1
|
Nchodu M, Efuntayo A, du Preez R, Ali H, Olateju OI. Simvastatin Significantly Reduced Alcohol-Induced Cardiac Damage in Adolescent Mice. Cardiovasc Toxicol 2024; 24:15-26. [PMID: 38261135 PMCID: PMC10838240 DOI: 10.1007/s12012-023-09821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/16/2023] [Indexed: 01/24/2024]
Abstract
Alcohol abuse by adolescents is becoming a serious health concern as they often progress to becoming alcoholics later in life which may lead to heart problems. Chronic alcohol use alters the cardiac function and structure, such as haemodynamic changes, weakening and loss of cardiomyocytes, myocardial fibrosis, and inflammation. Simvastatin is a commonly used drug for the treatment and management of various cardiovascular problems but information on its protective effects against alcohol-induced cardiomyocyte hypertrophy, fibrosis, and inflammation is lacking in the literature. Four-week-old male (n = 5) and female (n = 5) C57BL/6 J mice were assigned to each experimental group: (I) NT-no administration of alcohol or Simvastatin; (II) ALC-2.5 g/Kg/day of 20% alcohol via intraperitoneal injection (i.p.); (III) SIM-5 mg/Kg/day of Simvastatin via oral gavage; (iv) ALC + SIM5-5 mg/Kg/day of Simvastatin via oral gavage followed by 2.5 g/Kg/day of 20% alcohol via i.p.; and (v) ALC + SIM15-15 mg/Kg/day Simvastatin via oral gavage followed by 2.5 g/Kg/day of 20% alcohol via i.p. After the 28-day treatment period, the heart was removed and processed for H&E, Masson's trichrome, or TNF-α immunolabelling. The area and diameter of cardiomyocytes were measured on the H&E-stained sections. The distribution of collagen or TNF-α expression was quantified using the deconvolution tool of ImageJ software. The results confirmed alcohol-induced toxicity on the cardiomyocytes and Simvastatin reduced alcohol-induced cardiomyocyte hypertrophy, fibrosis, and inflammation in both sexes. This study demonstrated that Simvastatin, an FDA approved and easily accessible drug, may be beneficial in lowering the prevalence of alcohol-induced cardiovascular diseases (especially in adolescents) which will have a huge financial implication on health systems worldwide.
Collapse
Affiliation(s)
- Makgotso Nchodu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Alice Efuntayo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Robin du Preez
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Hasiena Ali
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Oladiran I Olateju
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa.
| |
Collapse
|
2
|
Lee J, Islam M, Yoo Y, Kim S, Kim R, Jang Y, Lee S, Hwang H, Shin H, Hwang J, Kim K, Park B, Ahn D, Lee Y, Kim T, Kim I, Yoon J, Tae H. Changes of antioxidant enzymes in the kidney after cardiac arrest in the rat model. Braz J Med Biol Res 2023; 56:e12408. [PMID: 36790289 PMCID: PMC9925192 DOI: 10.1590/1414-431x2023e12408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/03/2023] [Indexed: 02/12/2023] Open
Abstract
Globally, cardiac arrest (CA) is a leading cause of death and disability. Asphyxial CA (ACA)-induced kidney damage is a crucial factor in reducing the survival rate. The purpose of this study was to investigate the role of antioxidant enzymes in histopathological renal damage in an ACA rat model at different time points. A total of 88 rats were divided into five groups and exposed to ACA except for the sham group. To evaluate glomerular function and oxidative stress, serum levels of blood urea nitrogen (BUN) and creatinine (Crtn) and malondialdehyde (MDA) levels in renal tissues were measured. To determine histopathological damage, hematoxylin and eosin staining, periodic acid-Schiff staining, and Masson's trichrome staining were performed. Expression levels of antioxidant enzymes including superoxide dismutase-1 (SOD-1), superoxide dismutase-2 (SOD-2), catalase (CAT), and glutathione peroxidase (GPx) were measured by immunohistochemistry (IHC). Survival rate of the experimental rats was reduced to 80% at 6 h, 55% at 12 h, 42.9% at 1 day, and 33% at 2 days after return of spontaneous circulation. Levels of BUN, Crtn, and MDA started to increase significantly in the early period of CA induction. Renal histopathological damage increased markedly from 6 h until two days post-CA. Additionally, expression levels of antioxidant enzymes were significantly decreased at 6 h, 12 h, 1 day, and 2 days after CA. CA-induced oxidative stress and decreased levels of antioxidant enzymes (SOD-1, SOD-2, CAT, GPx) from 6 h to two days could be possible mediators of severe renal tissue damage and increased mortality rate.
