1
|
Dolatto RG, Pont GD, Vela HS, Camargo MDS, Neto AO, Grassi MT. Aromatic hydrocarbons extracted by headspace and microextraction methods in water-soluble fractions from crude oil, fuels and lubricants. ANAL SCI 2023; 39:573-587. [PMID: 36739314 DOI: 10.1007/s44211-023-00274-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/11/2023] [Indexed: 02/06/2023]
Abstract
Two extraction protocols were developed for the determination of mono- and poly-aromatic hydrocarbons in water-soluble fractions from gasoline, diesel, crude, mineral insulating, and lubricant oils. Development of the procedures was based on clean miniaturized strategies, such as headspace extraction and vortex-assisted dispersive liquid micro-extraction, together with quantification by gas chromatography-mass spectrometry. The mono-aromatic hydrocarbons were extracted using the headspace extraction method. The linear range obtained was 10-500 µg L-1, with r2 > 0.99. Based on the parameters of the analytical curves, detection and quantification limits of 2.56-3.20 and 7.76-9.71 µg L-1 were estimated. In addition, the method showed adequate recoveries of 69.4-83.5%, with a satisfactory precision of 4.7-17.1% (n = 5). Micro-extraction was applied for the poly-aromatics and the most favorable variables were sample volume (5.00 mL) in sodium chloride medium (1%, w/v), trichloromethane as extractor solvent (75 µL), acetone as disperser (925 µL) and vortexing for 1 min. Under these conditions, analytical curves of 0.15-4.00 µg L-1 were obtained and limits of determination and quantification were 0.03-0.15 and 0.09-0.46 µg L-1, respectively. Recovery values of 87.6-124.5% and a maximum relative standard deviation of 18.9% (n = 5) verify satisfactory accuracy and precision. This led to the achievement of enrichment factors for poly-aromatic hydrocarbons of 41-89 times. Finally, the methods were employed in samples of water-soluble fractions for the determination of analytes. The values followed the order: gasoline > diesel > crude > lubricant > mineral insulating oil. These results indicate an increase in lighter fractions, followed by poly-aromatics in more refined products.
Collapse
Affiliation(s)
- Rafael Garrett Dolatto
- Grupo de Química Ambiental, Departamento de Química, Universidade Federal do Paraná, Curitiba, PR, CP 19032, CEP 81531-980, Brazil.
| | - Giorgi Dal Pont
- Grupo Integrado de Aquicultura e Estudos Ambientais, Departamento de Zootecnia, Universidade Federal do Paraná, Curitiba, PR, CEP 80035-050, Brazil
| | - Hugo Sarmiento Vela
- Grupo de Química Ambiental, Departamento de Química, Universidade Federal do Paraná, Curitiba, PR, CP 19032, CEP 81531-980, Brazil
| | - Morgana de Souza Camargo
- Grupo de Química Ambiental, Departamento de Química, Universidade Federal do Paraná, Curitiba, PR, CP 19032, CEP 81531-980, Brazil
| | - Antonio Ostrensky Neto
- Grupo Integrado de Aquicultura e Estudos Ambientais, Departamento de Zootecnia, Universidade Federal do Paraná, Curitiba, PR, CEP 80035-050, Brazil
| | - Marco Tadeu Grassi
- Grupo de Química Ambiental, Departamento de Química, Universidade Federal do Paraná, Curitiba, PR, CP 19032, CEP 81531-980, Brazil
| |
Collapse
|
2
|
Jin R, Liu G, Zhou X, Zhang Z, Lin B, Liu Y, Qi Z, Zheng M. Analysis of polycyclic aromatic hydrocarbon derivatives in environment. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
3
|
Raposo A, Mansilha C, Veber A, Melo A, Rodrigues J, Matias R, Rebelo H, Grossinho J, Cano M, Almeida C, Nogueira ID, Puskar L, Schade U, Jordao L. Occurrence of polycyclic aromatic hydrocarbons, microplastics and biofilms in Alqueva surface water at touristic spots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157983. [PMID: 35973540 DOI: 10.1016/j.scitotenv.2022.157983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Freshwater pollution is a huge concern. A study aiming to evaluate physico-chemical characteristics, microbiota, occurrence of two groups of persistent environmental pollutants with similar chemical properties (polycyclic aromatic hydrocarbons- PAHs and microplastics - MPs) in Alqueva's surface water was performed during 2021. Water samples were collected at three spots related to touristic activities (two beaches and one marina) during the Winter, Spring, Summer and Autumn seasons. In addition, the presence of biofilms on plastic and natural materials (stone, wood/ vegetal materials) were assessed and compared. Water quality based on physicochemical parameters was acceptable with a low eutrophication level. PAHs concentration levels were lower than the standard limits established for surface waters by international organizations. However, carcinogenic compounds were detected in two sampling locations, which can pose a problem for aquatic ecosystems. PAHs profiles showed significant differences when comparing the dry seasons with the rainy seasons, with a higher number of different compounds detected in Spring. Low molecular weigh compounds, usually associated with the atmospheric deposition and petroleum contamination, were more prevalent. MPs were detected in all samples except one during the Winter season. The polymers detected were poly(methyl-2-methylpropenoate), polystyrene, polyethylene terephthalate, polyamide, polypropylene, styrene butadiene, polyvinyl chloride and low /high density polyethylene with the last being the most frequent. Biofilms were more often detected on plastics than on natural materials. In addition, biofilms detected on plastics were more complex with higher microbial diversity (e.g., bacteria, fungi/yeast and phytoplancton organisms) and richer in extrapolymeric material. Based on morphological analysis a good agreement between microbiota and microorganism present in the biofilms was found. Among microbiota were identified microorganisms previously linked to plastic and PAHs detoxification suggesting the need for further studies to evaluate the viability of using biofilms as part of a green bioremediation strategy to mitigate water pollution.
