1
|
Moroz LL. Brief History of Ctenophora. Methods Mol Biol 2024; 2757:1-26. [PMID: 38668961 DOI: 10.1007/978-1-0716-3642-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ctenophores are the descendants of the earliest surviving lineage of ancestral metazoans, predating the branch leading to sponges (Ctenophore-first phylogeny). Emerging genomic, ultrastructural, cellular, and systemic data indicate that virtually every aspect of ctenophore biology as well as ctenophore development are remarkably different from what is described in representatives of other 32 animal phyla. The outcome of this reconstruction is that most system-level components associated with the ctenophore organization result from convergent evolution. In other words, the ctenophore lineage independently evolved as high animal complexities with the astonishing diversity of cell types and structures as bilaterians and cnidarians. Specifically, neurons, synapses, muscles, mesoderm, through gut, sensory, and integrative systems evolved independently in Ctenophora. Rapid parallel evolution of complex traits is associated with a broad spectrum of unique ctenophore-specific molecular innovations, including alternative toolkits for making an animal. However, the systematic studies of ctenophores are in their infancy, and deciphering their remarkable morphological and functional diversity is one of the hot topics in biological research, with many anticipated surprises.
Collapse
Affiliation(s)
- Leonid L Moroz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA.
| |
Collapse
|
2
|
Moroz LL, Romanova DY. Homologous vs. homocratic neurons: revisiting complex evolutionary trajectories. Front Cell Dev Biol 2023; 11:1336093. [PMID: 38178869 PMCID: PMC10764524 DOI: 10.3389/fcell.2023.1336093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
| | - Daria Y. Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| |
Collapse
|
3
|
Winlow W, Johnson AS. Nerve Impulses Have Three Interdependent Functions: Communication, Modulation, and Computation. Bioelectricity 2021. [DOI: 10.1089/bioe.2021.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- William Winlow
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, Napoli, Italia
- Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool, United Kingdom
| | - Andrew S. Johnson
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, Napoli, Italia
| |
Collapse
|
4
|
Glycine as a signaling molecule and chemoattractant in Trichoplax (Placozoa): insights into the early evolution of neurotransmitters. Neuroreport 2021; 31:490-497. [PMID: 32243353 DOI: 10.1097/wnr.0000000000001436] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The origin and early evolution of neurotransmitter signaling in animals are unclear due to limited comparative information, primarily about prebilaterian animals. Here, we performed the comparative survey of signal molecules in placozoans - the simplest known free-living animals without canonical synapses, but with complex behaviors. First, using capillary electrophoresis with laser-induced fluorescence detection, we performed microchemical analyses of transmitter candidates in Trichoplax adhaerens - the classical reference species in comparative biology. We showed that the endogenous level of glycine (about 3 mM) was significantly higher than for other candidates such as L-glutamate, L-aspartate, or gamma-aminobutyric acid. Neither serotonin nor dopamine were detected. The absolute glycine concentrations in Trichoplax were even higher than we measured in ctenophores (Beroe) and cnidarians (Aequorea). We found that at millimolar concentrations of glycine (similar to the endogenous level), induced muscle-like contractions in free behaving animals. But after long incubation (24 h), 10 M of glycine could induce cytotoxicity and cell dissociation. In contrast, micromolar concentrations (10-10 M) increased Trichoplax ciliated locomotion, suggesting that glycine might act as an endogenous signal molecule. However, we showed than glycine (10 M) can also be a chemoattractant (a guiding factor for food sources), and therefore, act as the exogenous signal. These findings provide an evolutionary base for the origin of transmitters as a result of the interplay between exogenous and endogenous signaling systems early in animal evolution.
