1
|
Liu X, Li H, Yang J, Yan S, Zhou Y, Jiang R, Li R, Wang M, Ren P. Different effects of bio/non-degradable microplastics on sewage sludge compost performance: Focusing on antibiotic resistance genes, virulence factors and key metabolic functions. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137329. [PMID: 39879766 DOI: 10.1016/j.jhazmat.2025.137329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Microplastics (MP) have aroused increasing concern due to the negative environmental impact. However, the impact of bio/non-biodegradable MPs on the sludge composting process has not been thoroughly investigated. This study examined antibiotic resistance genes (ARGs), virulence factors (VFs), and microbial community functions in sludge compost with the application of polylactic acid (PLA) and polypropylene (PP), using metagenomic sequencing. The findings indicated that both types of MPs could extend the thermophilic phase, enhance microbial activity, and inhibit the formation of humic acids. Compared to CK, the subtypes of ARGs decreased 4.22 % and 13.11 % in PLA and PP groups, respectively. But new ARGs emerged, particularly in the PLA group. The proportions of ARGs related to efflux and VFs associated with the adhesion system increased 1.62 %-2.27 % and 55.56 %-60.00 %, respectively, in MPs-added composts. The relative abundance of potential bacterial hosts (e.g., Psychrobacter) carrying multiple ARGs and VFs was much higher in PLA-added compost than in the other two. Moreover, PP facilitated denitrification process and PLA enhanced dissimilatory nitrate reduction to ammonium. Both types of MPs inhibited assimilatory nitrate reduction to ammonia but promoted inorganic nitrogen assimilation. This study broadens our understanding of the potential environmental risks posed by biodegradable and non-biodegradable microplastics on sludge compost and offers valuable insights for the management and application of compost products.
Collapse
Affiliation(s)
- Xiangyu Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huiyue Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jie Yang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shen Yan
- Staff Development Institute of China National Tobacco Corporation, Zhengzhou 450000, China
| | - Yufei Zhou
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui Jiang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Renhe Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mengmeng Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Peng Ren
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China
| |
Collapse
|
2
|
Alshehri WA, Abulfaraj AA, Alqahtani MD, Alomran MM, Alotaibi NM, Alwutayd K, Aloufi AS, Alshehrei FM, Alabbosh KF, Alshareef SA, Ashy RA, Refai MY, Jalal RS. Abundant resistome determinants in rhizosphere soil of the wild plant Abutilon fruticosum. AMB Express 2023; 13:92. [PMID: 37646836 PMCID: PMC10469157 DOI: 10.1186/s13568-023-01597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
A metagenomic whole genome shotgun sequencing approach was used for rhizospheric soil micribiome of the wild plant Abutilon fruticosum in order to detect antibiotic resistance genes (ARGs) along with their antibiotic resistance mechanisms and to detect potential risk of these ARGs to human health upon transfer to clinical isolates. The study emphasized the potential risk to human health of such human pathogenic or commensal bacteria, being transferred via food chain or horizontally transferred to human clinical isolates. The top highly abundant rhizospheric soil non-redundant ARGs that are prevalent in bacterial human pathogens or colonizers (commensal) included mtrA, soxR, vanRO, golS, rbpA, kdpE, rpoB2, arr-1, efrA and ileS genes. Human pathogenic/colonizer bacteria existing in this soil rhizosphere included members of genera Mycobacterium, Vibrio, Klebsiella, Stenotrophomonas, Pseudomonas, Nocardia, Salmonella, Escherichia, Citrobacter, Serratia, Shigella, Cronobacter and Bifidobacterium. These bacteria belong to phyla Actinobacteria and Proteobacteria. The most highly abundant resistance mechanisms included antibiotic efflux pump, antibiotic target alteration, antibiotic target protection and antibiotic inactivation. antimicrobial resistance (AMR) families of the resistance mechanism of antibiotic efflux pump included resistance-nodulation-cell division (RND) antibiotic efflux pump (for mtrA, soxR and golS genes), major facilitator superfamily (MFS) antibiotic efflux pump (for soxR gene), the two-component regulatory kdpDE system (for kdpE gene) and ATP-binding cassette (ABC) antibiotic efflux pump (for efrA gene). AMR families of the resistance mechanism of antibiotic target alteration included glycopeptide resistance gene cluster (for vanRO gene), rifamycin-resistant beta-subunit of RNA polymerase (for rpoB2 gene) and antibiotic-resistant isoleucyl-tRNA synthetase (for ileS gene). AMR families of the resistance mechanism of antibiotic target protection included bacterial RNA polymerase-binding protein (for RbpA gene), while those of the resistance mechanism of antibiotic inactivation included rifampin ADP-ribosyltransferase (for arr-1 gene). Better agricultural and food transport practices are required especially for edible plant parts or those used in folkloric medicine.
