1
|
Ozaki M, Shimotsuma M, Kuranaga T, Kakeya H, Hirose T. Simultaneous separation and identification of all structural isomers and enantiomers of aminobutyric acid using a highly sensitive chiral resolution labeling reagent. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6648-6655. [PMID: 38009190 DOI: 10.1039/d3ay01665j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Aminobutyric acid has structural isomers (α-, β-, and γ-aminobutyric acids) and enantiomers (D/L-forms) with various unique functions. Therefore, a quantitative method for determining the content of each aminobutyric acid must be developed. In general, quantitative simultaneous analysis of multiple compounds is conducted via high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). However, simultaneous separation and highly sensitive detection of all aminobutyric acids are complicated, so highly sensitive analytical methods for the separation and identification of each compound have not yet been established. We previously developed highly sensitive chiral resolution labeling reagents. Herein, we propose a highly sensitive analytical method for the simultaneous separation and identification of all aminobutyric acids via LC-MS and labeling with our original highly sensitive chiral resolution labeling reagent, 1-fluoro-2,4-dinitrophenyl-5-L-valine-N,N-dimethylethylenediamine amide (L-FDVDA). The labeling reagent was completely bound to all aminobutyric acids through incubation overnight (>15 h) at 50 °C. Additionally, the labeled aminobutyric acids could be stored for at least 1 week at 4 °C. Furthermore, we demonstrated simultaneous separation and identification of aminobutyric acids in biological samples and foods through LC-MS using a C18 column after labeling with L-FDVDA. Our method is expected to be adopted for the analysis of the contents of all aminobutyric acids in biological and clinical samples as well as various foods.
Collapse
Affiliation(s)
- Makoto Ozaki
- Research and Development Department, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| | - Motoshi Shimotsuma
- Research and Development Department, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan.
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan.
| | - Tsunehisa Hirose
- Research and Development Department, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| |
Collapse
|
2
|
Ishii C, Hamase K. Two-dimensional LC-MS/MS and three-dimensional LC analysis of chiral amino acids and related compounds in real-world matrices. J Pharm Biomed Anal 2023; 235:115627. [PMID: 37633168 DOI: 10.1016/j.jpba.2023.115627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/28/2023]
Abstract
Amino acids normally have a chiral carbon and d/l-enantiomers are present. Due to the homochirality features on the present Earth, l-enantiomers are predominant in the living beings and the d-enantiomers are rare. Along with the progress and development of cutting edge analytical methods, several d-amino acids were found even in the higher animals including humans, and their biological functions and diagnostic values have also been reported. However, the amounts of these d-amino acids are much lower than the l-forms, and development/utilization of highly sensitive and selective methods are practically essential to avoid the disturbance from uncountable intrinsic substances. In the present review, multi-dimensional HPLC methods for the determination of chiral amino acids, especially two-dimensional LC-MS/MS and three-dimensional LC methods, and their applications to a variety of real-world matrices are summarized.
Collapse
Affiliation(s)
- Chiharu Ishii
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
3
|
Simultaneous determination of all aminobutyric acids by chiral derivatization and liquid chromatography-tandem mass spectrometry. ANAL SCI 2023; 39:463-472. [PMID: 36840857 DOI: 10.1007/s44211-023-00293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/07/2023] [Indexed: 02/26/2023]
Abstract
Aminobutyric acids include eight structural or stereoisomers that exhibit a wide range of biological activities. Recent evidence on some low abundant isomers have increased the demand for highly selective analysis of all the isomers; however, simultaneous separation of all the aminobutyric acid isomers has not been successful yet, except for a specialized method that uses multiple separation columns and a split of samples. In this study, we developed a new analytical method using chiral derivatization and liquid chromatography-tandem mass spectrometry to separate all the aminobutyric acid isomers in a single separation column. All the diastereomeric derivatives were resolved in a C18 column, and the derivatives showed characteristic fragmentation patterns in tandem mass spectrometry. By using the method, we analyzed the isomers in the Arabidopsis thaliana seeds and revealed the existence of three low abundant isomers, i.e., D-, L-β-aminoisobutyric acid, and D-β-aminobutyric acid. The proposed method uses a commercially available chiral derivatizing reagent and a broadly used column; therefore, it can be widely used in biological and food analyses.