Collapse
|
5
|
Moroz LL, Romanova DY, Kohn AB. Neural versus alternative integrative systems: molecular insights into origins of neurotransmitters. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190762. [PMID: 33550949 PMCID: PMC7935107 DOI: 10.1098/rstb.2019.0762] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Transmitter signalling is the universal chemical language of any nervous system, but little is known about its early evolution. Here, we summarize data about the distribution and functions of neurotransmitter systems in basal metazoans as well as outline hypotheses of their origins. We explore the scenario that neurons arose from genetically different populations of secretory cells capable of volume chemical transmission and integration of behaviours without canonical synapses. The closest representation of this primordial organization is currently found in Placozoa, disk-like animals with the simplest known cell composition but complex behaviours. We propose that injury-related signalling was the evolutionary predecessor for integrative functions of early transmitters such as nitric oxide, ATP, protons, glutamate and small peptides. By contrast, acetylcholine, dopamine, noradrenaline, octopamine, serotonin and histamine were recruited as canonical neurotransmitters relatively later in animal evolution, only in bilaterians. Ligand-gated ion channels often preceded the establishment of novel neurotransmitter systems. Moreover, lineage-specific diversification of neurotransmitter receptors occurred in parallel within Cnidaria and several bilaterian lineages, including acoels. In summary, ancestral diversification of secretory signal molecules provides unique chemical microenvironments for behaviour-driven innovations that pave the way to complex brain functions and elementary cognition. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience, McKnight Brain Institute and Whitney laboratory, University of Florida, 9505 Ocean shore Blvd, St Augustine, FL 32080, USA
| | - Daria Y. Romanova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of RAS, 5A Butlerova Street, Moscow 117485, Russia
| | - Andrea B. Kohn
- Department of Neuroscience, McKnight Brain Institute and Whitney laboratory, University of Florida, 9505 Ocean shore Blvd, St Augustine, FL 32080, USA
| |
Collapse
|
6
|
Martinez P, Sprecher SG. Of Circuits and Brains: The Origin and Diversification of Neural Architectures. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
7
|
Paulin MG, Cahill‐Lane J. Events in Early Nervous System Evolution. Top Cogn Sci 2019; 13:25-44. [DOI: 10.1111/tops.12461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
|
8
|
Himmel NJ, Letcher JM, Sakurai A, Gray TR, Benson MN, Cox DN. Drosophila menthol sensitivity and the Precambrian origins of transient receptor potential-dependent chemosensation. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190369. [PMID: 31544603 DOI: 10.1098/rstb.2019.0369] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transient receptor potential (TRP) cation channels are highly conserved, polymodal sensors which respond to a wide variety of stimuli. Perhaps most notably, TRP channels serve critical functions in nociception and pain. A growing body of evidence suggests that transient receptor potential melastatin (TRPM) and transient receptor potential ankyrin (TRPA) thermal and electrophile sensitivities predate the protostome-deuterostome split (greater than 550 Ma). However, TRPM and TRPA channels are also thought to detect modified terpenes (e.g. menthol). Although terpenoids like menthol are thought to be aversive and/or harmful to insects, mechanistic sensitivity studies have been largely restricted to chordates. Furthermore, it is unknown if TRP-menthol sensing is as ancient as thermal and/or electrophile sensitivity. Combining genetic, optical, electrophysiological, behavioural and phylogenetic approaches, we tested the hypothesis that insect TRP channels play a conserved role in menthol sensing. We found that topical application of menthol to Drosophila melanogaster larvae elicits a Trpm- and TrpA1-dependent nocifensive rolling behaviour, which requires activation of Class IV nociceptor neurons. Further, in characterizing the evolution of TRP channels, we put forth the hypotheses that three previously undescribed TRPM channel clades (basal, αTRPM and βTRPM), as well as TRPs with residues critical for menthol sensing, were present in ancestral bilaterians. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- Nathaniel J Himmel
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Jamin M Letcher
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Thomas R Gray
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Maggie N Benson
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
9
|
Norekian TP, Moroz LL. Neural system and receptor diversity in the ctenophore
Beroe abyssicola. J Comp Neurol 2019; 527:1986-2008. [DOI: 10.1002/cne.24633] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Tigran P. Norekian
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Friday Harbor Laboratories University of Washington Friday Harbor Washington
