1
|
Zhang D, Li F, Sun C, Chen C, Qin H, Wu X, Jiang M, Zhou K, Yao C, Hu Y. Inhibition of PGAM5 hyperactivation reduces neuronal apoptosis in PC12 cells and experimental vascular dementia rats. Arch Gerontol Geriatr 2025; 131:105732. [PMID: 39754994 DOI: 10.1016/j.archger.2024.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
PURPOSE The incidence of vascular dementia (VaD), as one of the main types of dementia in old age, has been increasing year by year, and exploring its pathogenesis and seeking practical and effective treatment methods are undoubtedly the key to solving this problem. Phosphoglycerate translocase 5 (PGAM5), as a crossroads of multiple signaling pathways, can lead to mitochondrial fission, which in turn triggers the onset and development of necroptosis, and thus PGAM5 may be a novel target for the prevention and treatment of vascular dementia. METHODS Animal model of vascular dementia was established by Two-vessel occlusion (2-VO) method, and cellular model of vascular dementia was established by oxygen glucose deprivation (OGD) method. Neuronal damage was detected in vivo and in vitro in different groups using different concentrations of the PGAM5-specific inhibitor LFHP-1c, and necroptosis and mitochondrial dynamics-related factors were determined. RESULTS In vivo experiments, 10 mg/kg-1 and 20 mg/kg-1 LFHP-1c improved cognitive deficits, reduced neuronal edema and vacuoles, increased the number of nissl bodies, and it could modulate the expression of Caspase family and Bcl-2 family related proteins and mRNAs and ameliorate neuronal damage. Simultaneously, in vitro experiments, 5 μM, 10 μM and 20 μM LFHP-1c increased the activity and migration number of model cells, reduced the number of apoptotic cells, ameliorated the excessive accumulation of intracellular reactive oxygen species, inhibited the over-activation of caspase-family and Bcl-2-family related proteins and mRNAs, and improved the mitochondrial dynamics of the fission and fusion states. Moreover, in vivo and in vitro experiments have shown that LFHP-1c can also upregulate the expression level of BDNF, inhibit the expression content of TNF-α and ROS, regulate the expression of proteins and mRNAs related to the RIPK1/RIPK3/MLKL pathway and mitochondrial dynamics, and reduce neuronal apoptosis. CONCLUSIONS Inhibition of PGAM5 expression level can reduce neuronal damage caused by chronic cerebral ischemia and hypoxia, which mainly prevents necroptosis by targeting the RIPK1/RIPK3/MLKL signaling pathway and regulates the downstream mitochondrial dynamics homeostasis system to prevent excessive mitochondrial fission, thus improving cognition and exerting cerebroprotective effects.
Collapse
Affiliation(s)
- Ding Zhang
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China; Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Fangcun Li
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China; Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Chunying Sun
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Canrong Chen
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Hongling Qin
- Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Xuzhou Wu
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Minghe Jiang
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Keqing Zhou
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Chun Yao
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China.
| | - Yueqiang Hu
- Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China.
| |
Collapse
|
2
|
Hosseini Z, Beheshti F, Hosseini Kakhki FS, Hosseini M, Anaeigoudari A. Sodium nitroprusside restored lipopolysaccharide-induced learning and memory impairment in male rats via attenuating inflammation and oxidative stress. Physiol Rep 2024; 12:e16053. [PMID: 38806440 PMCID: PMC11133007 DOI: 10.14814/phy2.16053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Inflammation and oxidative stress upset memory. We explored influence of sodium nitroprusside (SNP) on memory deficits resulted from lipopolysaccharide (LPS).Groups include control, LPS, LPS + SNP 1 mg/kg, LPS + SNP 2 mg/kg, and LPS + SNP 3 mg/kg. Morris water maze and passive avoidance tests and biochemical measurements were carried out.In Morris water maze, LPS prolonged time and distance for finding the platform. In probe trial, it diminished time spent and traveled distance in the target zone. Injection of 2 and 3 mg/kg of SNP overturned the effect of LPS. In passive avoidance task, LPS postponed entrance into darkroom and reduced time spent in light room and incremented time spent in darkroom in 3, 24, and 72 h after electrical shock. All three doses of SNP restored the effects of LPS. Biochemical experiments confirmed that LPS elevated interleukin-6 and malondialdehyde concentration and declined total thiol content and superoxide dismutase and catalase activity in the hippocampus and cortex tissues. SNP particularly at a 3 mg/kg dose ameliorated LPS effects on these parameters.SNP attenuated memory disabilities resulting from LPS through modifying inflammation and boosting antioxidant defense.
Collapse
Affiliation(s)
- Zeinab Hosseini
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Farimah Beheshti
- Neuroscience Research CenterTorbat Heydariyeh University of Medical SciencesTorbat HeydariyehIran
- Department of Physiology, School of Paramedical SciencesTorbat Heydariyeh University of Medical SciencesTorbat HeydariyehIran
| | | | - Mahmoud Hosseini
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| | - Akbar Anaeigoudari
- Department of Physiology, School of MedicineJiroft University of Medical SciencesJiroftIran
| |
Collapse
|
3
|
Assaran AH, Akbarian M, Amirahmadi S, Salmani H, Shirzad S, Hosseini M, Beheshti F, Rajabian A. Ellagic Acid Prevents Oxidative Stress and Memory Deficits in a Rat Model of Scopolamine-induced Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2022; 22:214-227. [PMID: 36305148 DOI: 10.2174/1871524923666221027100949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ellagic acid (EA) has various pharmacological effects such as antiinflammatory and anti-oxidant effects. OBJECTIVE This study aimed to investigate the effects of EA on learning and memory dysfunction as well as oxidative stress in scopolamine-induced amnesic rats. METHODS The studied rats were treated according to the following protocol: Control (group 1) and scopolamine (group 2) groups received saline (intraperitoneal injection (i.p.)) while the treatment groups (group 3-5) were given EA (25, 50, and 100 mg/kg, i.p.) for 3 weeks. Thereafter, their behavioral performance was evaluated using Morris water maze (MWM) and passive avoidance (PA) tasks. Notably, scopolamine was injected (into groups II-V at a dose of 2 mg/kg, i.p.) before conducting the tasks. Finally, the oxidative stress indicators in the brain were measured. RESULTS EA reduced the escape latencies and distances during the learning phase of MWM. The results of probe trials also indicated that EA improved memory retrieval and helped animals recall the platform. Moreover, EA increased delay and light time, while decreasing the frequency of entries to the dark area of PA. In the EA-treated groups, the level of malondialdehyde was decreased, while the levels of total thiol groups, superoxide dismutase, and catalase were increased. CONCLUSION EA prevented the negative effects of scopolamine on learning and memory which is probably mediated via modulating oxidative stress. Hence, EA could be considered as a potential alternative therapy for dementia.
