1
|
Kapo N, Zuber Bogdanović I, Gagović E, Žekić M, Veinović G, Sukara R, Mihaljica D, Adžić B, Kadriaj P, Cvetkovikj A, Djadjovski I, Potkonjak A, Velo E, Savić S, Tomanović S, Omeragić J, Beck R, Hodžić A. Ixodid ticks and zoonotic tick-borne pathogens of the Western Balkans. Parasit Vectors 2024; 17:45. [PMID: 38297327 PMCID: PMC10832161 DOI: 10.1186/s13071-023-06116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Ixodid ticks are distributed across all countries of the Western Balkans, with a high diversity of species. Many of these species serve as vectors of pathogens of veterinary and medical importance. Given the scattered data from Western Balkan countries, we have conducted a comprehensive review of available literature, including some historical data, with the aim to compile information about all recorded tick species and associated zoonotic pathogens in this region. Based on the collected data, the tick fauna of the Western Balkans encompasses 32 tick species belonging to five genera: Ixodes, Haemaphysalis, Dermacentor, Rhipicephalus and Hyalomma. A range of pathogens responsible for human diseases has also been documented, including viruses, bacteria and parasites. In this review, we emphasize the necessity for integrated surveillance and reporting, urging authorities to foster research by providing financial support. Additionally, international and interdisciplinary collaborations should be encouraged that include the exchange of expertise, experiences and resources. The present collaborative effort can effectively address gaps in our knowledge of ticks and tick-borne diseases.
Collapse
Affiliation(s)
- Naida Kapo
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Ema Gagović
- Department for Bacteriology and Parasitology, Laboratory for Parasitology, Croatian Veterinary Institute, Zagreb, Croatia
| | - Marina Žekić
- Scientific Veterinary Institute "Novi Sad", Novi Sad, Serbia
| | - Gorana Veinović
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ratko Sukara
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Darko Mihaljica
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojan Adžić
- Diagnostic Veterinary Laboratory, Podgorica, Montenegro
| | - Përparim Kadriaj
- Vector Control Unit, Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Aleksandar Cvetkovikj
- Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Igor Djadjovski
- Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Aleksandar Potkonjak
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Enkelejda Velo
- Vector Control Unit, Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Sara Savić
- Scientific Veterinary Institute "Novi Sad", Novi Sad, Serbia
| | - Snežana Tomanović
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasmin Omeragić
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Relja Beck
- Department for Bacteriology and Parasitology, Laboratory for Parasitology, Croatian Veterinary Institute, Zagreb, Croatia.
| | - Adnan Hodžić
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science (CMESS), University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Banović P, Díaz-Sánchez AA, Simin V, Foucault-Simonin A, Galon C, Wu-Chuang A, Mijatović D, Obregón D, Moutailler S, Cabezas-Cruz A. Clinical Aspects and Detection of Emerging Rickettsial Pathogens: A "One Health" Approach Study in Serbia, 2020. Front Microbiol 2022; 12:797399. [PMID: 35154030 PMCID: PMC8825779 DOI: 10.3389/fmicb.2021.797399] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/24/2021] [Indexed: 01/28/2023] Open
Abstract
Ticks carry numerous pathogens that, if transmitted, can cause disease in susceptible humans and animals. The present study describes our approach on how to investigate clinical presentations following tick bites in humans. To this aim, the occurrence of major tick-borne pathogens (TBPs) in human blood samples (n = 85) and the ticks collected (n = 93) from the same individuals were tested using an unbiased high-throughput pathogen detection microfluidic system. The clinical symptoms were characterized in enrolled patients. In patients with suspected TBP infection, serological assays were conducted to test for the presence of antibodies against specific TBPs. A field study based on One Health tenets was further designed to identify components of a potential chain of infection resulting in Rickettsia felis infection in one of the patients. Ticks species infesting humans were identified as Ixodes ricinus, Rhipicephalus sanguineus sensu lato (s.l.), Dermacentor reticulatus, and Haemaphysalis punctata. Five patients developed local skin lesions at the site of the tick bite including erythema migrans, local non-specific reactions, and cutaneous hypersensitivity reaction. Although Borrelia burgdorferi s.l., Babesia microti, Anaplasma phagocytophilum, and Candidatus Cryptoplasma sp. DNAs were detected in tick samples, different Rickettsia species were the most common TBPs identified in the ticks. The presence of TBPs such as Rickettsia helvetica, Rickettsia monacensis, Borrelia lusitaniae, Borrelia burgdorferi, Borrelia afzelii, A. phagocytophilum, and B. microti in ticks was further confirmed by DNA sequencing. Two of the patients with local skin lesions had IgG reactive against spotted fever group rickettsiae, while IgM specific to B. afzelii, Borrelia garinii, and Borrelia spielmanii were detected in the patient with erythema migrans. Although R. felis infection was detected in one human blood sample, none of the components of the potential chain of infection considered in this study tested positive to this pathogen either using direct pathogen detection in domestic dogs or xenodiagnosis in ticks collected from domestic cats. The combination of high-throughput screening of TBPs and One Health approaches might help characterize chains of infection leading to human infection by TBPs, as well as prevalence of emerging rickettsial pathogens in the Balkan region.