Collapse
Affiliation(s)
- Wafa A Alshehri
- Department of Biology, College of Science, University of Jeddah, 21493, Jeddah, Saudi Arabia
| | - Aala A Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, 21911, Rabigh, Saudi Arabia
| | - Mashael D Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Maryam M Alomran
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Nahaa M Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Khairiah Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Fatimah M Alshehrei
- Department of Biology, Jumum College University, Umm Al-Qura University, P.O. Box 7388, 21955, Makkah, Saudi Arabia
| | - Khulood F Alabbosh
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Sahar A Alshareef
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, 21921, Jeddah, Saudi Arabia
| | - Ruba A Ashy
- Department of Biology, College of Science, University of Jeddah, 21493, Jeddah, Saudi Arabia
| | - Mohammed Y Refai
- Department of Biochemistry, College of Science, University of Jeddah, 21493, Jeddah, Saudi Arabia
| | - Rewaa S Jalal
- Department of Biology, College of Science, University of Jeddah, 21493, Jeddah, Saudi Arabia.
| |
Collapse
|
3
|
Sobhanipoor MH, Ahmadrajabi R, Nave HH, Saffari F. Determination of efflux activity in Enterococci by Hoechst accumulation assay and the role of zinc oxide nanoparticles in inhibition of this activity. BMC Microbiol 2022; 22:195. [PMID: 35941529 PMCID: PMC9361545 DOI: 10.1186/s12866-022-02595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Contribution of efflux pumps in development of antimicrobial resistance has been largely addressed in Gram negative and to a much lesser extent in Gram positive bacteria. Measuring accumulation of Hoechst (H) dye is known as a safe and rapid method for monitoring efflux activity in bacteria. Antimicrobial effects of metal nanoparticles have been attributed in part to inhibition of efflux pumps. This study aimed to first determine efflux activity in enterococci by Hoechst accumulation assay, and to second characterize the role of zinc oxide nanoparticles (ZnONPs) in inhibition of these pumps. RESULTS Increased accumulation of Hoechst dye showed more potential of ZnONPs in efflux inhibition compared with CCCP. H33258 represented more suitability for accumulation studies in enterococci. Two to six-fold reduction in minimum inhibitory concentration (MIC) values of antimicrobial agents in the presence of ZnONPs was observed. CONCLUSIONS Efflux activity in enterococcal strains can be measured by H33258 accumulation assay. Application of ZnONPs as an efflux inhibitor, may rejuvenate the use of conventional antimicrobial agents against these bacteria.