Collapse
Affiliation(s)
- Amir Hossein Assaran
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsan Akbarian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sabiheh Amirahmadi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Shima Shirzad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Marefati N, Mokhtari-Zaer A, Beheshti F, Karimi S, Mahdian Z, Khodamoradi M, Hosseini M. The effects of soy on scopolamine-induced spatial learning and memory impairments are comparable to the effects of estradiol. Horm Mol Biol Clin Investig 2019; 39:/j/hmbci.2019.39.issue-3/hmbci-2018-0084/hmbci-2018-0084.xml. [PMID: 31483756 DOI: 10.1515/hmbci-2018-0084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/03/2019] [Indexed: 11/15/2022]
Abstract
Background Modulatory effects of soy extract and estradiol on the central nervous system (CNS) have been reported. The effect of soy on scopolamine-induced spatial learning and memory in comparison to the effect of estradiol was investigated. Materials and methods Ovariectomized rats were divided into the following groups: (1) control, (2) scopolamine (Sco), (3) scopolamine-soy 20 (Sco-S 20), (4) scopolamine-soy 60 (Sco-S 60), (5) scopolamine-estradiol 20 (Sco-E 20) and (6) scopolamine-estradiol 60 (Sco-E 60). Soy extract, estradiol and vehicle were administered daily for 6 weeks before training in the Morris water maze (MWM) test. Scopolamine (2 mg/kg) was injected 30 min before training in the MWM test. Results In the MWM, the escape latency and traveled path to find the platform in the Sco group was prolonged compared to the control group (p < 0.001). Treatment by higher doses of soy improved performances of the rats in the MWM (p < 0.05 - p < 0.001). However, treatment with both doses of estradiol (20 and 60 μg/kg) resulted in a statistically significant improvement in the MWM (p < 0.01 - p < 0.001). Cortical, hippocampal and serum levels of malondialdehyde (MDA), as an index of lipid peroxidation, were increased which was prevented by soy extract and estradiol (p < 0.001). Cortical, hippocampal as well as serum levels of the total thiol, superoxide dismutase (SOD) and catalase (CAT) in Sco group were lower than the control group (p < 0.001) while they were enhanced when the animals were treated by soy extract and estradiol (p < 0.01 - p < 0.001). Conclusions It was observed that both soy extract and estradiol prevented learning and memory impairments induced by scopolamine in ovariectomized rats. These effects can be attributed to their protective effects on oxidative damage of the brain tissue.
Collapse
Affiliation(s)
- Narges Marefati
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mokhtari-Zaer
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Department of Basic Science and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Sareh Karimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Mahdian
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Khodamoradi
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center and Department of Physiology, Faculty of Medicine, Azadi Square, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran, Phone: +98-51-38828565, Fax: +98-51-38828564
| |
Collapse
|
5
|
Jahangiri Z, Gholamnezhad Z, Hosseini M. The effects of exercise on hippocampal inflammatory cytokine levels, brain oxidative stress markers and memory impairments induced by lipopolysaccharide in rats. Metab Brain Dis 2019; 34:1157-1169. [PMID: 30937699 DOI: 10.1007/s11011-019-00410-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/25/2019] [Indexed: 02/02/2023]
Abstract
The exercise effects on behavioral tests, hippocampal and cortical oxidative stress, and hippocampal inflammatory cytokines of lipopolysaccharide (LPS) administered rats were investigated. The rats were divided into four groups (N = 8): (1) control; (2) moderate training (MT, 15 m/min, 30 min/day, 9 weeks); (3) LPS (1 mg/kg LPS) and (4) LPS + MT (1 mg/kg LPS; 15 m/min, 30 min/day, 9 weeks). LPS was injected 2 h before the behavioral experiments during the last week of training. Finally, the rats' brain were removed for biochemical assessments. LPS increased escape latency and traveled distance to reach the platform in Morris water maze (MWM) test (P < 0.05-P < 0.001). In the passive avoidance (PA) test, LPS decreased the latency to enter the dark compartment and the time spent in the light compartment and increased the time spent in the dark compartment (P < 0.01-P < 0.001), while MT improved the rats performances in MWM and PA tests (P < 0.01-P < 0.001). Additionally, LPS increased tumor necrosis factor α (TNF-α), interleukin 1 beta (IL-1β) and C-reactive protein levels in the hippocampal tissues, malondialdehyde (MDA) and nitric oxide metabolite in hippocampal and cortical tissues, and decreased thiol contents and catalase (CAT) and superoxide dismutase (SOD) activity in hippocampal and cortical tissues compared to the control group (P < 0.01-P < 0.001); while moderate training decreased the levels of TNF-α, IL-1β and MDA; increased thiol contents, and SOD and CAT activity in the LPS + MT compared to the LPS group (P < 0.001). These results indicated that moderate training improved LPS-induced learning and memory impairments by attenuating the hippocampal cytokine levels and brain oxidative damage.
Collapse
Affiliation(s)
- Zahra Jahangiri
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR, 9177948564, Iran
| | - Zahra Gholamnezhad
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR, 9177948564, Iran.
| | - Mahmoud Hosseini
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Hosseini M, Beheshti F, Sohrabi F, Vafaee F, Shafei MN, Reza Sadeghnia H. Feeding Vitamin C during Neonatal and Juvenile Growth Improves Learning and Memory of Rats. J Diet Suppl 2018; 15:715-727. [PMID: 29172882 DOI: 10.1080/19390211.2017.1386749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We investigated the effects of feeding vitamin C (Vit C) during neonatal and juvenile growth on learning and memory of rats. Rats after delivery were randomly divided into four groups and treated. Group 1, control group, received normal drinking water. Groups 2-4 received Vit C 10, 100, and 500 mg/kg, respectively, from the first day. After 8 weeks, 10 male offspring of each group were randomly selected and tested in the Morris water maze (MWM) and passive avoidance (PA) tests. Finally, the brains were removed for biochemical measurement. In MWM, 10-500 mg/kg Vit C reduced the latency and traveled distance and increased time spent in the target quadrant. In PA, 10 and 100 mg/kg of Vit C increased the latency; 10-500 mg/kg of Vit C decreased the malondialdehyde (MDA) in the brain tissues and increased thiol and catalase (CAT) activity compared to the control group. We showed that feeding rats Vit C during neonatal and juvenile growth has positive effects on learning and memory.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- a Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
- b Neurogenic Inflammation Research Center , Mashhad University of Medical Sciences , Iran
| | - Farimah Beheshti
- a Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Farzaneh Sohrabi
- a Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Farzaneh Vafaee
- b Neurogenic Inflammation Research Center , Mashhad University of Medical Sciences , Iran
| | - Mohammad Naser Shafei
- b Neurogenic Inflammation Research Center , Mashhad University of Medical Sciences , Iran