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences Moscow Russia
| | - Leonid L. Moroz
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Department of Neuroscience and McKnight Brain Institute University of Florida Gainesville Florida
| |
Collapse
|
10
|
Moroz LL. NeuroSystematics and Periodic System of Neurons: Model vs Reference Species at Single-Cell Resolution. ACS Chem Neurosci 2018; 9:1884-1903. [PMID: 29989789 DOI: 10.1021/acschemneuro.8b00100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There is more than one way to develop neuronal complexity, and animals frequently use different molecular toolkits to achieve similar functional outcomes (=convergent evolution). Neurons are different not only because they have different functions, but also because neurons and circuits have different genealogies, and perhaps independent origins at the broadest scale from ctenophores and cnidarians to cephalopods and primates. By combining modern phylogenomics, single-neuron sequencing (scRNA-seq), machine learning, single-cell proteomics, and metabolomic across Metazoa, it is possible to reconstruct the evolutionary histories of neurons tracing them to ancestral secretory cells. Comparative data suggest that neurons, and perhaps synapses, evolved at least 2-3 times (in ctenophore, cnidarian and bilateral lineages) during ∼600 million years of animal evolution. There were also several independent events of the nervous system centralization either from a common bilateral/cnidarian ancestor without the bona fide neurons or from the urbilaterian with diffuse, nerve-net type nervous system. From the evolutionary standpoint, (i) a neuron should be viewed as a functional rather than a genetic character, and (ii) any given neural system might be chimeric and composed of different cell lineages with distinct origins and evolutionary histories. The identification of distant neural homologies or examples of convergent evolution among 34 phyla will not only allow the reconstruction of neural systems' evolution but together with single-cell "omic" approaches the proposed synthesis would lead to the "Periodic System of Neurons" with predictive power for neuronal phenotypes and plasticity. Such a phylogenetic classification framework of Neuronal Systematics (NeuroSystematics) might be a conceptual analog of the Periodic System of Chemical Elements. scRNA-seq profiling of all neurons in an entire brain or Brain-seq is now fully achievable in many nontraditional reference species across the entire animal kingdom. Arguably, marine animals are the most suitable for the proposed tasks because the world oceans represent the greatest taxonomic and body-plan diversity.
Collapse
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience and McKnight Brain Institute, University of Florida, 1149 Newell Drive, Gainesville, Florida 32611, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, Florida 32080, United States
| |
Collapse
|
11
|
Smith FW, Cumming M, Goldstein B. Analyses of nervous system patterning genes in the tardigrade Hypsibius exemplaris illuminate the evolution of panarthropod brains. EvoDevo 2018; 9:19. [PMID: 30069303 PMCID: PMC6065069 DOI: 10.1186/s13227-018-0106-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Both euarthropods and vertebrates have tripartite brains. Several orthologous genes are expressed in similar regionalized patterns during brain development in both vertebrates and euarthropods. These similarities have been used to support direct homology of the tripartite brains of vertebrates and euarthropods. If the tripartite brains of vertebrates and euarthropods are homologous, then one would expect other taxa to share this structure. More generally, examination of other taxa can help in tracing the evolutionary history of brain structures. Tardigrades are an interesting lineage on which to test this hypothesis because they are closely related to euarthropods, and whether they have a tripartite brain or unipartite brain has recently been a focus of debate. RESULTS We tested this hypothesis by analyzing the expression patterns of six3, orthodenticle, pax6, unplugged, and pax2/5/8 during brain development in the tardigrade Hypsibius exemplaris-formerly misidentified as Hypsibius dujardini. These genes were expressed in a staggered anteroposterior order in H. exemplaris, similar to what has been reported for mice and flies. However, only six3, orthodenticle, and pax6 were expressed in the developing brain. Unplugged was expressed broadly throughout the trunk and posterior head, before the appearance of the nervous system. Pax2/5/8 was expressed in the developing central and peripheral nervous system in the trunk. CONCLUSION Our results buttress the conclusion of our previous study of Hox genes-that the brain of tardigrades is only homologous to the protocerebrum of euarthropods. They support a model based on fossil evidence that the last common ancestor of tardigrades and euarthropods possessed a unipartite brain. Our results are inconsistent with the hypothesis that the tripartite brain of euarthropods is directly homologous to the tripartite brain of vertebrates.
