1
|
Couture A, Lyons BC, Mehrotra ML, Sosa L, Ezike N, Ahmed FS, Brown CM, Yendell S, Azzam IA, Katić BJ, Cope A, Dickerson K, Stone J, Traxler LB, Dunn J, Davis LB, Reed C, Clarke KEN, Flannery B, Charles MD. SARS-CoV-2 Seroprevalence and Reported COVID-19 Cases in U.S. Children, August 2020—May 2021. Open Forum Infect Dis 2022; 9:ofac044. [PMID: 35198651 PMCID: PMC8860150 DOI: 10.1093/ofid/ofac044] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/25/2022] [Indexed: 11/14/2022] Open
Abstract
Background Case-based surveillance of pediatric coronavirus disease 2019 (COVID-19) cases underestimates the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections among children and adolescents. Our objectives were to estimate monthly SARS-CoV-2 antibody seroprevalence and calculate ratios of SARS-CoV-2 infections to reported COVID-19 cases among children and adolescents in 8 US states. Methods Using data from the Nationwide Commercial Laboratory Seroprevalence Survey, we estimated monthly SARS-CoV-2 antibody seroprevalence among children aged 0–17 years from August 2020 through May 2021. We calculated and compared cumulative incidence of SARS-CoV-2 infection extrapolated from population-standardized seroprevalence of antibodies to SARS-CoV-2, cumulative COVID-19 case reports since March 2020, and infection-to-case ratios among persons of all ages and children aged 0–17 years for each state. Results Of 41 583 residual serum specimens tested, children aged 0–4, 5–11, and 12–17 years accounted for 1619 (3.9%), 10 507 (25.3%), and 29 457 (70.8%), respectively. Median SARS-CoV-2 antibody seroprevalence among children increased from 8% (range, 6%–20%) in August 2020 to 37% (range, 26%–44%) in May 2021. Estimated ratios of SARS-CoV-2 infections to reported COVID-19 cases in May 2021 ranged by state from 4.7–8.9 among children and adolescents to 2.2–3.9 for all ages combined. Conclusions Through May 2021 in selected states, the majority of children with serum specimens included in serosurveys did not have evidence of prior SARS-CoV-2 infection. Case-based surveillance underestimated the number of children infected with SARS-CoV-2 more than among all ages. Continued monitoring of pediatric SARS-CoV-2 antibody seroprevalence should inform prevention and vaccination strategies.
Collapse
Affiliation(s)
- Alexia Couture
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - B Casey Lyons
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Lynn Sosa
- Connecticut State Department of Public Health, Hartford, CT, USA
| | - Ngozi Ezike
- Illinois Department of Public Health, Springfield, IL, USA
| | - Farah S Ahmed
- Kansas Department of Health and Environment, Topeka, KS, USA
| | | | | | - Ihsan A Azzam
- Nevada Division of Public and Behavioral Health, Carson City, NV, USA
| | | | - Anna Cope
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
- North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | | | - Jolianne Stone
- Oklahoma State Department of Health, Oklahoma City, OK, USA
| | - L Brannon Traxler
- South Carolina Department of Health and Environmental Control, Columbia, SC, USA
| | - John Dunn
- Tennessee Department of Health, Nashville, TN, USA
| | - Lora B Davis
- Washington State Department of Health, Tumwater, WA, USA
| | - Carrie Reed
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kristie E N Clarke
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brendan Flannery
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Myrna D Charles
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
2
|
D’Alessandro A, Thomas T, Akpan IJ, Reisz JA, Cendali FI, Gamboni F, Nemkov T, Thangaraju K, Katneni U, Tanaka K, Kahn S, Wei AZ, Valk JE, Hudson KE, Roh D, Moriconi C, Zimring JC, Hod EA, Spitalnik SL, Buehler PW, Francis RO. Biological and Clinical Factors Contributing to the Metabolic Heterogeneity of Hospitalized Patients with and without COVID-19. Cells 2021; 10:2293. [PMID: 34571942 PMCID: PMC8467961 DOI: 10.3390/cells10092293] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
The Corona Virus Disease 2019 (COVID-19) pandemic represents an ongoing worldwide challenge. The present large study sought to understand independent and overlapping metabolic features of samples from acutely ill patients (n = 831) that tested positive (n = 543) or negative (n = 288) for COVID-19. High-throughput metabolomics analyses were complemented with antigen and enzymatic activity assays on plasma from acutely ill patients collected while in the emergency department, at admission, or during hospitalization. Lipidomics analyses were also performed on COVID-19-positive or -negative subjects with the lowest and highest body mass index (n = 60/group). Significant changes in amino acid and fatty acid/acylcarnitine metabolism emerged as highly relevant markers of disease severity, progression, and prognosis as a function of biological and clinical variables in these patients. Further, machine learning models were trained by entering all metabolomics and clinical data from half of the COVID-19 patient cohort and then tested on the other half, yielding ~78% prediction accuracy. Finally, the extensive amount of information accumulated in this large, prospective, observational study provides a foundation for mechanistic follow-up studies and data sharing opportunities, which will advance our understanding of the characteristics of the plasma metabolism in COVID-19 and other acute critical illnesses.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; (J.A.R.); (F.I.C.); (F.G.); (T.N.)
| | - Tiffany Thomas
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| | - Imo J. Akpan
- Division of Hematology/Oncology, Department of Medicine, Irving Medical Center, Columbia University, New York, NY 10032, USA; (I.J.A.); (S.K.); (A.Z.W.)
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; (J.A.R.); (F.I.C.); (F.G.); (T.N.)
| | - Francesca I. Cendali
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; (J.A.R.); (F.I.C.); (F.G.); (T.N.)
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; (J.A.R.); (F.I.C.); (F.G.); (T.N.)
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; (J.A.R.); (F.I.C.); (F.G.); (T.N.)
| | - Kiruphagaran Thangaraju
- Center for Blood Oxygen Transport, Department of Pathology, Department of Pediatrics, University of Maryland, Baltimore, MD 21201, USA; (K.T.); (U.K.); (P.W.B.)
| | - Upendra Katneni
- Center for Blood Oxygen Transport, Department of Pathology, Department of Pediatrics, University of Maryland, Baltimore, MD 21201, USA; (K.T.); (U.K.); (P.W.B.)
| | - Kenichi Tanaka
- Department of Anesthesiology, University of Maryland, Baltimore, MD 21201, USA;
- Department of Anesthesiology, University of Oklahoma College of Medicine, Oklahoma City, OK 73126-0901, USA
| | - Stacie Kahn
- Division of Hematology/Oncology, Department of Medicine, Irving Medical Center, Columbia University, New York, NY 10032, USA; (I.J.A.); (S.K.); (A.Z.W.)
| | - Alexander Z. Wei
- Division of Hematology/Oncology, Department of Medicine, Irving Medical Center, Columbia University, New York, NY 10032, USA; (I.J.A.); (S.K.); (A.Z.W.)
| | - Jacob E. Valk
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| | - Krystalyn E. Hudson
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| | - David Roh
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA;
| | - Chiara Moriconi
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA;
| | - Eldad A. Hod
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| | - Steven L. Spitalnik
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| | - Paul W. Buehler
- Center for Blood Oxygen Transport, Department of Pathology, Department of Pediatrics, University of Maryland, Baltimore, MD 21201, USA; (K.T.); (U.K.); (P.W.B.)
| | - Richard O. Francis
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| |
Collapse
|