| | - Hamid Reza Sadeghnia
- c Pharmacological Research Center of Medicinal Plants , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
7
|
Hosseini M, Anaeigoudari A, Beheshti F, Soukhtanloo M, Nosratabadi R. Protective effect against brain tissues oxidative damage as a possible mechanism for beneficial effects of L-arginine on lipopolysaccharide induced memory impairment in rats. Drug Chem Toxicol 2018; 41:175-181. [PMID: 28640652 DOI: 10.1080/01480545.2017.1336173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 05/24/2017] [Indexed: 01/08/2023]
Abstract
L-Arginine (LA) and nitric oxide (NO) have been suggested to have some effects on learning, memory, brain tissues oxidative damage, and neuroinflammation. In this study, protective effect against brain tissues oxidative damage as a possible mechanism for beneficial effects of LA on lipopolysaccharide (LPS) induced memory impairment was investigated. The rats were grouped into and treated by (1) control (saline), (2) LPS (1 mg/kg, IP), (3) LA (200 mg/kg) - LPS (4) LA. In passive avoidance (PA) test, LPS administration shortened the latency to enter the dark compartment in LPS group compared to control (p < .001) which was accompanied with a high level of malondialdehyde (MDA) and NO metabolite concentrations in the hippocampal tissues (p < .001and p < .05, respectively). Pretreatment with LA prolonged the latency in LA-LPS group compared with LPS group (p < .01-.001) and re-stored MDA and NO metabolites in the hippocampal tissues (p < .05). LPS also reduced superoxide dismutase (SOD) and catalase (CAT) activities and thiol content in the hippocampal tissues in LPS group compared to control (p < .05 and p < .001, respectively) which improved by LA when it was administered before LPS in LA-LPS group (p < .05 and p < .001). Finally, the serum TNFα level of LPS group was higher than the control (p < .01) while, in LA-LPS group it was lower than LPS group (p < .01). It seems that the beneficial effects of LA on memory impairment of LPS-treated rats may be due to its protective effects against brain tissues oxidative damage.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- a Division of Neurocognitive Sciences , Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Akbar Anaeigoudari
- b Department of Physiology, School of Medicine , Jiroft University of medical Sciences , Jiroft , Iran
| | - Farimah Beheshti
- c Neurogenic Inflammation Research Center and Department of Physiology, School of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Soukhtanloo
- d Department of Biochemistry, School of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Reza Nosratabadi
- e Immunology of Infectious Diseases Research Center , Rafsanjan University of Medical Sciences , Rafsanjan , Iran
| |
Collapse
|
8
|
Ebrahimzadeh-Bideskan AR, Mansouri S, Ataei ML, Jahanshahi M, Hosseini M. The effects of soy and tamoxifen on apoptosis in the hippocampus and dentate gyrus in a pentylenetetrazole-induced seizure model of ovariectomized rats. Anat Sci Int 2018; 93:218-230. [PMID: 28283880 DOI: 10.1007/s12565-017-0398-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/02/2017] [Indexed: 12/13/2022]
Abstract
The effects of tamoxifen and soy on apoptosis of the hippocampus and dentate gyrus of ovariectomized rats after repeated seizures were investigated. Female rats were divided into: (1) Control, (2) Sham, (3) Sham-Tamoxifen (Sham-T), (4) Ovariectomized (OVX), (5) OVX-Tamoxifen (OVX-T), (6)OVX-Soy(OVX-S) and (7) OVX-S-T. The animals in the OVX-S, OVX-T and OVX-S-T groups received soy extract (60 mg/kg; i.p.), tamoxifen (10 mg/kg) or both for 2 weeks before induction of seizures. The animals in these groups additionally received the mentioned treatments before each injection of pentylenetetrazole (PTZ; 40 mg/kg) for 6 days. The animals in the Sham and OVX groups received a vehicle of tamoxifen and soy. A significant decrease in the seizure score and TUNEL-positive neurons was seen in the OVX group compared to the Sham (P < 0.001). The animals in both the OVX-T and OVX-S groups had a significantly higher seizure score as well as number of TUNEL-positive neurons compared to the OVX group (P < 0.01-P < 0.001). Co-treatment of the OVX rats by the extract and tamoxifen decreased the seizure score and number of TUNEL-positive neurons compared to OVX-S (P < 0.001). Treatment of the OVX rats by either soy or tamoxifen increased the seizure score as well as the number of TUNEL-positive neurons in the hippocampal formation. Co-administration of tamoxifen and soy extract inhibited the effects of the soy extract and tamoxifen when they were administered alone. It might be suggested that both soy and tamoxifen have agonistic effects on estrogen receptors by changing the seizure severity.
Collapse
Affiliation(s)
- Ali Reza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaieh Mansouri
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mariam Lale Ataei
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Jahanshahi
- Department of Anatomy, School of Medicine, Golestan University of Medical Sciences, Grogan, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran.
| |
Collapse
|
9
|
Beheshti F, Karimi S, Vafaee F, Shafei MN, Sadeghnia HR, Hadjzadeh MAR, Hosseini M. The effects of vitamin C on hypothyroidism-associated learning and memory impairment in juvenile rats. Metab Brain Dis 2017; 32:703-715. [PMID: 28127705 DOI: 10.1007/s11011-017-9954-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/18/2017] [Indexed: 01/06/2023]
Abstract
In this study the effects of Vitamin C (Vit C) on hypothyroidism-associated learning and memory impairment in juvenile rats was investigated. The pregnant rats were kept in separate cages. After delivery, they were randomly divided into six groups and treated: (1) Control; (2) Propylthiouracil (PTU) which 0.005% PTU in their drinking; (3-5) Propylthiouracil- Vit C groups; besides PTU, dams in these groups received 10, 100 and 500 mg/kg Vit C respectively, (6) one group as a positive control; the intact rats received an effective dose, 100 mg/kg Vit. C. After delivery, the pups were continued to receive the experimental treatments in their drinking water up to 56th day of their life. Ten male offspring of each group were randomly selected and tested in the Morris water maze (MWM) and passive avoidance (PA) which were started at 63th day (one week after stopping of the treatments). Brains were then removed for biochemical measurements. PTU increased time latency and traveled distance during 5 days in MWM while, reduced the spent time in target quadrant in MWM and step-trough latency (STL) in PA. PTU decreased thiol content, superoxide dismutase (SOD) and catalase (CAT) activities in the brain while, increased molondialdehyde (MDA). In MWM test, 10, 100 and 500 mg/kg Vit C reduced time latency and traveled distance without affecting the traveling speed during 5 days. All doses of Vit C increased the spent time in target quadrant in probe trail of MWM and also increased STL in PA test. Vit C increased thiol, SOD and CAT in the brain tissues while, reduced MDA. Results of present study confirmed the beneficial effects of Vit C on learning and memory. It also demonstrated that Vit C has protective effects on hypothyroidism-associated learning and memory impairment in juvenile rats which might be elucidated by the antioxidative effects.
