1
|
Moen DS, Cabrera-Guzmán E, Caviedes-Solis IW, González-Bernal E, Hanna AR. Phylogenetic analysis of adaptation in comparative physiology and biomechanics: overview and a case study of thermal physiology in treefrogs. J Exp Biol 2022; 225:274250. [PMID: 35119071 DOI: 10.1242/jeb.243292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
Comparative phylogenetic studies of adaptation are uncommon in biomechanics and physiology. Such studies require data collection from many species, a challenge when this is experimentally intensive. Moreover, researchers struggle to employ the most biologically appropriate phylogenetic tools for identifying adaptive evolution. Here, we detail an established but greatly underutilized phylogenetic comparative framework - the Ornstein-Uhlenbeck process - that explicitly models long-term adaptation. We discuss challenges in implementing and interpreting the model, and we outline potential solutions. We demonstrate use of the model through studying the evolution of thermal physiology in treefrogs. Frogs of the family Hylidae have twice colonized the temperate zone from the tropics, and such colonization likely involved a fundamental change in physiology due to colder and more seasonal temperatures. However, which traits changed to allow colonization is unclear. We measured cold tolerance and characterized thermal performance curves in jumping for 12 species of treefrogs distributed from the Neotropics to temperate North America. We then conducted phylogenetic comparative analyses to examine how tolerances and performance curves evolved and to test whether that evolution was adaptive. We found that tolerance to low temperatures increased with the transition to the temperate zone. In contrast, jumping well at colder temperatures was unrelated to biogeography and thus did not adapt during dispersal. Overall, our study shows how comparative phylogenetic methods can be leveraged in biomechanics and physiology to test the evolutionary drivers of variation among species.
Collapse
Affiliation(s)
- Daniel S Moen
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Elisa Cabrera-Guzmán
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Itzue W Caviedes-Solis
- Science Unit, Lingnan University, Hong Kong S.A.R., China.,Department of Biology, University of Washington, Seattle, WA 98105, USA
| | - Edna González-Bernal
- CONACYT - CIIDIR Oaxaca, Instituto Politécnico Nacional, Santa Cruz Xoxocotlán, C.P. 71230, Oaxaca, México
| | - Allison R Hanna
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
2
|
Gimsa J, Gimsa U. Contributions to a Discussion of Spinosaurus aegyptiacus as a Capable Swimmer and Deep-Water Predator. Life (Basel) 2021; 11:life11090889. [PMID: 34575038 PMCID: PMC8467245 DOI: 10.3390/life11090889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/05/2022] Open
Abstract
The new findings on Spinosaurus’ swim tail strongly suggest that Spinosaurus was a specialized deep-water predator. However, the tail must be seen in the context of the propelled body. The comparison of the flow characteristics of Spinosaurus with geometrically similar animals and their swimming abilities under water must take their Reynolds numbers into account and provide a common context for the properties of Spinosaurus’ tail and dorsal sail. Head shape adaptations such as the head crest reduced hydrodynamic disturbance and facilitated stealthy advance, especially when hunting without visual contact, when Spinosaurus could have used its rostral integumentary mechanoreceptors for prey detection. The muscular neck permitted ‘pivot’ feeding, where the prey’s escape abilities were overcome by rapid dorsoventral head movement, facilitated by crest-mediated lower friction.