Collapse
Affiliation(s)
- Mohammad Hossein Sobhanipoor
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Roya Ahmadrajabi
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseini Nave
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fereshteh Saffari
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Microbiology and Virology, Kerman University of Medical Sciences, 22 Bahman Blvd, Kerman, Iran.
| |
Collapse
|
4
|
Garcia ÍR, de Oliveira Garcia FA, Pereira PS, Coutinho HDM, Siyadatpanah A, Norouzi R, Wilairatana P, de Lourdes Pereira M, Nissapatorn V, Tintino SR, Rodrigues FFG. Microbial resistance: The role of efflux pump superfamilies and their respective substrates. Life Sci 2022; 295:120391. [PMID: 35149116 DOI: 10.1016/j.lfs.2022.120391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 12/24/2022]
Abstract
The microorganism resistance to antibiotics has become one of the most worrying issues for science due to the difficulties related to clinical treatment and the rapid spread of diseases. Efflux pumps are classified into six groups of carrier proteins that are part of the different types of mechanisms that contribute to resistance in microorganisms, allowing their survival. The present study aimed to carry out a bibliographic review on the superfamilies of carriers in order to understand their compositions, expressions, substrates, and role in intrinsic resistance. At first, a search for manuscripts was carried out in the databases Medline, Pubmed, ScienceDirect, and Scielo, using as descriptors: efflux pump, expression, pump inhibitors and efflux superfamily. For article selection, two criteria were taken into account: for inclusion, those published between 2000 and 2020, including textbooks, and for exclusion, duplicates and academic collections. In this research, 139,615 published articles were obtained, with 312 selected articles and 7 book chapters that best met the aim. From the comprehensive analysis, it was possible to consider that the chromosomes and genetic elements can contain genes encoding efflux pumps and are responsible for multidrug resistance. Even though this is a well-explored topic in the scientific community, understanding the behavior of antibiotics as substrates that increase the expression of pump-encoding genes has challenged medicine. This review study succinctly summarizes the most relevant features of these systems, as well as their contribution to multidrug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and Research Excellence Center for Innovation and Health, Walailak University, Thailand
| | | | | |
Collapse
|
5
|
Sobhanipoor MH, Ahmadrajabi R, Nave HH, Saffari F. Reduced Susceptibility to Biocides among Enterococci from Clinical and Non-Clinical Sources. Infect Chemother 2021; 53:696-704. [PMID: 34951531 PMCID: PMC8731243 DOI: 10.3947/ic.2021.0090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/24/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Wide use of biocidal agents such as benzalkonium chloride (BCC) and chlorhexidine digluconate (CHX) in hospitals and non-hospital environments, has raised concerns over the emergence of non-susceptible strains. Efflux pumps are of known main mechanisms in biocide tolerance which have been rarely addressed in enterococci - members of gut microbiota which can cause serious problems particularly in hospitalized patients. The purpose of this study was to investigate the susceptibility of enterococci from different sources (clinical and fecal isolates) toward BCC and CHX, and its correlation with efflux associated genes. Also, possible link between biocide tolerance and antibiotic resistance was examined. MATERIALS AND METHODS One hundred and four enterococcus isolates including clinical (n = 54) and fecal isolates (n = 50) were studied for susceptibility toward BCC, CHX, ciprofloxacin, gentamicin and vancomycin. Twelve efflux associated genes were investigated by polymerase chain reaction assay. RESULTS In clinical isolates, reduced susceptibility to CHX and resistance to gentamicin and ciprofloxacin were significantly higher than fecal isolates. Vancomycin resistance was associated with increasing minimum inhibitory concentration of CHX. Among all investigated genes, only three ones, efrA, efrB and emeA were detected which were significantly associated with reduced susceptibility to CHX and were more frequent among clinical isolates. Also, high level resistance to gentamicin was significantly associated with the presence of efrA/B as well as with reduced susceptibility to CHX. CONCLUSION As expected, reduced susceptibility to CHX, was significantly higher in clinical isolates. However, the presence of a vancomycin-resistant enterococci among fecal isolates of healthy people which showed resistance/tolerance to studied antimicrobial agents, was unexpected and highlights the need to investigate other non-hospital environments to avoid dissemination of antimicrobial resistance. Correlation between reduced susceptibility to CHX and high level resistance to gentamicin, substantiates monitoring of biocide tolerance particularly in the healthcare settings to control the establishment of antimicrobial resistant strains.