Collapse
Affiliation(s)
- Farimah Beheshti
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sareh Karimi
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad, University of Medical Sciences, Mashhad, Iran
| | - Mosa Al Reza Hadjzadeh
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Beheshti F, Hosseini M, Shafei MN, Soukhtanloo M, Ghasemi S, Vafaee F, Zarepoor L. The effects of Nigella sativa extract on hypothyroidism-associated learning and memory impairment during neonatal and juvenile growth in rats. Nutr Neurosci 2017; 20:49-59. [PMID: 25087773 DOI: 10.1179/1476830514y.0000000144] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES It has been shown that hypothyroidism-induced oxidative damage in brain tissue is involved in its adverse effects on learning and memory. Nigella sativa (N. sativa) has been suggested to have antioxidant and neuroprotective effects. The objective of this study was to investigate the effects of hydroalcoholic extract of N. sativa on hypothyroidism-associated learning and memory impairment during neonatal and juvenile growth in rats. METHODS Thirty pregnant rats were kept in separate cages. After delivery, the mothers and their offspring were randomly divided into six groups including: (1) control, (2) PTU (propylthiouracil), (3) PTU-NS 100, (4) PTU-NS 200, (5) PTU-NS 400, and (6) PTU-Vit C (vitamin C). All dams except the control group received 0.005% PTU in their drinking water during lactation. Besides PTU, dams in groups 3, 4, 5, and 6 received 100, 200, and 400 mg/kg N. sativa extract, or 100 mg/kg Vit C, respectively. After lactation period, pups continued to receive same experimental treatment for the first 8 weeks of their life. Then, 10 male offspring of each group were randomly selected and assessed for the learning and memory abilities by using Morris water maze (MWM) and passive avoidance (PA) tests. Blood samples were collected for thyroxine assessment, animals were euthanized, and the brain tissues were removed and analyzed for total thiol groups and malondialdehyde (MDA) concentrations. RESULTS PTU exposure significantly increased the time latency in MWM test, while reduced the time spent in target quadrant, and decreased the latency for entering the dark compartment in PA test. These effects were associated with significant reduction in serum thyroxine levels and brain levels of thiol groups, and significant elevation in hippocampal MDA. Administration of 400 mg/kg N. sativa extract and 100 mg/kg Vit C reduced the time latency, while increased the time spent in target quadrant compared to the PTU group in MWM test. Treatment by 100-400 mg/kg of N. sativa extract and also Vit C significantly increased the time latency for entering the dark compartment in PA test. The serum thyroxine concentrations of the animals treated by all doses of the N. sativa extract as well as by Vit C were higher than that of the PTU group. Two hundred and four hundred milligrams/kilogram of NS extract and 100 mg/kg Vit C decreased the MDA concentration in hippocampal tissues, while increased thiol contents compared to the PTU group. DISCUSSION The results of this study demonstrate that the hydroalcoholic extract of N. sativa have protective effects on hypothyroidism-associated learning and memory impairment during neonatal and juvenile growth in rats. The effects were comparable to Vit C and might be due to the protective effects of N. sativa extract against brain tissues' oxidative damage.
Collapse
Affiliation(s)
- Farimah Beheshti
- a Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mahmoud Hosseini
- a Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
- b Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Naser Shafei
- c Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Soukhtanloo
- d Department of Biochemistry , School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Simagol Ghasemi
- b Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Farzaneh Vafaee
- b Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Leila Zarepoor
- e Human Health and Nutritional Sciences Department , College of Biological Sciences, University of Guelph , Canada
| |
Collapse
|
11
|
Beheshti F, Hosseini M, Vafaee F, Shafei MN, Soukhtanloo M. Feeding of Nigella sativa during neonatal and juvenile growth improves learning and memory of rats. J Tradit Complement Med 2016; 6:146-152. [PMID: 27114937 PMCID: PMC4833462 DOI: 10.1016/j.jtcme.2014.11.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/28/2014] [Accepted: 10/28/2014] [Indexed: 01/11/2023] Open
Abstract
The positive roles of antioxidants on brain development and learning and memory have been suggested. Nigella sativa (NS) has been suggested to have antioxidant and neuroprotective effects. This study was done to investigate the effects of feeding by the hydro-alcoholic extract of NS during neonatal and juvenile growth on learning and memory of rats. The pregnant rats were kept in separate cages. After delivery, they were randomly divided into four Groups including: (1) control; (2) NS 100 mg/kg (NS 100); (3) NS 200 mg/kg (NS 200); and (4) NS 400 mg/kg (NS 400). Rats in the control group (Group 1) received normal drinking water, whereas Groups 2, 3, and 4 received the same drinking water supplemented with the hydro-alcoholic extract of NS (100 mg/kg, 200 mg/kg, and 400 mg/kg, respectively) from the 1st day after birth through the first 8 weeks of life. After 8 weeks, 10 male offspring from each group were randomly selected and tested in the Morris water maze (MWM) and passive avoidance (PA) test. Finally, the brains were removed and total thiol groups and malondialdehyde (MDA) concentrations were determined. In the MWM, treatment by 400 mg/kg extract reduced both the time latency and the distance traveled to reach the platform compared to the control group (p < 0.05-p < 0.01). Both 200 mg/kg and 400 mg/kg of the extract increased the time spent in the target quadrant (p < 0.05-p < 0.01). In the PA test, the treatment of the animals by 200 mg/kg and 400 mg/kg of NS extract significantly increased the time latency for entering the dark compartment (p < 0.05-p < 0.001). Pretreatment of the animals with 400 mg/kg of NS extract decreased the MDA concentration in hippocampal tissues whereas it increased the thiol content compared to the control group (p < 0.001). These results allow us to propose that feeding of the rats by the hydro-alcoholic extract of NS during neonatal and juvenile growth has positive effects on learning and memory. The effects might be due to the antioxidant effects.
Collapse
Affiliation(s)
- Farimah Beheshti
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran
| | - Farzaneh Vafaee
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran
| | - Mohammad Naser Shafei
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran
| |
Collapse
|
12
|
Mohammadipour A, Hosseini M, Fazel A, Haghir H, Rafatpanah H, Pourganji M, Bideskan AE. The effects of exposure to titanium dioxide nanoparticles during lactation period on learning and memory of rat offspring. Toxicol Ind Health 2016; 32:221-228. [PMID: 24081627 DOI: 10.1177/0748233713498440] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Nanoscale titanium dioxide (TiO2), which is massively produced and widely used in living environment, seems to have a potential risk on human health. The central nervous system (CNS) is the potential susceptible target of nanoparticles, but the studies on this aspect are limited so far. The aim of this study was to evaluate the effects of exposure to TiO2 nanoparticles during lactation period on learning and memory of offspring. Lactating Wistar rats were exposed to TiO2 nanoparticles (100 mg/kg; gavage) for 21 days. The Morris water maze and passive avoidance tests showed that the exposure to TiO2 nanoparticles could significantly impair the memory and learning in the offspring. Therefore, the application of TiO2 nanoparticles and the effects of their exposure, especially during developmental period on human brain should be cautious.