Collapse
Affiliation(s)
- J.H. Lee
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine, Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - M.S. Islam
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - Y.J. Yoo
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - S.E. Kim
- Department of Emergency Medicine, Research Institute of Clinical Medicine, Jeonbuk National University and Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - R.H. Kim
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - Y.J. Jang
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - S.H. Lee
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - H.P. Hwang
- Department of Surgery, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - H.Y. Shin
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup, Jeonbuk, Korea
| | - J.H. Hwang
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup, Jeonbuk, Korea
| | - K. Kim
- Department of Thoracic and Cardiovascular Surgery, Research Institute of Clinical Medicine, Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - B.Y. Park
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - D. Ahn
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - Y. Lee
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine, Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - T. Kim
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine, Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - I.S. Kim
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - J.C. Yoon
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine, Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - H.J. Tae
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| |
Collapse
|
3
|
Ahn JH, Lee TK, Kim DW, Shin MC, Cho JH, Lee JC, Tae HJ, Park JH, Hong S, Lee CH, Won MH, Kim YH. Therapeutic Hypothermia after Cardiac Arrest Attenuates Hindlimb Paralysis and Damage of Spinal Motor Neurons and Astrocytes through Modulating Nrf2/HO-1 Signaling Pathway in Rats. Cells 2023; 12:cells12030414. [PMID: 36766758 PMCID: PMC9913309 DOI: 10.3390/cells12030414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Cardiac arrest (CA) and return of spontaneous circulation (ROSC), a global ischemia and reperfusion event, lead to neuronal damage and/or death in the spinal cord as well as the brain. Hypothermic therapy is reported to protect neurons from damage and improve hindlimb paralysis after resuscitation in a rat model of CA induced by asphyxia. In this study, we investigated roles of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the lumbar spinal cord protected by therapeutic hypothermia in a rat model of asphyxial CA. Male Sprague-Dawley rats were subjected to seven minutes of asphyxial CA (induced by injection of 2 mg/kg vecuronium bromide) and hypothermia (four hours of cooling, 33 ± 0.5 °C). Survival rate, hindlimb motor function, histopathology, western blotting, and immunohistochemistry were examined at 12, 24, and 48 h after CA/ROSC. The rats of the CA/ROSC and hypothermia-treated groups had an increased survival rate and showed an attenuated hindlimb paralysis and a mild damage/death of motor neurons located in the anterior horn of the lumbar spinal cord compared with those of the CA/ROSC and normothermia-treated groups. In the CA/ROSC and hypothermia-treated groups, expressions of cytoplasmic and nuclear Nrf2 and HO-1 were significantly higher in the anterior horn compared with those of the CA/ROSC and normothermia-treated groups, showing that cytoplasmic and nuclear Nrf2 was expressed in both motor neurons and astrocytes. Moreover, in the CA/ROSC and hypothermia-treated group, interleukin-1β (IL-1β, a pro-inflammatory cytokine) expressed in the motor neurons was significantly reduced, and astrocyte damage was apparently attenuated compared with those found in the CA/ROSC and normothermia group. Taken together, our results indicate that hypothermic therapy after CA/ROSC attenuates CA-induced hindlimb paralysis by protecting motor neurons in the lumbar spinal cord via activating the Nrf2/HO-1 signaling pathway and attenuating pro-inflammation and astrocyte damage (reactive astrogliosis).
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan, Gyeongnam 50510, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyun-Jin Tae
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Chonbuk 54596, Republic of Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Seongkweon Hong
- Department of Surgery, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungnam 31116, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
- Correspondence: (M.-H.W.); (Y.H.K.); Tel.: +82-33-258-2306 (Y.H.K.); Fax: +82-33-258-2169 (Y.H.K.)
| | - Yang Hee Kim
- Department of Surgery, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
- Correspondence: (M.-H.W.); (Y.H.K.); Tel.: +82-33-258-2306 (Y.H.K.); Fax: +82-33-258-2169 (Y.H.K.)