Collapse
Affiliation(s)
- Mohammad Hossein Sobhanipoor
- Department of Medical Microbiology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Roya Ahmadrajabi
- Department of Medical Microbiology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseini Nave
- Department of Medical Microbiology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fereshteh Saffari
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
6
|
Ozma MA, Khodadadi E, Rezaee MA, Kamounah FS, Asgharzadeh M, Ganbarov K, Aghazadeh M, Yousefi M, Pirzadeh T, Kafil HS. Induction of proteome changes involved in biofilm formation of Enterococcus faecalis in response to gentamicin. Microb Pathog 2021; 157:105003. [PMID: 34087388 DOI: 10.1016/j.micpath.2021.105003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Enterococcus faecalis is a significant cause of nosocomial infections and other diseases, including endocarditis, bacteremia, and urinary tract infections. This microorganism forms biofilms to overcome difficult environmental conditions, such as lack of oxygen, lack of water, and the presence of antimicrobials. These biofilms make diseases difficult by changing their proteome contents, protecting the bacterium, and increasing their pathogenicity. This study aimed to evaluate gentamicin's effect on proteome changes and biofilm formation in E. faecalis. METHOD Twenty-five clinical isolates and one standard isolate were selected for the experiments. A label-free/gel-free proteomic and microtiter plate techniques were used to study proteome changes and biofilm formation, respectively. RESULTS Gentamicin significantly increased the biofilm formation in 62% of isolates and the rest of the isolates; no significant change was observed. The abundance of lactate utilization protein C, ribosomal RNA small subunit methyltransferase H, and protein translocase subunit SecA were increased. However, the abundances of proteins effective in cell division and metabolism, such as replication initiation protein and segregation and condensation protein A, were decreased. CONCLUSION The present study's findings exhibited that antibiotics might have adverse effects on treatment and increase microorganisms' pathogenicity. It was observed in gentamicin as induction of biofilm formation through different mechanisms, particularly changes in the expression of specific proteins in E. faecalis.
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK- 2100, Copenhagen, Denmark
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Aghazadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Pirzadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Zhang Y, Wang L, Zhou C, Lin Y, Liu S, Zeng W, Yu K, Zhou T, Cao J. Unraveling Mechanisms and Epidemic Characteristics of Nitrofurantoin Resistance in Uropathogenic Enterococcus faecium Clinical Isolates. Infect Drug Resist 2021; 14:1601-1611. [PMID: 33911884 PMCID: PMC8075312 DOI: 10.2147/idr.s301802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Multidrug-resistant (MDR) Enterococcus faecium is an important nosocomial pathogen causing urinary tract infection, and the reapplication of nitrofurantoin (NIT) in the clinic has attracted great attention. This study aims to explore the NIT resistance mechanisms and epidemiological characteristics of E. faecium clinical isolates. Patients and Methods A total of 633 E. faecium clinical isolates was obtained from urine samples in a clinical teaching hospital during 2017–2018. Among them, 40 NIT-resistant strains, and a similar number of -intermediate and -susceptible strains were isolated. The minimum inhibitory concentrations (MICs) of NIT were detected by agar dilution method. The prevalence and mutations of nitroreductase-encoding genes ef0404 and ef0648 were explored by polymerase chain reaction (PCR), followed by efflux pump inhibition test and quantitative real-time PCR (qRT-PCR) to investigate the resistance mechanisms of NIT. Furthermore, the epidemiological characteristics were detected by multilocus sequence typing (MLST). Results The carrying rates of nitroreductase in NIT-susceptible, -intermediate, and -resistant isolates were 100%, 50%, and 20%, respectively. After exposure to the efflux pump inhibitor, the MIC of 12 E. faecium decreased by ≥4-fold. However, the efflux pump genes efrAB, emeA, and oqxAB were not overexpressed in NIT-resistant E. faecium isolates. Moreover, MLST analysis revealed that all the NIT-resistant isolates belonged to CC17, of which 30 (75%) were associated with ST78. Conclusion This study has established for the first time that the absence of EF0404 and EF0648 is the main mechanism of NIT resistance in E. faecium. Our findings are likely to fill the knowledge gap pertaining to the NIT resistance mechanism in E. faecium and provide important insights for molecular epidemiological characteristics analysis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Yishuai Lin