Collapse
Affiliation(s)
- Frank W. Smith
- Biology Department, University of North Florida, Jacksonville, FL USA
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Mandy Cumming
- Biology Department, University of North Florida, Jacksonville, FL USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
12
|
Altenburger A. The neuromuscular system of Pycnophyes kielensis (Kinorhyncha: Allomalorhagida) investigated by confocal laser scanning microscopy. EvoDevo 2016; 7:25. [PMID: 27933139 PMCID: PMC5126839 DOI: 10.1186/s13227-016-0062-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/17/2016] [Indexed: 11/10/2022] Open
Abstract
Background Kinorhynchs are ecdysozoan animals with a phylogenetic position close to priapulids and loriciferans. To understand the nature of segmentation within Kinorhyncha and to infer a probable ancestry of segmentation within the last common ancestor of Ecdysozoa, the musculature and the nervous system of the allomalorhagid kinorhynch Pycnophyes kielensis were investigated by use of immunohistochemistry, confocal laser scanning microscopy, and 3D reconstruction software. Results The kinorhynch body plan comprises 11 trunk segments. Trunk musculature consists of paired ventral and dorsal longitudinal muscles in segments 1–10 as well as dorsoventral muscles in segments 1–11. Dorsal and ventral longitudinal muscles insert on apodemes of the cuticle inside the animal within each segment. Strands of longitudinal musculature extend over segment borders in segments 1–6. In segments 7–10, the trunk musculature is confined to the segments. Musculature of the digestive system comprises a strong pharyngeal bulb with attached mouth cone muscles as well as pharyngeal bulb protractors and retractors. The musculature of the digestive system shows no sign of segmentation. Judged by the size of the pharyngeal bulb protractors and retractors, the pharyngeal bulb, as well as the introvert, is moved passively by internal pressure caused by concerted action of the dorsoventral muscles. The nervous system comprises a neuropil ring anterior to the pharyngeal bulb. Associated with the neuropil ring are flask-shaped serotonergic somata extending anteriorly and posteriorly. A ventral nerve cord is connected to the neuropil ring and runs toward the anterior until an attachment point in segment 1, and from there toward the posterior with one ganglion in segment 6. Conclusions Segmentation within Kinorhyncha likely evolved from an unsegmented ancestor. This conclusion is supported by continuous trunk musculature in the anterior segments 1–6, continuous pharyngeal bulb protractors and retractors throughout the anterior segments, no sign of segmentation within the digestive system, and the absence of ganglia in most segments. The musculature shows evidence of segmentation that fit the definition of an anteroposteriorly repeated body unit only in segments 7–10. Electronic supplementary material The online version of this article (doi:10.1186/s13227-016-0062-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Altenburger
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Sølvgade 83, 1307 Copenhagen, Denmark
| |
Collapse
|
13
|
Moroz LL, Kohn AB. Independent origins of neurons and synapses: insights from ctenophores. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150041. [PMID: 26598724 PMCID: PMC4685580 DOI: 10.1098/rstb.2015.0041] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2015] [Indexed: 12/29/2022] Open
Abstract
There is more than one way to develop neuronal complexity, and animals frequently use different molecular toolkits to achieve similar functional outcomes. Genomics and metabolomics data from basal metazoans suggest that neural signalling evolved independently in ctenophores and cnidarians/bilaterians. This polygenesis hypothesis explains the lack of pan-neuronal and pan-synaptic genes across metazoans, including remarkable examples of lineage-specific evolution of neurogenic and signalling molecules as well as synaptic components. Sponges and placozoans are two lineages without neural and muscular systems. The possibility of secondary loss of neurons and synapses in the Porifera/Placozoa clades is a highly unlikely and less parsimonious scenario. We conclude that acetylcholine, serotonin, histamine, dopamine, octopamine and gamma-aminobutyric acid (GABA) were recruited as transmitters in the neural systems in cnidarian and bilaterian lineages. By contrast, ctenophores independently evolved numerous secretory peptides, indicating