1
|
Lawrie A, Han S, Sud A, Hosking F, Cezard T, Turner D, Clark C, Murray GI, Culligan DJ, Houlston RS, Vickers MA. Combined linkage and association analysis of classical Hodgkin lymphoma. Oncotarget 2018; 9:20377-20385. [PMID: 29755658 PMCID: PMC5945548 DOI: 10.18632/oncotarget.24872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/01/2018] [Indexed: 12/29/2022] Open
Abstract
The heritability of classical Hodgkin lymphoma (cHL) has yet to be fully deciphered. We report a family with five members diagnosed with nodular sclerosis cHL. Genetic analysis of the family provided evidence of linkage at chromosomes 2q35-37, 3p14-22 and 21q22, with logarithm of odds score >2. We excluded the possibility of common genetic variation influencing cHL risk at regions of linkage, by analysing GWAS data from 2,201 cHL cases and 12,460 controls. Whole exome sequencing of affected family members identified the shared missense mutations p.(Arg76Gln) in FAM107A and p.(Thr220Ala) in SLC26A6 at 3p21 as being predicted to impact on protein function. FAM107A expression was shown to be low or absent in lymphoblastoid cell lines and SLC26A6 expression lower in lymphoblastoid cell lines derived from p.(Thr220Ala) mutation carriers. Expression of FAM107A and SLC26A6 was low or absent in Hodgkin Reed-Sternberg (HRS) cell lines and in HRS cells in Hodgkin lymphoma tissue. No sequence variants were detected in KLHDC8B, a gene previously suggested as a cause of familial cHL linked to 3p21. Our findings provide evidence for candidate gene susceptibility to familial cHL.
Collapse
Affiliation(s)
- Alastair Lawrie
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Shuo Han
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- Current address: Clinical Trials Manager, MD Anderson Cancer Centre Investigational Cancer Therapeutics, Houston, TX, USA
| | - Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Fay Hosking
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Timothee Cezard
- The Genepool, University of Edinburgh, Edinburgh, United Kingdom
| | - David Turner
- Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Caroline Clark
- Department of Medical Genetics, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - Graeme I. Murray
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Dominic J. Culligan
- Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Mark A. Vickers
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Timms AE, Horwitz MS. KLHDC8B in Hodgkin lymphoma and possibly twinning. Commun Integr Biol 2011; 3:154-8. [PMID: 20585509 DOI: 10.4161/cib.3.2.10479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 10/29/2009] [Indexed: 11/19/2022] Open
Abstract
A key feature of Hodgkin lymphoma is that the malignant cells are binucleated, as a consequence of failed cytokinesis. We recently ascertained a family in which multiple cases of Hodgkin lymphoma had occurred among individuals who inherited a balanced chromosomal translocation. We cloned the translocation breakpoints and found that it disrupted a previously uncharacterized gene, KLHDC8B, encoding a Kelch family protein whose deficiency impairs cytokinesis and leads to binucleated cells. In other families we found a rare single nucleotide polymorphism affecting mitotic translation of KLHDC8B that was associated with and linked to Hodgkin lymphoma. Interestingly, the index family demonstrated an unusual frequency of twins, and there is a previously reported association between Hodgkin lymphoma and twins. Here we review the unusual genetic features of Hodgkin lymphoma, including gender concordance among siblings, and genetically test the hypothesis that KLHDC8B may participate in twinning by disrupting cytokinesis through impediment of polar body separation from oocytes.
Collapse
Affiliation(s)
- Andrew E Timms
- Department of Pathology; Institute for Stem Cell & Regenerative Medicine; University of Washington; Seattle, WA USA
| | | |
Collapse
|
3
|
Krem MM, Salipante SJ, Horwitz MS. Mutations in a gene encoding a midbody protein in binucleated Reed-Sternberg cells of Hodgkin lymphoma. Cell Cycle 2010; 9:670-5. [PMID: 20107318 DOI: 10.4161/cc.9.4.10780] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Classical Hodgkin lymphoma (cHL) is a cancer in which malignant "Reed-Sternberg" cells comprise just a fraction of the bulk of the tumor and are characteristically binucleated. We recently identified a novel gene, KLHDC8B, which appears responsible for some familial cases of cHL. KLHDC8B encodes a midbody kelch protein expressed during cytokinesis. Deficiency of KLHDC8B leads to binucleated cells, implicating its involvement in Reed-Sternberg cell formation. Interestingly, other cancer genes, such as BRCA1 and BRCA2, also encode proteins locating to the midbody during cytokinesis, even though their participation in other pathways has received greater attention. Midbody components may be an overlooked source of tumor suppressor genes.