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Shixing Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Weiliang Zeng
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Kaihang Yu
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| |
Collapse
|
8
|
A Major Facilitator Superfamily (MFS) Efflux Pump, SCO4121, from Streptomyces coelicolor with Roles in Multidrug Resistance and Oxidative Stress Tolerance and Its Regulation by a MarR Regulator. Appl Environ Microbiol 2021; 87:AEM.02238-20. [PMID: 33483304 DOI: 10.1128/aem.02238-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Overexpression of efflux pumps is one of the major determinants of resistance in bacteria. Streptomyces species harbor a large array of efflux pumps that are transcriptionally silenced under laboratory conditions. However, their dissemination results in multidrug resistance in different clinical pathogens. In this study, we have identified an efflux pump from Streptomyces coelicolor, SCO4121, belonging to the major facilitator superfamily (MFS) family of transporters and characterized its role in antibiotic resistance. SCO4121 provided resistance to multiple dissimilar drugs upon overexpression in both native and heterologous hosts. Further, deletion of SCO4121 resulted in increased sensitivity toward ciprofloxacin and chloramphenicol, suggesting the pump to be a major transporter of these substrates. Apart from providing multidrug resistance, SCO4121 imparted increased tolerance against the strong oxidant HOCl. In wild-type Streptomyces coelicolor cells, these drugs were found to transcriptionally regulate the pump in a concentration-dependent manner. Additionally, we identified SCO4122, a MarR regulator that positively regulates SCO4121 in response to various drugs and the oxidant HOCl. Thus, through these studies we present the multiple roles of SCO4121 in S. coelicolor and highlight the intricate mechanisms via which it is regulated in response to antibiotics and oxidative stress.IMPORTANCE One of the key mechanisms of drug resistance in bacteria is overexpression of efflux pumps. Streptomyces species are a reservoir of a large number of efflux pumps, potentially to provide resistance to both endogenous and nonendogenous antibiotics. While many of these pumps are not expressed under standard laboratory conditions, they result in resistance to multiple drugs when spread to other bacterial pathogens through horizontal gene transfer. In this study, we have identified a widely conserved efflux pump SCO4121 from Streptomyces coelicolor with roles in both multidrug resistance and oxidative stress tolerance. We also report the presence of an adjacent MarR regulator, SCO4122, which positively regulates SCO4121 in the presence of diverse substrates in a redox-responsive manner. This study highlights that soil bacteria such as Streptomyces can reveal novel mechanisms of antibiotic resistance that may potentially emerge in clinically important bacteria.
Collapse
|
9
|
Azimi L, Tahbaz SV, Alaghehbandan R, Alinejad F, Lari AR. Synergistic Effect of Tazobactam on Amikacin MIC in Acinetobacter baumannii Isolated from Burn Patients in Tehran, Iran. Curr Pharm Biotechnol 2020; 21:997-1004. [PMID: 32077820 DOI: 10.2174/1389201021666200220121122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Burn is still an important global public health challenge. Wound colonization of antibiotic resistant bacteria such as Acinetobacter baumannii can lead to high morbidity and mortality in burn patients. The aim of this study was to evaluate the inhibitory effect of tazobactam on efflux pump, which can cause aminoglycoside resistant in A. baumannii isolated from burn patients. METHODS In this study, 47 aminoglycoside resistant A. baumannii spp. were obtained from burn patients, admitted to the Shahid Motahari Burns Hospital in Tehran, Iran, during June-August 2018. The inhibitory effect of tazobactam against adeB such as efflux pump was evaluated by Minimum Inhibitory Concentration (MIC) determination of amikacin alone and in combination with tazobactam. Fractional Inhibitory Concentration index (FIC) was used to determine the efficacy of tazobactam/ amikacin combination. Further, semi-quantitative Real- Time PCR was performed to quantify the expression rates of the adeB gene before and after addition of tazobactam/amikacin. RESULTS The MIC values were significantly reduced when a combined amikacin and tazobactam was utilized. The most common interaction observed was synergistic (78.2%), followed by.additive effects (21.8%), as per FIC results. The adeB mRNA expression levels were found to be downregulated in 60.7% of isolates treated with tazobactam. CONCLUSION Tazobactam can have impact on resistance to aminoglycoside by inhibiting efflux pump. Thus, the combination of tazobactam with amikacin can be used as an alternative treatment approach in multidrug resistant A. baumannii infections.