Collapse
Affiliation(s)
- Jan Gimsa
- Department of Biophysics, University of Rostock, Gertruden Str. 11A, 18057 Rostock, Germany
- Correspondence: ; Tel.: +49-381-498-6020
| | - Ulrike Gimsa
- Research Institute for Farm Animal Biology (FBN), Institute of Behavioural Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| |
Collapse
|
3
|
Kopecký O. Factors Affecting the Retention of Visible Implant Elastomer (VIE) Tags in Smooth Newts (Lissotriton vulgaris) During the Breeding Period. SOUTH AMERICAN JOURNAL OF HERPETOLOGY 2020. [DOI: 10.2994/sajh-d-17-00036.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Oldřich Kopecký
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague. Kamýcká 129, Praha 6-Suchdol 165 21, Czech Republic
| |
Collapse
|
4
|
Weber L, Šmejkal M, Bartoň D, Rulík M. Testing the applicability of tagging the Great crested newt (Triturus cristatus) using passive integrated transponders. PLoS One 2019; 14:e0219069. [PMID: 31283761 PMCID: PMC6613694 DOI: 10.1371/journal.pone.0219069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/15/2019] [Indexed: 11/19/2022] Open
Abstract
Tracking individual animals with small-sized passive integrated transponder tags (PIT tags) has become a popular and widespread method, one which can be used for investigating life history traits, including dispersal patterns of small protected animals such as newts. In this study, we tested the applicability of PIT tag usage for individual marking with the Great crested newt (Triturus cristatus) as a model amphibian species, and to test the detection of the newts in nature using a passive telemetry system. Clove oil was used as an anaesthetic before surgery. We implanted PIT tags under the skin of 140 newts. The survival rate of newts was 98.57%. X-ray images were taken to check the exact positions of the PIT tags. Since approximately 15.71% of the newts were capable of expelling the tag from their bodies, tag loss has to be accounted for in future behavioural studies dealing with newts and other amphibians potentially capable of frequent tag expulsion. Lastly, we detected by passive telemetry 97 individuals out of 100 released into a natural breeding pond. Males had higher activity (13 detected males vs 7 females per hour) than females, thus males could be detected if present with more certainty. The result of the movement behaviour showed that e.g. the male of T. cristatus in a breeding pond can travel up to 20 m in 78 seconds. In summary, this promising method could allow the automatic data collection of marked newts in aquatic as well as in terrestrial biotopes, providing data on their dispersal, diurnal activity and movement behaviour.
Collapse
Affiliation(s)
- Lukáš Weber
- Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University, Olomouc, Czech Republic
- * E-mail:
| | - Marek Šmejkal
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - Daniel Bartoň
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - Martin Rulík
- Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
5
|
Heiss E, Handschuh S, Aerts P, Van Wassenbergh S. A tongue for all seasons: extreme phenotypic flexibility in salamandrid newts. Sci Rep 2017; 7:1006. [PMID: 28432290 PMCID: PMC5430857 DOI: 10.1038/s41598-017-00674-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/08/2017] [Indexed: 01/23/2023] Open
Abstract
Many organisms faced with seasonally fluctuating abiotic and biotic conditions respond by altering their phenotype to account for the demands of environmental changes. Here we discovered that newts, which switch seasonally between an aquatic and terrestrial lifestyle, grow a complex adhesive system on their tongue pad consisting of slender lingual papillae and mucus-producing cells to increase the efficiency of prey capture as they move from water onto land. The adhesive system is reduced again as newts switch back to their aquatic stage, where they use suction to capture prey. As suction performance is also enhanced seasonally by reshaping of the mouth due to the growth of labial lobes, our results show that newts are exceptional in exhibiting phenotypic flexibility in two alternating components (i.e. tongue pad and labial lobes) within a single functional system, and suggest that this form of phenotypic flexibility demands complex genetic regulation.
Collapse
Affiliation(s)
- Egon Heiss
- Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-University Jena, Erbertstr. 1, 07743, Jena, Germany.