Collapse
Affiliation(s)
- Abbas Mohammadipour
- Department of Anatomy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Mahmoud Hosseini
- Department of Physiology, Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Alireza Fazel
- Department of Anatomy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Hossein Haghir
- Department of Anatomy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Buali Institute, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Masoume Pourganji
- Applied Physiology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Alireza Ebrahimzadeh Bideskan
- Department of Anatomy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| |
Collapse
|
13
|
Karimi S, Hejazian SH, Alikhani V, Hosseini M. The effects of tamoxifen on spatial and nonspatial learning and memory impairments induced by scopolamine and the brain tissues oxidative damage in ovariectomized rats. Adv Biomed Res 2015; 4:196. [PMID: 26601084 PMCID: PMC4620616 DOI: 10.4103/2277-9175.166132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 06/06/2015] [Indexed: 12/16/2022] Open
Abstract
Background: Modulatory effects of tamoxifen (TAM) on the central nervous system have been reported. The effects of TAM on spatial and nonspatial learning and memory impairments induced by scopolamine and the brain tissues oxidative damage was investigated. Materials and Methods: The ovariectomized (OVX) rats were divided and treated: (1) Control (saline), (2) scopolamine (Sco; 2 mg/kg, 30 min before behavioral tests), (3–5) Sco-TAM 1, Sco-TAM 3 and Sco-TAM 10. TAM (1, 3 or 10 mg/kg; i.p.) was daily administered for 6 weeks. Results: In Morris water maze (MWM), both the latency and traveled distance in the Sco-group were higher than control (P < 0.001) while, in the Sco-TAM 10 group it was lower than Sco-group (P < 0.05). In passive avoidance test, the latency to enter the dark compartment was higher than control (P < 0.05 – P < 0.01). Pretreatment by all three doses of TAM prolonged the latency to enter the dark compartment compared to Sco-group (P < 0.05 – P < 0.001). The brain tissues malondialdehyde (MDA) concentration was increased while, superoxide dismutase activity (SOD) decreased in the Sco-group compared to control (P < 0.05 – P < 0.01). Pretreatment by TAM lowered the concentration of MDA while, increased SOD compared to Sco-group (P < 0.05 – P < 0.001). Conclusions: It is suggested that TAM prevents spatial and nonspatial learning and memory impairments induced by scopolamine in OVX rats. The possible mechanism(s) might at least in part be due to protection against the brain tissues oxidative damage.
Collapse
Affiliation(s)
- Sareh Karimi
- Department of Physiology, Shahid Sadoghi University of Medical Sciences, Yazd, Iran
| | | | - Vajiheh Alikhani
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Ebrahimzadeh Bideskan AR, Lale Ataei M, Mansouri S, Hosseini M. The effects of tamoxifen and soy on dark neuron production in hippocampal formation after pentylenetetrazole-induced repeated seizures in rats. PATHOPHYSIOLOGY 2015; 22:125-135. [DOI: 10.1016/j.pathophys.2015.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 04/10/2015] [Accepted: 04/30/2015] [Indexed: 11/25/2022] Open
|
15
|
Zabihi H, Hosseini M, Pourganji M, Oryan S, Soukhtanloo M, Niazmand S. The effects of tamoxifen on learning, memory and brain tissues oxidative damage in ovariectomized and naïve female rats. Adv Biomed Res 2014; 3:219. [PMID: 25371876 PMCID: PMC4219215 DOI: 10.4103/2277-9175.143297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/15/2013] [Indexed: 12/18/2022] Open
Abstract
Background: Regarding the modulatory effects of tamoxifen (TAM) on the actions of estrogen in the present study, the effects of TAM on learning, memory and brain tissues oxidative damage in ovariectomized (OVX) and naοve female rats was investigated. Materials and Methods: The animals were divided into: (1) Sham, (2) OVX, (3) Sham-tamoxifen (Sham-TAM) and (4) ovariectomized-tamoxifen (OVX-TAM). The animals of the Sham-TAM and OVX-TAM groups were treated by TAM (1 mg/kg; 4 weeks). Results: In Morris water maze, the escape latency in the OVX group was higher than in the Sham group (P < 0.01). The time latency in the animals of OVX-TAM group was lower than that of OVX group (P < 0.01); however, there were no significant differences between the Sham-TAM and Sham groups. In the probe trial, the time spent in target quadrant (Q1) by the animals of OVX group was lower than that of Sham group (P < 0.01). Interestingly, the animals of OVX-TAM group spent more times in target quadrant (Q1) compared with OVX group (P < 0.01). In passive avoidance test, the animals of OVX group had lower latencies to enter the dark compartment compared with the Sham group (P < 0.05). The time latency to enter the dark compartment by animals of OVX-TAM group was higher than in OVX group (P < 0.01). In OVX-TAM group, the total thiol concentration was significantly higher (P < 0.05) and malondialdehyde concentration was lower (P < 0.01) than OVX group. Conclusions: These results allow us to propose that TAM enhances learning and memory of OVX rats. The possible mechanism may be due to the protective effects against brain tissues oxidative damage.
Collapse
Affiliation(s)
- Hoda Zabihi
- Department of Biology, Faculty of Science, Tarbiat Moallem University of Tehran, Tehran, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoume Pourganji
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrbanoo Oryan
- Department of Biology, Faculty of Science, Tarbiat Moallem University of Tehran, Tehran, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Niazmand
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Pourganji M, Hosseini M, Soukhtanloo M, Zabihi H, Hadjzadeh MAR. Protective role of endogenous ovarian hormones against learning and memory impairments and brain tissues oxidative damage induced by lipopolysaccharide. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e13954. [PMID: 24829769 PMCID: PMC4005431 DOI: 10.5812/ircmj.13954] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/05/2013] [Accepted: 12/16/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND The contribution of neuroinflammation in Alzheimer's disease (AD) has been widely reported. The effects of female gonadal hormones in both neuroinflammation and brain cognitive functions have also been well considered. OBJECTIVES In the present study, the possible protective role for endogenous ovarian hormones against learning and memory impairment as well as brain tissues oxidative damage induced by lipopolysachride (LPS) was investigated in rats. MATERIALS AND METHODS THE RATS WERE DIVIDED INTO FOUR GROUPS: Sham-LPS, Ovariectomized (OVX)-LPS, Sham, and OVX. The animals of sham group were in proestrous phase in which the serum concentration of estradiol is high. The Sham-LPS and OVX-LPS groups were treated with LPS (250 µg/kg) before acquisition. The animals were examined using passive avoidance (PA) test. The brains were then removed and malondialdehyde (MDA) and total thiol groups concentrations were measured. RESULTS The time latency to enter the dark compartment by OVX-LPS group was shorter than that of OVX at both first and 24th hours after the shock (P < 0.05 - P < 0.001). In Sham-LPS and OVX-LPS groups, total thiol concentration in hippocampal and cortical tissues were significantly lower while MDA concentrations were higher than that of Sham and OVX groups (P < 0.05 - P < 0.001). ). The hippocampal MDA concentration in OVX-LPS group was higher than Sham- LPS group (P < 0.01). CONCLUSIONS Brain tissue oxidative damage contributed in deleterious effects of LPS on learning and memory. Some protective effects for the endogenous ovarian hormones against damaging effects of LPS on learning and memory function, as well as brain tissues oxidative damage could be postulated; however, it needs more investigation.