Collapse
Affiliation(s)
- Leila Azimi
- Paediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahel V Tahbaz
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Reza Alaghehbandan
- Department of Pathology, University of British Columbia, Royal Columbian Hospital, Vancouver, BC, Canada
| | - Farank Alinejad
- Burn Research Center, Iran University of Medical sciences, Tehran, Iran
| | - Abdolaziz R Lari
- Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Shiadeh SMJ, Azimi L, Azimi T, Pourmohammad A, Goudarzi M, Chaboki BG, Hashemi A. Upregulation of efrAB efflux pump among Enterococcus faecalis ST480, ST847 in Iran. Acta Microbiol Immunol Hung 2020; 67:187-192. [PMID: 32986605 DOI: 10.1556/030.2020.01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/20/2020] [Indexed: 11/19/2022]
Abstract
Antibiotic resistance and especially multiresistance in Enterococci, is a serious public health issue especially in infections of immunocompromised patients. EfrAB is a heterodimeric multidrug ATP-binding cassette (ABC) transporter that causes endogenous resistance to antimicrobials including fluoroquinolones in Enterococcus spp. The aim of this study was to seek the gene expression rate and role of efrAB efflux pump in ciprofloxacin resistant Enterococcus faecalis and Multilocus Sequence Typing (MLST) of multiresistant isolates. Phenotypic and genotyping identification of 80 E. faecalis isolates were performed. Minimum inhibitory concentrations (MICs) to ciprofloxacin (CIP) were measured with and without carbonylcyanide 3-chlorophenylhydrazone (CCCP) by broth microdilution. After DNA extraction and sequencing for detection of efrA and efrB genes, the efrAB efflux positive isolates that were resistant to ciprofloxacin and showed decrease of ciprofloxacin MIC range were identified. Isolates that exhibited decrease in ciprofloxacin MIC range from two to ten folds were assessed for biofilm formation and finally, the expression levels of efrB, efrA genes were measured by quantitative Real-Time PCR (qRT-PCR). High rates of resistance to tetracycline and minocycline and low rates of resistance to the most antibiotics used in this study were detected. The results in this study indicated that the incidence of Multiple drug resistance (MDR) was 23.7% and all isolates that were resistant to ciprofloxacin revealed several degrees of overexpression in efrA and efrB genes. Our study found two ST480 and one ST847 in E. faecalis isolates. In conclusion, despite of low frequency of resistance to the most antibiotics and MDRs in our region, we found one ST480 isolate with resistance to eight antibiotics that also exists in other parts of the world.