extensive adaptations within the clade and suggesting that early neural systems might be peptidergic. Comparative analysis of glutamate signalling also shows numerous lineage-specific innovations, implying the extensive use of this ubiquitous metabolite and intercellular messenger over the course of convergent and parallel evolution of mechanisms of intercellular communication. Therefore: (i) we view a neuron as a functional character but not a genetic character, and (ii) any given neural system cannot be considered as a single character because it is composed of different cell lineages with distinct genealogies, origins and evolutionary histories. Thus, when reconstructing the evolution of nervous systems, we ought to start with the identification of particular cell lineages by establishing distant neural homologies or examples of convergent evolution. In a corollary of the hypothesis of the independent origins of neurons, our analyses suggest that both electrical and chemical synapses evolved more than once.
Collapse
Affiliation(s)
- Leonid L Moroz
- The Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Andrea B Kohn
- The Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| |
Collapse
|
14
|
Ryan JF, Chiodin M. Where is my mind? How sponges and placozoans may have lost neural cell types. Philos Trans R Soc Lond B Biol Sci 2015; 370:20150059. [PMID: 26554046 PMCID: PMC4650130 DOI: 10.1098/rstb.2015.0059] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2015] [Indexed: 01/01/2023] Open
Abstract
Recent phylogenomic evidence suggests that ctenophores may be the sister group to the rest of animals. This phylogenetic arrangement opens the possibility that sponges and placozoans could have lost neural cell types or that the ctenophore nervous system evolved independently. We critically review evidence to date that has been put forth in support of independent evolution of neural cell types in ctenophores. We observe a reluctance in the literature to consider a lost nervous system in sponges and placozoans and suggest that this may be due to historical bias and the commonly misconstrued concept of animal complexity. In support of the idea of loss (or modification beyond recognition), we provide hypothetical scenarios to show how sponges and placozoans may have benefitted from the loss and/or modification of their neural cell types.
Collapse
Affiliation(s)
- Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, FL 32080, USA Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Marta Chiodin
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, FL 32080, USA Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
15
|
Perea-Atienza E, Gavilán B, Chiodin M, Abril JF, Hoff KJ, Poustka AJ, Martinez P. The nervous system of Xenacoelomorpha: a genomic perspective. ACTA ACUST UNITED AC 2015; 218:618-28. [PMID: 25696825 DOI: 10.1242/jeb.110379] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Xenacoelomorpha is, most probably, a monophyletic group that includes three clades: Acoela, Nemertodermatida and Xenoturbellida. The group still has contentious phylogenetic affinities; though most authors place it as the sister group of the remaining bilaterians, some would include it as a fourth phylum within the Deuterostomia. Over the past few years, our group, along with others, has undertaken a systematic study of the microscopic anatomy of these worms; our main aim is to understand the structure and development of the nervous system. This research plan has been aided by the use of molecular/developmental tools, the most important of which has been the sequencing of the complete genomes and transcriptomes of different members of the three clades. The data obtained has been used to analyse the evolutionary history of gene families and to study their expression patterns during development, in both space and time. A major focus of our research is the origin of 'cephalized' (centralized) nervous systems. How complex brains are assembled from simpler neuronal arrays has been a matter of intense debate for at least 100 years. We are now tackling this issue using Xenacoelomorpha models. These represent an ideal system for this work because the members of the three clades have nervous systems with different degrees of cephalization; from the relatively simple sub-epithelial net of Xenoturbella to the compact brain of acoels. How this process of 'progressive' cephalization is reflected in the genomes or transcriptomes of these three groups of animals is the subject of this paper.