Collapse
Affiliation(s)
- Masoume Pourganji
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Hoda Zabihi
- Department of Biology, Faculty of Biological Sciences, Kharazmi University of Tehran, Tehran, IR Iran
| | - Mosa Al-reza Hadjzadeh
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| |
Collapse
|
17
|
Mohammadipour A, Fazel A, Haghir H, Motejaded F, Rafatpanah H, Zabihi H, Hosseini M, Bideskan AE. Maternal exposure to titanium dioxide nanoparticles during pregnancy; impaired memory and decreased hippocampal cell proliferation in rat offspring. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:617-625. [PMID: 24577229 DOI: 10.1016/j.etap.2014.01.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 05/24/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are massively produced in the environment, and because of their wide usage, they are a potential risk of damage to human health. TiO2-NPs are often used as additives for paints, papers, and foods. The central nervous system (CNS), including hippocampal regions, is potentially susceptible targets for TiO2-NPs. This study aimed to determine the effects of exposure to TiO2-NPs during pregnancy on hippocampal cell proliferation and the learning and memory of offspring. Pregnant Wistar rats received intragastric TiO2-NPs (100 mg/kg body weight) daily from gestational day (GD) 2 to (GD) 21. Animals in the control group received the same volume of distilled water via gavage. After delivery, the one-day-old neonates were deeply anesthetized and weighed. They were then killed and the brains of each group were collected. Sections of the brains from the rat offspring were stained using Ki-67 immunolabeling and the immunohistochemistry technique. Some of the male offspring (n=12 for each group) were weaned at postnatal day (PND21), and housed until adulthood (PND60). Then the learning and memory in animals of each group were evaluated using passive avoidance and Morris water maze tests. The immunolabeling of Ki-67 protein as a proliferating cell marker showed that TiO2-NPs significantly reduced cell proliferation in the hippocampus of the offspring (P<0.05). Moreover, both the Morris water maze test and the passive avoidance test showed that exposure to TiO2-NPs significantly impaired learning and memory in offspring (P<0.05). These results may provide basic experimental evidence for a better understanding of the neurotoxic effects of TiO2-NPs on neonatal and adult brains.
Collapse
Affiliation(s)
- Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Fazel
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetic Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Motejaded
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Buali Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Zabihi
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
18
|
Mansouri S, Ataei ML, Hosseini M, Bideskan ARE. Tamoxifen mimics the effects of endogenous ovarian hormones on repeated seizures induced by pentylenetetrazole in rats. Exp Neurobiol 2013; 22:116-23. [PMID: 23833560 PMCID: PMC3699672 DOI: 10.5607/en.2013.22.2.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 11/19/2022] Open
Abstract
In the present study, the effects of tamoxifen on pentylenetetrazole (PTZ)-induced repeated seizures and hippocampal neuronal damage in ovariectomized rats were investigated. Thirty seven virgin female Wistar rats were divided to: (1) control, (2) sham-PTZ, (3) sham-PTZ-tamoxifen (sham-PTZ-T), (4) Ovariectomized -PTZ (OVX-PTZ) and (5) OVX-PTZ-tamoxifen (OVX-PTZ-T) groups. The animals of groups 3 and 5 were injected by tamoxifen (10 mg/kg) on 7 consecutive days. After 7 days of tamoxifen injection, they also were then injected by tamoxifen 30 min prior each PTZ injection. PTZ (40 mg/kg) was injected on 6 consecutive days and the animal behaviors were observed for 60 min. The histological methods were then used to determine dark neurons in hippocampus. A significant decrease in the seizure score was seen in OVX-PTZ group compared to Sham-PTZ. The animals of OVX-PTZ-T group had a significant higher seizure score compared to OVX-PTZ group. The dark neurons in DG of OVX group were lower than sham group (p<0.01). The numbers of dark neurons in CA1 area of OVX-PTZ-T group was higher than OVX-PTZ group (p<0.05) compared to control, the numbers of dark neurons in CA3 area showed a significant increase in Sham-PTZ and OVX-PTZ group (p<0.05 and p<0.01 respectively). Dark neurons in OVX-PTZ-T group were higher than OVX-PTZ group (p<0.05). It is concluded that pretreatment of the ovariectomized rats by tamoxifen increased PTZ-induced seizure score and dark neurons. It might be suggested that tamoxifen has agonistic effects for estrogen receptors to change the seizure severity.
Collapse
Affiliation(s)
- Somaeh Mansouri
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran
| | | | | | | |
Collapse
|
19
|
Hosseini M, Sadeghnia HR, Salehabadi S, Soukhtanloo M. Contribution of estradiol in sex-dependent differences of pentylenetetrazole-induced seizures in rats. ACTA PHYSIOLOGICA HUNGARICA 2013; 100:237-245. [PMID: 23524184 DOI: 10.1556/aphysiol.100.2013.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study the contribution of estradiol in sex-dependent differences of pentylenetetrazole (PTZ)-induced seizures was investigated in rats. The rats were divided into four groups: 1) sham, 2) ovariectomized (OVX), 3) ovariectomized-estradiol (OVX-Est) and 4) male. The OVX-Est group received estradiol valerate (2 mg/kg; i.m/4 weeks) while, male, sham and OVX groups received vehicle. The animals were injected by PTZ (90 mg/kg). The latencies to minimal clonic seizures (MCS) and generalized tonic-clonic seizures (GTCS), were recorded. Serum 17β-estradiol and testosterone levels were also determined using an Elisa kit. GTCS latency in OVX rats was higher than in sham-operated animals (P < 0.05). MCS and GTCS latency in the male group was significantly higher than in the sham, OVX and OVX-Est groups (P < 0.001 and P < 0.01). There was no significant difference in MCS or GTCS latencies among OVX-Est, sham and OVX groups. Serum 17β-estradiol level in the OVX group was significantly lower than in the sham (P < 0.01) and in the OVX-Est group it was higher than in the sham, OVX and male groups (P < 0.01 and P < 0.001). Serum testosterone level in the male group was significantly higher than in all the other three groups (P < 0.001). It seems that testosterone probably has a more efficient role than estradiol in the gender dependent difference in seizure caused by PTZ in rats.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- Mashhad University of Medical Sciences Neuroscience Research Center & Department of Physiology, School of Medicine Mashhad Iran Mashhad University Medical Sciences Department of Physiology, Scool of Medicine Mashhad Iran
| | | | | | | |
Collapse
|
20
|
Mohammadpour T, Hosseini M, Karami R, Sadeghnia HR, Ebrahimzadeh Bideskan AR, Enayatfard L. Estrogen-dependent effect of soy extract on pentylenetetrazole-induced seizures in rats. ZHONG XI YI JIE HE XUE BAO = JOURNAL OF CHINESE INTEGRATIVE MEDICINE 2012; 10:1470-1476. [PMID: 23257143 DOI: 10.3736/jcim20121221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To study the different effects of soy extract on pentylenetetrazole (PTZ)-induced seizures in the presence and absence of ovarian hormones in rats, and the gender-dependent differences in the effects of phytoestrogens on behavior. METHODS Male and female Wistar rats were randomly divided into nine groups with eight in each, namely, male-saline (M-saline), male-low-dose soy (M-LDS), male-high-dose soy (M-HDS), sham-saline (Sh-saline), sham-low-dose soy (Sh-LDS), sham-high-dose soy (Sh-HDS), ovariectomized-saline (OVX-saline), ovariectomized-low-dose soy (OVX-LDS) and ovariectomized-high-dose soy (OVX-HDS). The rats of groups 7 to 9 were ovariectomized under ketamine anesthesia. The rats of groups 2, 5 and 8 were treated by 20 mg/kg of soy extract while the animals of groups 3, 6 and 9 received 60 mg/kg of soy extract for two weeks. In groups 1, 4 and 7, saline was injected instead of soy extract. The animals were then injected by a single dose of PTZ (90 mg/kg body weight, intraperitoneally) and placed in a plexiglas cage and the latency to minimal clonic seizure (MCS) and generalized tonic-clonic seizure (GTCS) was recorded. RESULTS Both MCS and GTCS latency in M-LDS and M-HDS groups was significantly lower than that in M-saline group (P<0.05 or P<0.01). Treatment for female sham rats by soy extract did not affect MCS and GTCS latency. The animals of OVX-LDS and OVX-HDS groups had lower MCS and GTCS latency in comparison with OVX-saline group (P<0.05 or P<0.01). CONCLUSION It is concluded that the phytoestrogens of soy affect seizure severity induced by PTZ, but their effects are different in the presence or absence of ovarian hormones. However, further studies are necessary to be done.