Collapse
Affiliation(s)
| | - Leila Azimi
- 2Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- 3Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Pourmohammad
- 1Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- 1Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahare Gholami Chaboki
- 4Department of Biostatistics, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- 1Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Feng Z, Liu D, Liu Z, Liang Y, Wang Y, Liu Q, Liu Z, Zang Z, Cui Y. Cloning and Functional Characterization of Putative Escherichia coli ABC Multidrug Efflux Transporter YddA. J Microbiol Biotechnol 2020; 30:982-995. [PMID: 32347079 PMCID: PMC9728188 DOI: 10.4014/jmb.2003.03003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
A putative multidrug efflux gene, yddA, was cloned from the Escherichia coli K-12 strain. A drugsensitive strain of E. coli missing the main multidrug efflux pump AcrB was constructed as a host and the yddA gene was knocked out in wild-type (WT) and drug-sensitive E. coliΔacrB to study the yddA function. Sensitivity to different substrates of WT E.coli, E. coliΔyddA, E. coliΔacrB and E. coliΔacrBΔyddA strains was compared with minimal inhibitory concentration (MIC) assays and fluorescence tests. MIC assay and fluorescence test results showed that YddA protein was a multidrug efflux pump that exported multiple substrates. Three inhibitors, ortho-vanadate, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and reserpine, were used in fluorescence tests. Ortho-vanadate and reserpine significantly inhibited the efflux and increased accumulation of ethidium bromide and norfloxacin, while CCCP had no significant effect on YddA-regulated efflux. The results indicated that YddA relies on energy released from ATP hydrolysis to transfer the substrates and YddA is an ABC-type multidrug exporter. Functional study of unknown ATP-binding cassette (ABC) superfamily transporters in the model organism E. coli is conducive to discovering new multidrug resistance-reversal targets and providing references for studying other ABC proteins of unknown function.
Collapse
Affiliation(s)
- Zhenyue Feng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China,College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Defu Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Ziwen Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Yimin Liang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Yanhong Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Qingpeng Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Zhenhua Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Zhongjing Zang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Yudong Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China,College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China,Corresponding author Phone/Fax: +459-6031177 E-mail:
| |
Collapse
|
12
|
Esfahani S, Ahmadrajabi R, Mollaei H, Saffari F. Co-Incidence of Type II Topoisomerase Mutations and Efflux Expression in High Fluoroquinolone Resistant Enterococcus faecalis Isolated from Urinary Tract Infections. Infect Drug Resist 2020; 13:553-559. [PMID: 32110065 PMCID: PMC7035903 DOI: 10.2147/idr.s237299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction Enterococcus faecalis is one of the most common pathogens in urinary tract infections (UTIs). Fluoroquinolones have been frequently used to treat E. faecalis UTIs, and the emergence of fluoroquinolone-resistant E. faecalis strains has recently been reported in several countries. This study aimed to elucidate the mechanisms involved in fluoroquinolone resistance in clinical E. faecalis isolates by analyzing mutations in quinolone- resistance-determining regions (QRDRs) of gyrA and parC and investigating the role of some efflux pumps. Methods In total, 70 clinical E. faecalis isolates collected from UTIs were identified by phenotypic and genotypic methods. Antimicrobial susceptibility testing was performed and multidrug-resistant (including ciprofloxacin resistant) isolates were studied for minimum inhibitory concentrations to ciprofloxacin, levofloxacin, and ofloxacin. In the following, mutations in QRDRs of gyrA and parC and expression of EfrA, EfrB, and EmeA efflux pumps were investigated in 20 high-level ciprofloxacin resistant and two ciprofloxacin susceptible isolates. Results High-level resistance to ciprofloxacin was detected in 97.5% of isolates. Sequencing of QRDRs revealed that 65% and 75% of isolates carried mutations in gyrA and parC, respectively. The presence of efflux genes was detected in all studied isolates, but expression of efrA, emeA, and efrB was demonstrated in 50%, 40%, and 30% of resistant isolates, respectively. Neither QRDR mutation nor the expression of efflux genes showed any significant association with MIC. Conclusion Co-incidence of mutation and efflux gene expression in more than half of isolates (13/20) suggests that both mechanisms may play a role in fluoroquinolone resistance. The other unknown mechanisms including different efflux pumps and probably other QRDRs mutations may contribute to fluoroquinolone resistance in E. faecalis.
Collapse
Affiliation(s)
- Sarvenaz Esfahani
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Roya Ahmadrajabi
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamidreza Mollaei
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fereshteh Saffari
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|