Collapse
Affiliation(s)
- Elena Perea-Atienza
- Departament de Genètica, Universitat de Barcelona, Av. Diagonal, 643, 08028-Barcelona, Catalonia, Spain
| | - Brenda Gavilán
- Departament de Genètica, Universitat de Barcelona, Av. Diagonal, 643, 08028-Barcelona, Catalonia, Spain
| | - Marta Chiodin
- Departament de Genètica, Universitat de Barcelona, Av. Diagonal, 643, 08028-Barcelona, Catalonia, Spain
| | - Josep F Abril
- Departament de Genètica, Universitat de Barcelona, Av. Diagonal, 643, 08028-Barcelona, Catalonia, Spain Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal, 643, 08028 Barcelona, Catalonia, Spain
| | - Katharina J Hoff
- Ernst Morith Arndt University of Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17487 Greifswald, Germany
| | - Albert J Poustka
- Dahlem Centre for Genome Research and Medical Systems Biology, Evolutionary and Environmental Genomics Group, Fabeckstraße 60-62, 14195 Berlin, Germany
| | - Pedro Martinez
- Departament de Genètica, Universitat de Barcelona, Av. Diagonal, 643, 08028-Barcelona, Catalonia, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
16
|
Moroz LL. Biodiversity Meets Neuroscience: From the Sequencing Ship (Ship-Seq) to Deciphering Parallel Evolution of Neural Systems in Omic's Era. Integr Comp Biol 2015; 55:1005-17. [PMID: 26163680 DOI: 10.1093/icb/icv084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The origins of neural systems and centralized brains are one of the major transitions in evolution. These events might occur more than once over 570-600 million years. The convergent evolution of neural circuits is evident from a diversity of unique adaptive strategies implemented by ctenophores, cnidarians, acoels, molluscs, and basal deuterostomes. But, further integration of biodiversity research and neuroscience is required to decipher critical events leading to development of complex integrative and cognitive functions. Here, we outline reference species and interdisciplinary approaches in reconstructing the evolution of nervous systems. In the "omic" era, it is now possible to establish fully functional genomics laboratories aboard of oceanic ships and perform sequencing and real-time analyses of data at any oceanic location (named here as Ship-Seq). In doing so, fragile, rare, cryptic, and planktonic organisms, or even entire marine ecosystems, are becoming accessible directly to experimental and physiological analyses by modern analytical tools. Thus, we are now in a position to take full advantages from countless "experiments" Nature performed for us in the course of 3.5 billion years of biological evolution. Together with progress in computational and comparative genomics, evolutionary neuroscience, proteomic and developmental biology, a new surprising picture is emerging that reveals many ways of how nervous systems evolved. As a result, this symposium provides a unique opportunity to revisit old questions about the origins of biological complexity.
Collapse
Affiliation(s)
- Leonid L Moroz
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience and McKnight Brain Institute, University of Florida, 9505 Ocean Shore Blvd., St Augustine, FL 32080, USA
| |
Collapse
|
17
|
Shinomiya K, Takemura SY, Rivlin PK, Plaza SM, Scheffer LK, Meinertzhagen IA. A common evolutionary origin for the ON- and OFF-edge motion detection pathways of the Drosophila visual system. Front Neural Circuits 2015. [PMID: 26217193 PMCID: PMC4496578 DOI: 10.3389/fncir.2015.00033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Synaptic circuits for identified behaviors in the Drosophila brain have typically been considered from either a developmental or functional perspective without reference to how the circuits might have been inherited from ancestral forms. For example, two candidate pathways for ON- and OFF-edge motion detection in the visual system act via circuits that use respectively either T4 or T5, two cell types of the fourth neuropil, or lobula plate (LOP), that exhibit narrow-field direction-selective responses and provide input to wide-field tangential neurons. T4 or T5 both have four subtypes that terminate one each in the four strata of the LOP. Representatives are reported in a wide range of Diptera, and both cell types exhibit various similarities in: (1) the morphology of their dendritic arbors; (2) their four morphological and functional subtypes; (3) their cholinergic profile in Drosophila; (4) their input from the pathways of L3 cells in the first neuropil, or lamina (LA), and by one of a pair of LA cells, L1 (to the T4 pathway) and L2 (to the T5 pathway); and (5) their innervation by a single, wide-field contralateral tangential neuron from the central brain. Progenitors of both also express the gene atonal early in their proliferation from the inner anlage of the developing optic lobe, being alone among many other cell type progeny to do so. Yet T4 receives input in the second neuropil, or medulla (ME), and T5 in the third neuropil or lobula (LO). Here we suggest that these two cell types were originally one, that their ancestral cell population duplicated and split to innervate separate ME and LO neuropils, and that a fiber crossing—the internal chiasma—arose between the two neuropils. The split most plausibly occurred, we suggest, with the formation of the LO as a new neuropil that formed when it separated from its ancestral neuropil to leave the ME, suggesting additionally that ME input neurons to T4 and T5 may also have had a common origin.
