1
|
Thomas NG, Dalvi YB, Fijol N, Shilpa J, Unni R, Binsi PK, Varghese MG, R R, Mathew AP, Anil S. Fish scale derived hydroxyapatite incorporated 3D printed PLA scaffold for bone tissue engineering. NEW J CHEM 2024; 48:10841-10851. [DOI: 10.1039/d3nj03005a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024]
Abstract
Discover the innovative approach of utilizing fish scales to derive hydroxyapatite, coupled with a 3D printed PLA scaffold, paving a novel avenue for bone tissue engineering.
Collapse
Affiliation(s)
- N. G. Thomas
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Tiruvalla, Kerala, 689101, India
- Pushpagiri College of Dental Sciences, Medicity, Perumthuruthy, Tiruvalla 689107, Kerala, India
| | - Y. B. Dalvi
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Tiruvalla, Kerala, 689101, India
| | - N Fijol
- Department of Materials and Environmental Chemistry, Stockholm University, 11419 Stockholm, Sweden
| | - J. Shilpa
- Department of Biotechnology, Sethu Institute of Technology, Kariapatti, Virudhunagar, Tamil Nadu 626115, India
| | - Rekha Unni
- Department of Chemistry, Christian College, University of Kerala, Chengannur, 689122, India
| | - P. K. Binsi
- ICAR-Central Institute of Fisheries Technology, Matsyapuri, Willington Island, Cochin, 682029, India
| | - M. G. Varghese
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Tiruvalla, Kerala, 689101, India
| | - Reshmy. R
- Department of Science and Humanities, Providence College of Engineering, Chengannur, 689122, Kerala, India
| | - A. P. Mathew
- Department of Materials and Environmental Chemistry, Stockholm University, 11419 Stockholm, Sweden
| | - Sukumaran Anil
- Oral Health Institute, Department of Dentistry, Hamad Medical Corporation, Doha, Qatar
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Tiruvalla, Kerala, 689101, India
| |
Collapse
|
2
|
Yu Y, Zhu S, Hou Y, Li J, Guan S. Sulfur Contents in Sulfonated Hyaluronic Acid Direct the Cardiovascular Cells Fate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46827-46836. [PMID: 33016070 DOI: 10.1021/acsami.0c15729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hyaluronic acid (HA) is recognized as a functional carbohydrate polymer applied for the surface modification of cardiovascular implanted materials due to its molecular weight (MW) dependent cellular regulation. However, due to the enzyme digestion of hyaluronidase on HA in vivo, the stability of HA MW needs to be further improved. It has been reported that the stability of HA MW can be improved by sulfonation. In this study, sulfonated hyaluronic acids (S-HA) with sulfur content of 2.06, 3.69, 7.10, 8.98, and 9.71 were prepared through different sulfuric acid treatment procedures. Cell tests showed that S-HA with higher sulfur content played a significant role in promoting the proliferation and migration of endothelial cells and regulating smooth muscle cells to the physiological phenotype. In addition, it was also proved to inhibit the inflammatory macrophages adhesion/activation. Our data indicates that S-HA may be a better carbohydrate polymer for potential application of cardiovascular biomaterials.