Collapse
Affiliation(s)
- Maxwell M Krem
- Medical Oncology Program, Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
4
|
Mutations in a gene encoding a midbody kelch protein in familial and sporadic classical Hodgkin lymphoma lead to binucleated cells. Proc Natl Acad Sci U S A 2009; 106:14920-5. [PMID: 19706467 DOI: 10.1073/pnas.0904231106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Classical Hodgkin lymphoma (cHL) is a malignancy of B-cell origin in which the neoplastic cells, known as "Reed-Sternberg" (RS) cells, are characteristically binucleated. Here we describe a family where multiple individuals developing cHL have inherited a reciprocal translocation between chromosomes 2 and 3. The translocation disrupts KLHDC8B, an uncharacterized gene from a region (3p21.31) previously implicated in lymphoma and related malignancies, resulting in its loss of expression. We tested KLHDC8B as a candidate gene for cHL and found that a 5'-UTR polymorphism responsible for decreasing its translational expression is associated with cHL in probands from other families with cHL and segregates with disease in those pedigrees. In one of three informative sporadic cases of cHL, we detected loss of heterozygosity (LOH) for KLHDC8B in RS cells, but not reactive T lymphocytes, purified from a malignant lymph node. KLHDC8B encodes a protein predicted to contain seven kelch repeat domains. KLHDC8B is expressed during mitosis, where it localizes to the midbody structure connecting cells about to separate during cytokinesis, and it is degraded after cell division. Depletion of KLHDC8B through RNA interference leads to an increase in binucleated cells, implicating its reduced expression in the formation of cHL's signature RS cell.
Collapse
|
5
|
Leenman EE, Panzer-Grümayer RE, Fischer S, Leitch HA, Horsman DE, Lion T, Gadner H, Ambros PF, Lestou VS. Rapid determination of Epstein-Barr virus latent or lytic infection in single human cells using in situ hybridization. Mod Pathol 2004; 17:1564-72. [PMID: 15545957 DOI: 10.1038/modpathol.3800228] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epstein-Barr (EBV) virus is associated with malignancies such as lymphoma and carcinoma. Infection of cells with EBV may result in either lytic infection with production of viral particles, characterized by the presence of linear DNA forms, or latent infection, characterized by either episomal or integrated DNA forms. To examine whether the different lytic and latent EBV DNA forms can reliably be distinguished in single human cells, in situ hybridization was performed in EBV-positive cell lines. Immunocytochemistry and Southern blot analysis were performed supplementary to in situ hybridization. In latent infection, three in situ hybridization patterns were observed: large-disperse (episomal), small-punctate (integrated) and combined (both), signal types 1, 2 and 3 respectively. These were associated with expression of latent membrane protein 1, but not with Z fragment of Epstein-Barr replication activator or viral capsid antigen. In lytic infection, three additional in situ hybridization patterns were observed: nuclear membrane associated, bubble (filling up the nucleus) and spillover (covering the lysed cells) signals types 4, 5 and 6 respectively. Signal types 4 and 5 were associated with expression of latent membrane protein 1 and Z fragment of Epstein-Barr replication activator but not viral capsid antigen, whereas type 6 was associated with expression of viral capsid antigen only. Southern blot analysis confirmed these results; however, low copy numbers of integrated virus were often missed by Southern blot, confirming that in situ hybridization is more sensitive in determining the presence of all types of EBV DNA. In situ hybridization may prove useful in rapidly screening large series of tissue microarrays and other clinical specimens for the presence of lytic or latent EBV.
Collapse
Affiliation(s)
- Elena E Leenman
- Research Institute of Radiology and Roentgenology, St Petersburg, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|