Collapse
Affiliation(s)
- Kazunori Shinomiya
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University Halifax, NS, Canada ; FlyEM Project Team, Howard Hughes Medical Institute, Janelia Research Campus Ashburn, VA, USA
| | - Shin-ya Takemura
- FlyEM Project Team, Howard Hughes Medical Institute, Janelia Research Campus Ashburn, VA, USA
| | - Patricia K Rivlin
- FlyEM Project Team, Howard Hughes Medical Institute, Janelia Research Campus Ashburn, VA, USA
| | - Stephen M Plaza
- FlyEM Project Team, Howard Hughes Medical Institute, Janelia Research Campus Ashburn, VA, USA
| | - Louis K Scheffer
- FlyEM Project Team, Howard Hughes Medical Institute, Janelia Research Campus Ashburn, VA, USA
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University Halifax, NS, Canada ; Department of Biology, Life Sciences Centre, Dalhousie University Halifax, NS, Canada
| |
Collapse
|
18
|
Abstract
Neurons are defined as polarized secretory cells specializing in directional propagation of electrical signals leading to the release of extracellular messengers - features that enable them to transmit information, primarily chemical in nature, beyond their immediate neighbors without affecting all intervening cells en route. Multiple origins of neurons and synapses from different classes of ancestral secretory cells might have occurred more than once during ~600 million years of animal evolution with independent events of nervous system centralization from a common bilaterian/cnidarian ancestor without the bona fide central nervous system. Ctenophores, or comb jellies, represent an example of extensive parallel evolution in neural systems. First, recent genome analyses place ctenophores as a sister group to other animals. Second, ctenophores have a smaller complement of pan-animal genes controlling canonical neurogenic, synaptic, muscle and immune systems, and developmental pathways than most other metazoans. However, comb jellies are carnivorous marine animals with a complex neuromuscular organization and sophisticated patterns of behavior. To sustain these functions, they have evolved a number of unique molecular innovations supporting the hypothesis of massive homoplasies in the organization of integrative and locomotory systems. Third, many bilaterian/cnidarian neuron-specific genes and 'classical' neurotransmitter pathways are either absent or, if present, not expressed in ctenophore neurons (e.g. the bilaterian/cnidarian neurotransmitter, γ-amino butyric acid or GABA, is localized in muscles and presumed bilaterian neuron-specific RNA-binding protein Elav is found in non-neuronal cells). Finally, metabolomic and pharmacological data failed to detect either the presence or any physiological action of serotonin, dopamine, noradrenaline, adrenaline, octopamine, acetylcholine or histamine - consistent with the hypothesis that ctenophore neural systems evolved independently from those in other animals. Glutamate and a diverse range of secretory peptides are first candidates for ctenophore neurotransmitters. Nevertheless, it is expected that other classes of signal and neurogenic molecules would be discovered in ctenophores as the next step to decipher one of the most distinct types of neural organization in the animal kingdom.