Collapse
Affiliation(s)
- Yang Yu
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Shijie Zhu
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Yachen Hou
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Jingan Li
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Shaokang Guan
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Design of Novel Perovskite-Based Polymeric Poly(l-Lactide-Co-Glycolide) Nanofibers with Anti-Microbial Properties for Tissue Engineering. NANOMATERIALS 2020; 10:nano10061127. [PMID: 32517379 PMCID: PMC7353416 DOI: 10.3390/nano10061127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/19/2023]
Abstract
There is a growing need for anti-microbial materials in several biomedical application areas, such are hernia, skin grafts as well as gynecological products, owing to the complications caused by infection due to surgical biomaterials. The anti-microbial effects of silver in the form of nanoparticles, although effective, can be toxic to surrounding cells. In this study, we report, for the first time, a novel biomedical application of Ag0.3Na1.7La2Ti3O10-layered perovskite particles, blended with poly(L-lactide-co-glycolide) (PLGA), aimed at designing anti-microbial and tissue engineering scaffolds. The perovskite was incorporated in three concentrations of 1, 5, 10 and 15 w/w% and electrospun using dimethylformamide (DMF) and chloroform. The morphology of the resultant nanofibers revealed fiber diameters in the range of 408 to 610 nm by scanning electron microscopy. Mechanical properties of perovskite-based nanofibers also matched similar mechanical properties to human skin. We observed impressive anti-microbial activity, against Gram-negative, Gram-positive bacteria and even fungi, to Ag0.3Na1.7La2Ti3O10 in powder as well as nanofiber-incorporated forms. Furthermore, cytotoxicity assay and immunocytochemistry revealed that perovskite-based nanofibers promoted the proliferation of human dermal fibroblasts whist maintaining normal cellular protein expression. Our study shows that perovskite-nanofibers have potential as scaffolds for biomedical applications with anti-microbial needs.
Collapse
|
4
|
Tailoring of cardiovascular stent material surface by immobilizing exosomes for better pro-endothelialization function. Colloids Surf B Biointerfaces 2020; 189:110831. [DOI: 10.1016/j.colsurfb.2020.110831] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023]
|
5
|
Mathew BT, Raji S, Dagher S, Hilal-Alnaqbi A, Mourad AHI, Al-Zuhair S, Al Ahmad M, El-Tarabily KA, Amin A. Bilirubin detoxification using different phytomaterials: characterization and in vitro studies. Int J Nanomedicine 2018; 13:2997-3010. [PMID: 29872292 PMCID: PMC5973425 DOI: 10.2147/ijn.s160968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Activated carbon (AC) is a common adsorbent that is used in both artificial and bioartificial liver devices. METHODS Three natural materials - date pits of Phoenix dactylifera (fruit), Simmondsia chinensis (jojoba) seeds, and Scenedesmus spp. (microalgae) - were used in the present investigation as precursors for the synthesis of AC using physical activation. The chemical structures and morphology of AC were analyzed. Then, AC's bilirubin adsorption capacity and its cytotoxicity on normal liver (THLE2) and liver cancer (HepG2) cells were characterized. RESULTS Compared with the other raw materials examined, date-pit AC was highly selective and showed the most effective capacity of bilirubin adsorption, as judged by isotherm-modeling analysis. MTT in vitro analysis indicated that date-pit AC had the least effect on the viability of both THLE2 and HepG2 cells compared to jojoba seeds and microalgae. All three biomaterials under investigation were used, along with collagen and Matrigel, to grow cells in 3D culture. Fluorescent microscopy confirmed date-pit AC as the best to preserve liver cell integrity. CONCLUSION The findings of this study introduce date-pit-based AC as a novel alternative biomaterial for the removal of protein-bound toxins in bioartificial liver devices.
Collapse
Affiliation(s)
- Betty Titus Mathew
- Mechanical Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shaima Raji
- Electrical Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sawsan Dagher
- Mechanical Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali Hilal-Alnaqbi
- Mechanical Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
- Abu Dhabi Polytechnic, Abu Dhabi, United Arab Emirates
| | - Abdel-Hamid Ismail Mourad
- Mechanical Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
- Mechanical Design Department, Faculty of Engineering, Helwan University, Helwan, Cairo, Egypt
| | - Sulaiman Al-Zuhair
- Chemical Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mahmoud Al Ahmad
- Electrical Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled Abbas El-Tarabily
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Amr Amin
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Zoology/College of Science, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
S. E, T.R. N, V.K. R, Baranwal G, Biswas R, R. J, S. S. Fucoidan coated ciprofloxacin loaded chitosan nanoparticles for the treatment of intracellular and biofilm infections of Salmonella. Colloids Surf B Biointerfaces 2017; 160:40-47. [DOI: 10.1016/j.colsurfb.2017.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/31/2022]
|