| |
Collapse
|
4
|
Kim SE, Shin HY, Lee EY, Yoo YJ, Kim RH, Cho JH, Lee TK, Ahn D, Park BY, Yoon JC, Hong S, Kim IS, Tae HJ, Won MH. Effect of therapeutic hypothermia against renal injury in a rat model of asphyxial cardiac arrest: Α focus on the survival rate, pathophysiology and antioxidant enzymes. Mol Med Rep 2021; 25:19. [PMID: 34796906 PMCID: PMC8628291 DOI: 10.3892/mmr.2021.12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/27/2021] [Indexed: 11/21/2022] Open
Abstract
Although multi-organ dysfunction is associated with the survival rate following cardiac arrest (CA), the majority of studies to date have focused on hearts and brains, and few studies have considered renal failure. The objective of the present study, therefore, was to examine the effects of therapeutic hypothermia on the survival rate, pathophysiology and antioxidant enzymes in rat kidneys following asphyxial CA. Rats were sacrificed one day following CA. The survival rate, which was estimated using Kaplan-Meier analysis, was 42.9% one day following CA. However, hypothermia, which was induced following CA, significantly increased the survival rate (71.4%). In normothermia rats with CA, the serum blood urea nitrogen level was significantly increased one day post-CA. In addition, the serum creatinine level was significantly increased one day post-CA. However, in CA rats exposed to hypothermia, the levels of urea nitrogen and creatinine significantly decreased following CA. Histochemical staining revealed a significant temporal increase in renal injury after the normothermia group was subjected to CA. However, renal injury was significantly decreased in the hypothermia group. Immunohistochemical analysis of the kidney revealed a significant decrease in antioxidant enzymes (copper-zinc superoxide dismutase, manganese superoxide dismutase, glutathione peroxidase and catalase) with time in the normothermia group. However, in the hypothermia group, these enzymes were significantly elevated following CA. Collectively, the results revealed that renal dysfunction following asphyxial CA was strongly associated with the early survival rate and therapeutic hypothermia reduced renal injury via effective antioxidant mechanisms.
Collapse
Affiliation(s)
- So Eun Kim
- Department of Emergency Medicine, Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, Jeollabuk‑do 54907, Republic of Korea
| | - Ha-Young Shin
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, Jeollabuk‑do 54596, Republic of Korea
| | - Eui-Yong Lee
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, Jeollabuk‑do 54596, Republic of Korea
| | - Yeo-Jin Yoo
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, Jeollabuk‑do 54596, Republic of Korea
| | - Ryun-Hee Kim
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, Jeollabuk‑do 54596, Republic of Korea
| | - Jeong-Hwi Cho
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, Jeollabuk‑do 54596, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Dongchoon Ahn
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, Jeollabuk‑do 54596, Republic of Korea
| | - Byung-Yong Park
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, Jeollabuk‑do 54596, Republic of Korea
| | - Jae Chol Yoon
- Department of Emergency Medicine, Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, Jeollabuk‑do 54907, Republic of Korea
| | - Seongkweon Hong
- Department of Surgery, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon‑do 24289, Republic of Korea
| | - In-Shik Kim
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, Jeollabuk‑do 54596, Republic of Korea
| | - Hyun-Jin Tae
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, Jeollabuk‑do 54596, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon‑do 24341, Republic of Korea
| |
Collapse
|
5
|
Jawad A, Yoo YJ, Yoon JC, Tian W, Islam MS, Lee EY, Shin HY, Kim SE, Ahn D, Park BY, Tae HJ, Kim IS. Changes of renal histopathology and the role of Nrf2/HO-1 in asphyxial cardiac arrest model in rats. Acta Cir Bras 2021; 36:e360607. [PMID: 34287609 PMCID: PMC8291904 DOI: 10.1590/acb360607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/12/2021] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To investigate the role of Nrf2/HO-1 in renal histopathological ailments time-dependently in asphyxial cardiac arrest (CA) rat model. METHODS Eighty-eight Sprague Dawley male rats were divided into five groups of eight rats each. Asphyxial CA was induced in all the experimental rats except for the sham group. The rats were sacrificed at 6 hours, 12 hours, one day and two days post-CA. Serum blood urea nitrogen (BUN), creatinine (Crtn) and malondialdehyde from the renal tissues were evaluated. Hematoxylin and eosin and periodic acid-Schiff staining were done to evaluate the renal histopathological changes in the renal cortex. Furthermore, Nrf2/HO-1 immunohistochemistry (ihc) and western blot analysis were performed after CA. RESULTS The survival rate of rats decreased in a time-dependent manner: 66.6% at 6 hours, 50% at 12 hours, 38.1% in one day, and 25.8% in two days. BUN and serum Crtn markedly increased in CA-operated groups. Histopathological ailments of the renal cortical tissues increased significantly from 6 hours until two days post-CA. Furthermore, Nrf2/HO-1 expression level significantly increased at 6 hours, 12 hours, and one day. CONCLUSIONS The survival rate decreased time-dependently, and Nrf/HO-1 expression increased from 6 hours with the peak times at 12 hours, and one day post-CA.