Collapse
Affiliation(s)
- Leonid L Moroz
- The Whitney Laboratory of Marine Biosciences and Department of Neuroscience and McKnight Brain Institute, University of Florida, FL 32080, USA. The Whitney Laboratory, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA
| |
Collapse
|
19
|
Moroz LL. The genealogy of genealogy of neurons. Commun Integr Biol 2014; 7:e993269. [PMID: 26478767 PMCID: PMC4594457 DOI: 10.4161/19420889.2014.993269] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/02/2014] [Accepted: 11/05/2014] [Indexed: 11/29/2022] Open
Abstract
Two scenarios of neuronal evolution (monophyly and polyphyly) are discussed in the historical timeline starting from the 19th century. The recent genomic studies on Ctenophores re-initiated a broad interest in the hypotheses of independent origins of neurons. However, even earlier work on ctenophores suggested that their nervous systems are unique in many aspects of their organization and a possibility of the independent origin of neurons and synapses was introduced well before modern advances in genomic biology.
Collapse
Affiliation(s)
- Leonid L Moroz
- The Whitney Laboratory of Marine Biosciences and Department of Neuroscience and McKnight Brain Institute; University of Florida; Gainesville, FL USA
| |
Collapse
|
20
|
Ganot P, Zoccola D, Tambutté E, Voolstra CR, Aranda M, Allemand D, Tambutté S. Structural molecular components of septate junctions in cnidarians point to the origin of epithelial junctions in eukaryotes. Mol Biol Evol 2014; 32:44-62. [PMID: 25246700 DOI: 10.1093/molbev/msu265] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Septate junctions (SJs) insure barrier properties and control paracellular diffusion of solutes across epithelia in invertebrates. However, the origin and evolution of their molecular constituents in Metazoa have not been firmly established. Here, we investigated the genomes of early branching metazoan representatives to reconstruct the phylogeny of the molecular components of SJs. Although Claudins and SJ cytoplasmic adaptor components appeared successively throughout metazoan evolution, the structural components of SJs arose at the time of Placozoa/Cnidaria/Bilateria radiation. We also show that in the scleractinian coral Stylophora pistillata, the structural SJ component Neurexin IV colocalizes with the cortical actin network at the apical border of the cells, at the place of SJs. We propose a model for SJ components in Cnidaria. Moreover, our study reveals an unanticipated diversity of SJ structural component variants in cnidarians. This diversity correlates with gene-specific expression in calcifying and noncalcifying tissues, suggesting specific paracellular pathways across the cell layers of these diploblastic animals.
Collapse
Affiliation(s)
- Philippe Ganot
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| | - Didier Zoccola
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| | - Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| | - Christian R Voolstra
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manuel Aranda
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Denis Allemand
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| |
Collapse
|
21
|
The ctenophore genome and the evolutionary origins of neural systems. Nature 2014; 510:109-14. [PMID: 24847885 PMCID: PMC4337882 DOI: 10.1038/nature13400] [Citation(s) in RCA: 475] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 04/23/2014] [Indexed: 12/31/2022]
Abstract
The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores, or comb jellies, have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here, we present the draft genome of Pleurobrachia bachei, Pacific sea gooseberry, together with ten other ctenophore transcriptomes and show that they are remarkably distinct from other animal genomes in their content of neurogenic, immune and developmental genes. Our integrative analyses place Ctenophora as the earliest lineage within Metazoa. This hypothesis is supported by comparative analysis of multiple gene families, including the apparent absence of HOX genes, canonical microRNA machinery, and reduced immune complement in ctenophores. Although two distinct nervous systems are well-recognized in ctenophores, many bilaterian neuron-specific genes and genes of “classical” neurotransmitter pathways either are absent or, if present, are not expressed in neurons. Our metabolomic and physiological data are consistent with the hypothesis that ctenophore neural systems, and possibly muscle specification, evolved independently from those in other animals.
Collapse
|