Collapse
Affiliation(s)
- Ana Raposo
- Instituto Nacional de Saude Dr. Ricardo Jorge, Departamento de Saude Ambiental, Av Padre Cruz, 1649-016 Lisboa, Portugal.
| | - Catarina Mansilha
- Instituto Nacional de Saude Dr. Ricardo Jorge, Departamento de Saude Ambiental, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal.
| | - Alexander Veber
- Humboldt Universität zu Berlin, Institute of Chemistry, Brook-Taylor Strasse 2, D-12489 Berlin, Germany; Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Infrared Beamline IRIS, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany.
| | - Armindo Melo
- Instituto Nacional de Saude Dr. Ricardo Jorge, Departamento de Saude Ambiental, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal.
| | - Joao Rodrigues
- Instituto Nacional de Saude Dr. Ricardo Jorge, Departamento de Doenças Infeciosas, Av Padre Cruz, 1649-016 Lisboa, Portugal.
| | - Rui Matias
- Instituto Nacional de Saude Dr. Ricardo Jorge, Departamento de Doenças Infeciosas, Av Padre Cruz, 1649-016 Lisboa, Portugal.
| | - Helena Rebelo
- Instituto Nacional de Saude Dr. Ricardo Jorge, Departamento de Saude Ambiental, Av Padre Cruz, 1649-016 Lisboa, Portugal.
| | - Jose Grossinho
- Instituto Nacional de Saude Dr. Ricardo Jorge, Departamento de Saude Ambiental, Av Padre Cruz, 1649-016 Lisboa, Portugal.
| | - Manuela Cano
- Instituto Nacional de Saude Dr. Ricardo Jorge, Departamento de Saude Ambiental, Av Padre Cruz, 1649-016 Lisboa, Portugal.
| | - Cristina Almeida
- Instituto Nacional de Saude Dr. Ricardo Jorge, Departamento de Saude Ambiental, Av Padre Cruz, 1649-016 Lisboa, Portugal.
| | - Isabel D Nogueira
- Instituto Superior Técnico, MicroLab, Av Rovisco Pais, 10049-001 Lisboa, Portugal.
| | - Ljiljana Puskar
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Infrared Beamline IRIS, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany.
| | - Ulrich Schade
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Infrared Beamline IRIS, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany.
| | - Luisa Jordao
- Instituto Nacional de Saude Dr. Ricardo Jorge, Departamento de Saude Ambiental, Av Padre Cruz, 1649-016 Lisboa, Portugal.
| |
Collapse
|
5
|
Wildfire Effects on Groundwater Quality from Springs Connected to Small Public Supply Systems in a Peri-Urban Forest Area (Braga Region, NW Portugal). WATER 2020. [DOI: 10.3390/w12041146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peri-urban areas are territories that combine urban and rural features, being particularly vulnerable to wildfire due to the contact between human infrastructures and dense vegetation. Wildfires may cause considerable direct and indirect effects on the local water cycle, but the influence on groundwater quality is still poorly understood. The aim of this study was to characterize the chemistry of several springs connected to small public supply systems in a peri-urban area, following a large wildfire that took place in October 2017. Groundwater samples were collected in four springs that emerged within burned forests, while control samples were from one spring located in an unburned area. Sampling took place from October 2017 until September 2018, starting 15 days after the wildfire occurrence, to evaluate the influence of the time after fire and the effect of precipitation events on groundwater composition. Groundwater samples collected in burned areas presented increased content of sulfate, fluoride and nitrogen and variability in pH values. Iron, manganese and chromium contents also increased during the sampling period. Post-fire concentrations of polycyclic aromatic hydrocarbons (PAHs), mainly the carcinogenic ones, increased especially after intense winter and spring rain events, but the levels did not exceed the guideline values for drinking water.
Collapse
|
6
|
Agus BAP, Hussain N, Selamat J. Quantification of PAH4 in roasted cocoa beans using QuEChERS and dispersive liquid-liquid micro-extraction (DLLME) coupled with HPLC-FLD. Food Chem 2019; 303:125398. [PMID: 31470272 DOI: 10.1016/j.foodchem.2019.125398] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/18/2019] [Indexed: 11/16/2022]
Abstract
Roasting is an important process in cocoa production which may lead to formation of non-desirable compounds such as polycyclic aromatic hydrocarbons (PAHs). Therefore, PAH4 (sum of four different polycyclic aromatic hydrocarbons; benz[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene) in roasted cocoa beans was determined using a modified method (combination of QuEChERS and DLLME), and quantified by HPLC-FLD. The modified method was validated and met the performance criteria required by the EU Regulation (No. 836/2011). Results show a significant (p < 0.05) increase of PAH4 (0.19-7.73 ng/g) with an increase in temperatures (110-190 °C) and duration (10-50 min). The PAHs content in whole cocoa bean roasting was detected even at the lowest temperature (110 °C) compared to nib roasting detected at 150 °C which indicates that PAHs was transferred from dried shells to roasted cocoa beans during the roasting process. The data obtained may help to control and minimize PAH4 formation during cocoa processing.
Collapse
Affiliation(s)
- Baizura Aya Putri Agus
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Norhayati Hussain
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Jinap Selamat
- Laboratory of Food Safety and Food Integrity (FOSFI), Institute of Tropical Agricultural and Food Security, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|