Collapse
Affiliation(s)
- Toktam Mohammadpour
- Neuroscience Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | | | |
Collapse
|
21
|
Sadeghian R, Fereidoni M, Soukhtanloo M, Azizi-Malekabadi H, Hosseini M. Decreased nitric oxide levels in the hippocampus may play a role in learning and memory deficits in ovariectomized rats treated by a high dose of estradiol. ARQUIVOS DE NEURO-PSIQUIATRIA 2012; 70:874-879. [PMID: 23175201 DOI: 10.1590/s0004-282x2012001100010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/18/2012] [Indexed: 12/15/2022]
Abstract
The effects of a high estradiol dose on memory and on nitric oxide metabolites in hippocampal tissues were investigated. Sham-Est and OVX-Est Groups were treated with 4 mg/kg of estradiol valerate for 12 weeks. Time latency and path length were significantly higher in the Sham-Est and OVX-Est Groups than in the Sham and OVX Groups, respectively (p<0.001). The animals in the Sham-Est and OVX-Est Groups spent lower time in the target quadrant (Q1) than those of the Sham and OVX Groups during the probe trial test (p<0.05 and <0.001, respectively). Significantly lower nitric oxide metabolite levels in the hippocampi of the Sham-Est and OVX-Est Groups were observed than in the Sham and OVX ones (p<0.001). These results suggest that decreased nitric oxide levels in the hippocampus may play a role in the learning and memory deficits observed after treatment with a high dose of estradiol, although the precise underlying mechanisms remain to be elucidated.
Collapse
Affiliation(s)
- Reihaneh Sadeghian
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | | | | | |
Collapse
|
22
|
Azizi-Malekabadi H, Hosseini M, Soukhtanloo M, Sadeghian R, Fereidoni M, Khodabandehloo F. Different effects of scopolamine on learning, memory, and nitric oxide metabolite levels in hippocampal tissues of ovariectomized and Sham-operated rats. ARQUIVOS DE NEURO-PSIQUIATRIA 2012; 70:447-452. [PMID: 22699543 DOI: 10.1590/s0004-282x2012000600012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 02/07/2012] [Indexed: 11/21/2022]
Abstract
Different effects of scopolamine on learning, memory, and nitric oxide (NO) metabolites in hippocampal tissues of ovariectomized (OVX) and sham-operated rats were investigated. The animals in the Sham-Scopolamine (Sham-Sco) and OVX-Scopolamine (OVX-Sco) Groups were treated with 2 mg/kg scopolamine before undergoing the Morris water maze, while the animals in the Sham and OVX Groups received saline. The time latency and path length were significantly higher in both the Sham-Sco and the OVX-Sco Groups, in comparison with the Sham and OVX Groups, respectively (p<0.001). Significantly lower NO metabolite levels in the hippocampi of the Sham-Sco Group were observed, compared with the Sham Group (p<0.001), while there was no significant difference between the OVX-Sco and OVX Groups. The decreased NO level in the hippocampus may play a role in the learning and memory deficits induced by scopolamine. However, it seems that the effect of scopolamine on hippocampal NO differs between situations of presence and absence of ovarian hormones.
Collapse
|
23
|
Karami R, Hosseini M, Khodabandehloo F, Khatami L, Taiarani Z. Different effects of L-arginine on morphine tolerance in sham and ovariectomized female mice. J Zhejiang Univ Sci B 2011; 12:1016-1023. [PMID: 22135151 PMCID: PMC3232435 DOI: 10.1631/jzus.b1100029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 04/29/2011] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The roles of gonadal hormones and nitric oxide (NO) on the analgesic effects of morphine, tolerance to morphine, and their interactions have been widely investigated. In the present study, the effect of L-arginine (an NO precursor) on morphine tolerance in sham and ovariectomized (OVX) female mice was investigated. METHODS Forty mice were divided into sham and OVX groups. On the first day, a hot plate test ((55±0.2) °C; cut-off 30 s) was carried out as a base record 15 min before injection of morphine (10 mg/kg, subcutaneously (s.c.)) and was repeated every 15 min after injection. The sham group was then divided into two subgroups: sham-tolerance-L-arginine (Sham-Tol-LA) and sham-tolerance-saline (Sham-Tol-Sal) which received either L-arginine 50 mg/kg (intraperitoneally (i.p.)) or saline 10 ml/kg (i.p.), respectively, three times in a day for three consecutive days. Morphine tolerance was induced in animals by injecting 30 mg/kg morphine (s.c.) three times/day for three days. This treatment was also used for OVX subgroups. On the fifth day, the hot plate test was repeated. The analgesic effect of morphine was calculated as the maximal percent effect (MPE). The results were compared using repeated measure analysis of variance (ANOVA). RESULTS There was no significant difference in MPE between the OVX and sham groups. The MPEs in both the Sham-Tol-Sal and OVX-Tol-Sal groups were lower than those in both the sham and OVX groups (P<0.01). The MPE in the OVX-Tol-Sal group was greater than that in the Sham-Tol-Sal group (P<0.01). The MPE in the Sham-Tol-LA group was higher than that in the Sham-Tol-Sal group (P<0.01). However, there was no significant difference between the Sham-Tol-LA and sham groups or between the OVX-Tol-LA and OVX-Tol-Sal groups. CONCLUSIONS The results of the present study showed that repeated administration of morphine causes tolerance to the analgesic effect of morphine. L-arginine could prevent tolerance to morphine but its effect was different in the presence of ovarian hormones.