| | - Stephan Handschuh
- VetCore Facility for Research, Imaging Unit, University for Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Peter Aerts
- Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.,Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, B-9000, Ghent, Belgium
| | - Sam Van Wassenbergh
- Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.,Departement d'Ecologie et de Gestion de la Biodiversité, Muséum National d' Histoire Naturelle, 57 rue Cuvier, Case postale 55, 75231, Paris Cedex 5, France
| |
Collapse
|
6
|
Slijepčević M, Galis F, Arntzen JW, Ivanović A. Homeotic transformations and number changes in the vertebral column of Triturus newts. PeerJ 2015; 3:e1397. [PMID: 26587355 PMCID: PMC4647568 DOI: 10.7717/peerj.1397] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/20/2015] [Indexed: 01/23/2023] Open
Abstract
We explored intraspecific variation in vertebral formulae, more specifically the variation in the number of thoracic vertebrae and frequencies of transitional sacral vertebrae in Triturus newts (Caudata: Salamandridae). Within salamandrid salamanders this monophyletic group shows the highest disparity in the number of thoracic vertebrae and considerable intraspecific variation in the number of thoracic vertebrae. Triturus species also differ in their ecological preferences, from predominantly terrestrial to largely aquatic. Following Geoffroy St. Hilaire's and Darwin's rule which states that structures with a large number of serially homologous repetitive elements are more variable than structures with smaller numbers, we hypothesized that the variation in vertebral formulae increases in more elongated species with a larger number of thoracic vertebrae. We furthermore hypothesized that the frequency of transitional vertebrae will be correlated with the variation in the number of thoracic vertebrae within the species. We also investigated potential effects of species hybridization on the vertebral formula. The proportion of individuals with a number of thoracic vertebrae different from the modal number and the range of variation in number of vertebrae significantly increased in species with a larger number of thoracic vertebrae. Contrary to our expectation, the frequencies of transitional vertebrae were not correlated with frequencies of change in the complete vertebrae number. The frequency of transitional sacral vertebra in hybrids did not significantly differ from that of the parental species. Such a pattern could be a result of selection pressure against transitional vertebrae and/or a bias towards the development of full vertebrae numbers. Although our data indicate relaxed selection for vertebral count changes in more elongated, aquatic species, more data on different selective pressures in species with different numbers of vertebrae in the two contrasting, terrestrial and aquatic environments are needed to test for causality.
Collapse
Affiliation(s)
- Maja Slijepčević
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | | | | | - Ana Ivanović
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Katzenberger M, Hammond J, Duarte H, Tejedo M, Calabuig C, Relyea RA. Swimming with predators and pesticides: how environmental stressors affect the thermal physiology of tadpoles. PLoS One 2014; 9:e98265. [PMID: 24869960 PMCID: PMC4037208 DOI: 10.1371/journal.pone.0098265] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/29/2014] [Indexed: 12/02/2022] Open
Abstract
To forecast biological responses to changing environments, we need to understand how a species's physiology varies through space and time and assess how changes in physiological function due to environmental changes may interact with phenotypic changes caused by other types of environmental variation. Amphibian larvae are well known for expressing environmentally induced phenotypes, but relatively little is known about how these responses might interact with changing temperatures and their thermal physiology. To address this question, we studied the thermal physiology of grey treefrog tadpoles (Hyla versicolor) by determining whether exposures to predator cues and an herbicide (Roundup) can alter their critical maximum temperature (CTmax) and their swimming speed across a range of temperatures, which provides estimates of optimal temperature (Topt) for swimming speed and the shape of the thermal performance curve (TPC). We discovered that predator cues induced a 0.4°C higher CTmax value, whereas the herbicide had no effect. Tadpoles exposed to predator cues or the herbicide swam faster than control tadpoles and the increase in burst speed was higher near Topt. In regard to the shape of the TPC, exposure to predator cues increased Topt by 1.5°C, while exposure to the herbicide marginally lowered Topt by 0.4°C. Combining predator cues and the herbicide produced an intermediate Topt that was 0.5°C higher than the control. To our knowledge this is the first study to demonstrate a predator altering the thermal physiology of amphibian larvae (prey) by increasing CTmax, increasing the optimum temperature, and producing changes in the thermal performance curves. Furthermore, these plastic responses of CTmax and TPC to different inducing environments should be considered when forecasting biological responses to global warming.