Collapse
Affiliation(s)
- Pavle Banović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, Novi Sad, Serbia.,Department of Microbiology With Parasitology and Immunology, Faculty of Medicine in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | | | - Verica Simin
- Department for Microbiological & Other Diagnostics, Pasteur Institute Novi Sad, Novi Sad, Serbia
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Clemence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Dragana Mijatović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, Novi Sad, Serbia
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
3
|
Žele D, Avberšek J, Gruntar I, Ocepek M, Vengušt G. Evidence of Anaplasma phagocytophilum in game animals from Slovenia. Acta Vet Hung 2012; 60:441-8. [PMID: 23160026 DOI: 10.1556/avet.2012.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anaplasma phagocytophilum is a tick-borne rickettsial pathogen responsible for granulocytic anaplasmosis in mammalian hosts including humans. Wild animals may play an important role in the epidemiology of this disease. The aim of this study was to estimate the prevalence of infection with A. phagocytophilum among wildlife in Slovenia. Serum samples (n = 376) from the most important game species [red deer (Cervus elaphus), roe deer (Capreolus capreolus), wild boar (Sus scrofa), chamois (Rupicapra rupicapra) and brown bear (Ursus arctos)] were examined by A. phagocytophilum-specific indirect fluorescent-antibody assay (IFA) and wild boar spleen samples (n = 160) were tested by polymerase chain reaction (PCR). A. phagocytophilum-specific antibodies were found in 72% of sera and A. phagocytophilum DNA was present in 6.2% of spleens. The data indicate that A. phagocytophilum is present and widespread in Slovenian game animals and that game species are involved in the natural life cycle of A. phagocytophilum.
Collapse
Affiliation(s)
- Diana Žele
- 1 University of Ljubljana, Veterinary Faculty Institute for Breeding and Health Care of Wild Animals, Fish and Bees Gerbiceva 60 1000 Ljubljana Slovenia
| | - Jana Avberšek
- 2 University of Ljubljana, Veterinary Faculty Institute for Microbiology and Parasitology Gerbiceva 60 1000 Ljubljana Slovenia
| | - Igor Gruntar
- 2 University of Ljubljana, Veterinary Faculty Institute for Microbiology and Parasitology Gerbiceva 60 1000 Ljubljana Slovenia
| | - Matjaž Ocepek
- 2 University of Ljubljana, Veterinary Faculty Institute for Microbiology and Parasitology Gerbiceva 60 1000 Ljubljana Slovenia
| | - Gorazd Vengušt
- 1 University of Ljubljana, Veterinary Faculty Institute for Breeding and Health Care of Wild Animals, Fish and Bees Gerbiceva 60 1000 Ljubljana Slovenia
| |
Collapse
|
4
|
Rymaszewska A, Adamska M. Molecular evidence of vector-borne pathogens coinfecting dogs from Poland. Acta Vet Hung 2011; 59:215-23. [PMID: 21665575 DOI: 10.1556/avet.2011.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ticks of the genus Ixodes are vectors for many pathogens, including Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Rickettsia spp., and may also serve as vectors for Bartonella spp. However, the role of ticks in Bartonella transmission requires additional studies. The aim of this study was to investigate whether coinfection with two or more vector-borne pathogens can occur in the following three groups of dogs: I - dogs with suspected borreliosis (N = 92), II - dogs considered healthy (N = 100), and III - dogs with diagnosed babesiosis (N = 50). Polymerase chain reactions were performed to detect DNA of Anaplasma phagocytophilum, Rickettsia spp. and Bartonella spp. in the blood of dogs. In dogs of Group I, the DNA of both A. phagocytophilum and Bartonella sp. was detected (14% and 1%, respectively). In eight dogs, coinfection was indicated: A. phagocytophilum or Bartonella sp. with B. burgdorferi s.l. (the presence of antibodies against and/or DNA B. burgdorferi s.l.). In the case of five dogs positive for A. phagocytophilum DNA, no coinfection with B. burgdorferi s.l. was shown. In Group II, the DNA of A. phagocytophilum was detected in four dogs. In Group III, no pathogenic agents possibly transmitted by ticks were confirmed. No DNA of R. helvetica was detected in any of the groups studied.
Collapse
Affiliation(s)
- Anna Rymaszewska
- 1 University of Szczecin Department of Genetics al. Piastow 40B 71-065 Szczecin Poland
| | - Małgorzata Adamska
- 1 University of Szczecin Department of Genetics al. Piastow 40B 71-065 Szczecin Poland
| |
Collapse
|