Collapse
Affiliation(s)
- Reza Karami
- Neuroscience Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neuroscience Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatimeh Khodabandehloo
- Neuroscience Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Khatami
- Neuroscience Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Taiarani
- Pharmacological Research Center of Medicinal Plants, Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Hosseini M, Nemati Karimooy HA, Hadjzadeh MAR, Safari V. Inducible nitric oxide synthase inhibitor aminoguanidine, differently affects Morris water maze tasks of ovariectomized and naïve female rats. ACTA PHYSIOLOGICA HUNGARICA 2011; 98:421-432. [PMID: 22173023 DOI: 10.1556/aphysiol.98.2011.4.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The role of ovarian hormones, nitric oxide, and their interaction on learning and memory has been widely investigated. The objective of present study was to investigate different effects of chronic administration of inducible nitric oxide synthase inhibitor, aminoguanidine (AM) on learning and memory of ovariectomized (OVX) and naïve (Sham) female rats. Thirty-two rats were divided into four groups: 1) Sham, 2) OVX, 3) Sham-AM and 4) OVX-AM. The animals of Sham-AM and OVX-AM chronically received 100 mg/kg/day of aminoguanidine during 8 weeks before 5 test days. The animals in Sham and OVX groups received 1 ml/kg saline instead of aminoguanidine. The animals were tested in Morris water maze and the escape latency and traveled path to reach the platform were compared between groups. On the fifth day, the platform was removed, and the animals were allowed to swim for 60 s ( prob trial). The time spent in the target quadrant (Q1) was compared between groups.Results showed that the escape latency and traveled path in OVX group were significantly higher than in the Sham group (p<0.01). Both escape latency and traveled path in the Sham-AM group was significantly higher than in the Sham group (p<0.01) however, there was no significant difference between OVX-AM and OVX groups.The time spent by the animals of OVX group in the target quadrant (Q1) during the probe trial was significantly lower than that in the Sham group (p<0.01). The animals of the Sham-AM group spent shorter times in the target quadrant in comparison with the Sham group (p<0.01). There was no significant difference between the OVX and OVX-AM groups in the time spent in tarthe get quadrant. It is concluded that the effect of aminoguanidine on learning and memory is different in the presence or absence of ovarian hormones but it needs further investigation.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | | |
Collapse
|
25
|
Azizi-Malekabadi H, Hosseini M, Saffarzadeh F, Karami R, Khodabandehloo F. Chronic treatment with the nitric oxide synthase inhibitor, L-NAME, attenuates estradiol-mediated improvement of learning and memory in ovariectomized rats. Clinics (Sao Paulo) 2011; 66:673-679. [PMID: 21655764 PMCID: PMC3093799 DOI: 10.1590/s1807-59322011000400024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 10/21/2010] [Accepted: 12/07/2010] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The role of ovarian hormones and nitric oxide in learning and memory has been widely investigated. OBJECTIVE The present study was carried out to evaluate the effect of the nitric oxide synthase (NOS) inhibitor, N (G)-nitro-L-arginine methyl ester (L-NAME), on the ability of estradiol to improve learning in OVX rats using the Morris water maze. METHODS Forty rats were divided into five groups: (1) ovariectomized (OVX), (2) ovariectomized-estradiol (OVX-Est), (3) ovariectomized-L-NAME 10 (OVX-LN 10), (4) ovariectomized-L-NAME 50 (OVX-LN 50) and (5) ovariectomized-estradiol-L-NAME 50 (OVX-Est-LN 50). The animals in the OVX-Est group were treated with a weekly injection of estradiol valerate (2 mg/kg; i.m.). The OVX-LN 10 and OVX-LN 50 groups were treated with daily injections of 10 and 50 mg/kg L-NAME (i.p.), respectively. The animals in the OVX-Est-LN 50 group received a weekly injection of estradiol valerate and a daily injection of 50 mg/kg L-NAME. After 8 weeks, all animals were tested in the Morris water maze. RESULTS The animals in the OVX-Est group had a significantly lower latency in the maze than the OVX group (p<0.001). There was no significant difference in latency between the OVX-LN 10 and OVX-LN 50 groups in comparison with the OVX group. The latency in the OVX-Est-LN 50 group was significantly higher than that in the OVX-Est group (p<0.001). CONCLUSION These results show that L-NAME treatment attenuated estradiol-mediated enhancement of spatial learning and memory in OVX rats, but it had no significant effect in OVX rats without estrogen, suggesting an interaction of nitric oxide and estradiol in these specific brain functions.
Collapse
Affiliation(s)
- Hamid Azizi-Malekabadi
- Dept. of Biology, Faculty of Basic Science, Islamic Azad University, Khuraskan Branch, Isfahan, Iran
| | | | | | | | | |
Collapse
|
26
|
Hosseini M, Dastghaib SS, Rafatpanah H, Hadjzadeh MAR, Nahrevanian H, Farrokhi I. Nitric oxide contributes to learning and memory deficits observed in hypothyroid rats during neonatal and juvenile growth. Clinics (Sao Paulo) 2010; 65:1175-1181. [PMID: 21243293 PMCID: PMC2999716 DOI: 10.1590/s1807-59322010001100021] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 05/30/2010] [Accepted: 08/23/2010] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION Severe cognitive impairment follows thyroid hormone deficiency during the neonatal period. The role of nitric oxide (NO) in learning and memory has been widely investigated. METHODS This study aimed to investigate the effect of hypothyroidism during neonatal and juvenile periods on NO metabolites in the hippocampi of rats and on learning and memory. Animals were divided into two groups and treated for 60 days from the first day of lactation. The control group received regular water, whereas animals in a separate group were given water supplemented with 0.03% methimazole to induce hypothyroidism. Male offspring were selected and tested in the Morris water maze. Samples of blood were collected to measure the metabolites of NO, NO2, NO3 and thyroxine. The animals were then sacrificed, and their hippocampi were removed to measure the tissue concentrations of NO2 and NO3. DISCUSSION Compared to the control group's offspring, serum thyroxine levels in the methimazole group's offspring were significantly lower (P<0.01). In addition, the swim distance and time latency were significantly higher in the methimazole group (P<0.001), and the time spent by this group in the target quadrant (Q1) during the probe trial was significantly lower (P<0.001). There was no significant difference in the plasma levels of NO metabolites between the two groups; however, significantly higher NO metabolite levels in the hippocampi of the methimazole group were observed compared to controls (P<0.05). CONCLUSION These results suggest that the increased NO level in the hippocampus may play a role in the learning and memory deficits observed in childhood hypothyroidism; however, the precise underlying mechanism(s) remains to be elucidated.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | | | | | | |
Collapse
|