Collapse
Affiliation(s)
- Marco Katzenberger
- Department of Evolutionary Ecology, Doñana Biological Station - Spanish Council for Scientific Research, Sevilla, Spain
| | - John Hammond
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Helder Duarte
- Department of Evolutionary Ecology, Doñana Biological Station - Spanish Council for Scientific Research, Sevilla, Spain
| | - Miguel Tejedo
- Department of Evolutionary Ecology, Doñana Biological Station - Spanish Council for Scientific Research, Sevilla, Spain
| | - Cecilia Calabuig
- Department of Animal Sciences, Federal Rural University of the Semiarid Region, Mossoró, Rio Grande do Norte, Brazil
| | - Rick A. Relyea
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
8
|
A Phenotypic Point of View of the Adaptive Radiation of Crested Newts (Triturus cristatus Superspecies, Caudata, Amphibia). INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:740605. [PMID: 22315697 PMCID: PMC3270399 DOI: 10.1155/2012/740605] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/06/2011] [Accepted: 10/11/2011] [Indexed: 11/18/2022]
Abstract
The divergence in phenotype and habitat preference within the crested newt Triturus cristatus superspecies, examined across different ontogenetic stages, provides an excellent setting to explore the pattern of adaptive radiation. The crested newts form a well-supported monophyletic clade for which at least the full mitochondrial DNA phylogeny is resolved. Here we summarise studies that explored the variation in morphological (larval and adult body form, limb skeleton, and skull shape) and other phenotypic traits (early life history, developmental sequences, larval growth rate, and sexual dimorphism) to infer the magnitude and direction of evolutionary changes in crested newts. The phenotypic traits show a high level of concordance in the pattern of variation; there is a cline-like variation, from T. dobrogicus, via T. cristatus, T. carnifex, and T. macedonicus to the T. karelinii group. This pattern matches the cline of ecological preferences; T. dobrogicus is relatively aquatic, followed by T. cristatus. T. macedonicus, T. carnifex, and the T. karelinii group are relatively terrestrial. The observed pattern indicates that phenotypic diversification in crested newts emerged due to an evolutionary switch in ecological preferences. Furthermore, the pattern indicates that heterochronic changes, or changes in the timing and rate of development, underlie the observed phenotypic evolutionary diversification.
Collapse
|
9
|
Wielstra B, Arntzen JW. Unraveling the rapid radiation of crested newts (Triturus cristatus superspecies) using complete mitogenomic sequences. BMC Evol Biol 2011; 11:162. [PMID: 21672214 PMCID: PMC3224112 DOI: 10.1186/1471-2148-11-162] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 06/14/2011] [Indexed: 12/03/2022] Open
Abstract
Background The rapid radiation of crested newts (Triturus cristatus superspecies) comprises four morphotypes: 1) the T. karelinii group, 2) T. carnifex - T. macedonicus, 3) T. cristatus and 4) T. dobrogicus. These vary in body build and the number of rib-bearing pre-sacral vertebrae (NRBV). The phylogenetic relationships of the morphotypes have not yet been settled, despite several previous attempts, employing a variety of molecular markers. We here resolve the crested newt phylogeny by using complete mitochondrial genome sequences. Results Bayesian inference based on the mitogenomic data yields a fully bifurcating, significantly supported tree, though Maximum Likelihood inference yields low support values. The internal branches connecting the morphotypes are short relative to the terminal branches. Seen from the root of Triturus (NRBV = 13), a basal dichotomy separates the T. karelinii group (NRBV = 13) from the remaining crested newts. The next split divides the latter assortment into T. carnifex - T. macedonicus (NRBV = 14) versus T. cristatus (NRBV = 15) and T. dobrogicus (NRBV = 16 or 17). Conclusions We argue that the Bayesian full mitochondrial DNA phylogeny is superior to previous attempts aiming to recover the crested newt species tree. Furthermore, our new phylogeny involves a maximally parsimonious interpretation of NRBV evolution. Calibrating the phylogeny allows us to evaluate potential drivers for crested newt cladogenesis. The split between the T. karelinii group and the three other morphotypes, at ca. 10.4 Ma, is associated with the separation of the Balkan and Anatolian landmasses (12-9 Ma). No currently known vicariant events can be ascribed to the other two splits, first at ca. 9.3 Ma, separating T. carnifex - T. macedonicus, and second at ca. 8.8 Ma, splitting T. cristatus and T. dobrogicus. The crested newt morphotypes differ in the duration of their annual aquatic period. We speculate on the role that this ecological differentiation could have played during speciation.
Collapse
Affiliation(s)
- Ben Wielstra
- Netherlands Centre for Biodiversity-NCB Naturalis, Leiden, The Netherlands.
| | | |
Collapse
|