Collapse
Affiliation(s)
- Ali Jawad
- Jeonbuk National University, South Korea
| | | | | | | | | | | | | | - So Eun Kim
- Jeonbuk National University Hospital, South Korea
| | | | | | | | | |
Collapse
|
6
|
Ahn JH, Lee TK, Tae HJ, Kim B, Sim H, Lee JC, Kim DW, Kim YS, Shin MC, Park Y, Cho JH, Park JH, Lee CH, Choi SY, Won MH. Neuronal Death in the CNS Autonomic Control Center Comes Very Early after Cardiac Arrest and Is Not Significantly Attenuated by Prompt Hypothermic Treatment in Rats. Cells 2021; 10:E60. [PMID: 33401719 PMCID: PMC7824613 DOI: 10.3390/cells10010060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Autonomic dysfunction in the central nervous system (CNS) can cause death after recovery from a cardiac arrest (CA). However, few studies on histopathological changes in animal models of CA have been reported. In this study, we investigated the prevalence of neuronal death and damage in various brain regions and the spinal cord at early times after asphyxial CA and we studied the relationship between the mortality rate and neuronal damage following hypothermic treatment after CA. Rats were subjected to 7-8 min of asphyxial CA, followed by resuscitation and prompt hypothermic treatment. Eight regions related to autonomic control (the cingulate cortex, hippocampus, thalamus, hypothalamus, myelencephalon, and spinal cord) were examined using cresyl violet (a marker for Nissl substance) and Fluoro-Jade B (a marker for neuronal death). The survival rate was 44.5% 1 day post-CA, 18.2% 2 days post-CA and 0% 5 days post-CA. Neuronal death started 12 h post-CA in the gigantocellular reticular nucleus and caudoventrolateral reticular nucleus in the myelencephalon and lamina VII in the cervical, thoracic, lumbar, and sacral spinal cord, of which neurons are related to autonomic lower motor neurons. In these regions, Iba-1 immunoreactivity indicating microglial activation (microgliosis) was gradually increased with time after CA. Prompt hypothermic treatment increased the survival rate at 5 days after CA with an attenuation of neuronal damages and death in the damaged regions. However, the survival rate was 0% at 12 days after CA. Taken together, our study suggests that the early damage and death of neurons related to autonomic lower motor neurons was significantly related to the high mortality rate after CA and that prompt hypothermic therapy could increase the survival rate temporarily after CA, but could not ultimately save the animal.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Korea;
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - Hyun-Jin Tae
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea;
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung 25457, Korea;
| | - Yoon Sung Kim
- Department of Emergency Medicine, Samcheok Medical Center, Samcheok 25920, Korea;
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (M.C.S.); (Y.P.); (J.H.C.)
| | - Yoonsoo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (M.C.S.); (Y.P.); (J.H.C.)
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (M.C.S.); (Y.P.); (J.H.C.)
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju 38066, Korea;
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea;
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| |
Collapse
|
7
|
Ahn JH, Lee TK, Kim B, Lee JC, Tae HJ, Cho JH, Park Y, Shin MC, Ohk TG, Park CW, Cho JH, Hong S, Park JH, Choi SY, Won MH. Therapeutic Hypothermia Improves Hind Limb Motor Outcome and Attenuates Oxidative Stress and Neuronal Damage in the Lumbar Spinal Cord Following Cardiac Arrest. Antioxidants (Basel) 2020; 9:antiox9010038. [PMID: 31906329 PMCID: PMC7023071 DOI: 10.3390/antiox9010038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
Hypothermia enhances outcomes of patients after resuscitation after cardiac arrest (CA). However, the underlying mechanism is not fully understood. In this study, we investigated effects of hypothermic therapy on neuronal damage/death, microglial activation, and changes of endogenous antioxidants in the anterior horn in the lumbar spinal cord in a rat model of asphyxial CA (ACA). A total of 77 adult male Sprague–Dawley rats were randomized into five groups: normal, sham ACA plus (+) normothermia, ACA + normothermia, sham ACA + hypothermia, and ACA + hypothermia. ACA was induced for 5 min by injecting vecuronium bromide. Therapeutic hypothermia was applied after return of spontaneous circulation (ROSC) via rapid cooling with isopropyl alcohol wipes, which was maintained at 33 ± 0.5 °C for 4 h. Normothermia groups were maintained at 37 ± 0.2 °C for 4 h. Neuronal protection, microgliosis, oxidative stress, and changes of endogenous antioxidants were evaluated at 12 h, 1 day, and 2 days after ROSC following ACA. ACA resulted in neuronal damage from 12 h after ROSC and evoked obvious degeneration/loss of spinal neurons in the ventral horn at 1 day after ACA, showing motor deficit of the hind limb. In addition, ACA resulted in a gradual increase in microgliosis with time after ACA. Therapeutic hypothermia significantly reduced neuronal loss and attenuated hind limb dysfunction, showing that hypothermia significantly attenuated microgliosis. Furthermore, hypothermia significantly suppressed ACA-induced increases of superoxide anion production and 8-hydroxyguanine expression, and significantly increased superoxide dismutase 1 (SOD1), SOD2, catalase, and glutathione peroxidase. Taken together, hypothermic therapy was found to have a substantial impact on changes in ACA-induced microglia activation, oxidative stress factors, and antioxidant enzymes in the ventral horn of the lumbar spinal cord, which closely correlate with neuronal protection and neurological performance after ACA.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (T.-K.L.); (B.K.); (J.-C.L.)
