poor pregnancy outcome and neonatal withdrawal/toxic reactions. CONCLUSIONS Because both gestational complications and neonatal adverse events acknowledge the same etiology, the author suggests including such iatrogenic events under the definition of prenatal antidepressant exposure syndrome, in order to increase clinicians' awareness about the spectrum of risks which may concern the mother-infant pair when antidepressant treatment is deemed indispensable during late pregnancy.
Collapse
|
45
|
Sustained neurobehavioral effects of exposure to SSRI antidepressants during development: molecular to clinical evidence. Clin Pharmacol Ther 2009; 86:672-7. [PMID: 19890255 DOI: 10.1038/clpt.2009.201] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Selective serotonin reuptake inhibitor (SSRI) antidepressants are frequently used in the management of antenatal maternal mood disturbances. SSRIs readily cross the placenta and increase central serotonergic tone in the fetus. Given serotonin's key neurodevelopmental role, such prenatal exposure raises concerns about its impact on child development. Preclinical studies report enduring molecular, physiological, and behavioral consequences of developmental SSRI exposure. In humans, sustained developmental outcomes remain largely unstudied, and distinguishing between the effects of prenatal SSRI exposure and the impact of maternal mental illness remains a key challenge.
Collapse
|