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (T.-K.L.); (B.K.); (J.-C.L.)
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (T.-K.L.); (B.K.); (J.-C.L.)
| | - Hyun-Jin Tae
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea; (H.-J.T.); (J.H.C.)
| | - Jeong Hwi Cho
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea; (H.-J.T.); (J.H.C.)
| | - Yoonsoo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (Y.P.); (M.C.S.); (T.G.O.); (C.W.P.); (J.H.C.)
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (Y.P.); (M.C.S.); (T.G.O.); (C.W.P.); (J.H.C.)
| | - Taek Geun Ohk
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (Y.P.); (M.C.S.); (T.G.O.); (C.W.P.); (J.H.C.)
| | - Chan Woo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (Y.P.); (M.C.S.); (T.G.O.); (C.W.P.); (J.H.C.)
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (Y.P.); (M.C.S.); (T.G.O.); (C.W.P.); (J.H.C.)
| | - Seongkweon Hong
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju 38066, Korea;
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
- Correspondence: (S.Y.C.); (M.-H.W.); Tel.: +82-33-248-2112 (S.Y.C.); +82-33-250-8891 (M.-H.W.); Fax: +82-33-241-1463 (S.Y.C.); +82-33-256-1614 (M.-H.W.)
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (T.-K.L.); (B.K.); (J.-C.L.)
- Correspondence: (S.Y.C.); (M.-H.W.); Tel.: +82-33-248-2112 (S.Y.C.); +82-33-250-8891 (M.-H.W.); Fax: +82-33-241-1463 (S.Y.C.); +82-33-256-1614 (M.-H.W.)
| |
Collapse
|
8
|
Bartekova M, Radosinska J, Jelemensky M, Dhalla NS. Role of cytokines and inflammation in heart function during health and disease. Heart Fail Rev 2019; 23:733-758. [PMID: 29862462 DOI: 10.1007/s10741-018-9716-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
By virtue of their actions on NF-κB, an inflammatory nuclear transcription factor, various cytokines have been documented to play important regulatory roles in determining cardiac function under both physiological and pathophysiological conditions. Several cytokines including TNF-α, TGF-β, and different interleukins such as IL-1 IL-4, IL-6, IL-8, and IL-18 are involved in the development of various inflammatory cardiac pathologies, namely ischemic heart disease, myocardial infarction, heart failure, and cardiomyopathies. In ischemia-related pathologies, most of the cytokines are released into the circulation and serve as biological markers of inflammation. Furthermore, there is an evidence of their direct role in the pathogenesis of ischemic injury, suggesting cytokines as potential targets for the development of some anti-ischemic therapies. On the other hand, certain cytokines such as IL-2, IL-4, IL-6, IL-8, and IL-10 are involved in the post-ischemic tissue repair and thus are considered to exert beneficial effects on cardiac function. Conflicting reports regarding the role of some cytokines in inducing cardiac dysfunction in heart failure and different types of cardiomyopathies seem to be due to differences in the nature, duration, and degree of heart disease as well as the concentrations of some cytokines in the circulation. In spite of extensive research work in this field of investigation, no satisfactory anti-cytokine therapy for improving cardiac function in any type of heart disease is available in the literature.
Collapse
Affiliation(s)
- Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jana Radosinska
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Marek Jelemensky
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Center, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada. .,Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|