Collapse
|
4
|
Calderón C, Lämmerhofer M. Enantioselective metabolomics by liquid chromatography-mass spectrometry. J Pharm Biomed Anal 2022; 207:114430. [PMID: 34757254 DOI: 10.1016/j.jpba.2021.114430] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022]
Abstract
Metabolomics strives to capture the entirety of the metabolites in a biological system by comprehensive analysis, often by liquid chromatography hyphenated to mass spectrometry. A particular challenge thereby is the differentiation of structural isomers. Common achiral targeted and untargeted assays do not distinguish between enantiomers. This may lead to information loss. An increasing number of publications demonstrate that the enantiomeric ratio of certain metabolites can be meaningful biomarkers of certain diseases emphasizing the importance of introducing enantioselective analytical procedures in metabolomics. In this work, the state-of-the-art in the field of LC-MS based metabolomics is summarized with focus on developments in the recent decade. Methodologies, tagging strategies, workflows and general concepts are outlined. Selected biological applications in which enantioselective metabolomics has documented its usefulness are briefly discussed. In general, targeted enantioselective metabolomics assays are often based on a direct approach using chiral stationary phases (CSP) with polysaccharide derivatives, macrocyclic antibiotics, chiral crown ethers, chiral ion exchangers, donor-acceptor phases as chiral selectors. Rarely, these targeted assays focus on more than 20 analytes and usually are restricted to a certain metabolite class. In a variety of cases, pre-column derivatization of metabolites has been performed, especially for amino acids, to improve separation and detection sensitivity. Triple quadrupole instruments are the detection methods of first choice in targeted assays. Here, issues like matrix effect, absence of blank matrix impair accuracy of results. In selected applications, multiple heart cutting 2D-LC (RP followed by chiral separation) has been pursued to overcome this problem and alleviate bias due to interferences. Non-targeted assays, on the other hand, are based on indirect approach involving tagging with a chiral derivatizing agent (CDA). Besides classical CDAs numerous innovative reagents and workflows have been proposed and are discussed. Thereby, a critical issue for the accuracy is often neglected, viz. the validation of the enantiomeric impurity in the CDA. The majority of applications focus on amino acids, hydroxy acids, oxidized fatty acids and oxylipins. Some potential clinical applications are highlighted.
Collapse
Affiliation(s)
- Carlos Calderón
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; Escuela de Química, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
5
|
Yamamoto S, Yano S, Kinoshita M, Suzuki S. In Situ Pinpoint Photopolymerization of Phos-Tag Polyacrylamide Gel in Poly(dimethylsiloxane)/Glass Microchip for Specific Entrapment, Derivatization, and Separation of Phosphorylated Compounds. Gels 2021; 7:gels7040268. [PMID: 34940328 PMCID: PMC8701177 DOI: 10.3390/gels7040268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
An improved method for the online preconcentration, derivatization, and separation of phosphorylated compounds was developed based on the affinity of a Phos-tag acrylamide gel formed at the intersection of a polydimethylsiloxane/glass multichannel microfluidic chip toward these compounds. The acrylamide solution comprised Phos-tag acrylamide, acrylamide, and N,N-methylene-bis-acrylamide, while 2,2′-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] was used as a photocatalytic initiator. The Phos-tag acrylamide gel was formed around the channel crossing point via irradiation with a 365 nm LED laser. The phosphorylated peptides were specifically concentrated in the Phos-tag acrylamide gel by applying a voltage across the gel plug. After entrapment of the phosphorylated compounds in the Phos-tag acrylamide gel, 5-(4,6-dichlorotriazinyl)aminofluorescein (DTAF) was introduced to the gel for online derivatization of the concentrated phosphorylated compounds. The online derivatized DTAF-labeled phosphorylated compounds were eluted by delivering a complex of phosphate ions and ethylenediamine tetraacetic acid as the separation buffer. This method enabled sensitive analysis of the phosphorylated peptides.
Collapse
Affiliation(s)
- Sachio Yamamoto
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan; (S.Y.); (M.K.); (S.S.)
- Correspondence:
| | - Shoko Yano
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan; (S.Y.); (M.K.); (S.S.)
| | - Mitsuhiro Kinoshita
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan; (S.Y.); (M.K.); (S.S.)
| | - Shigeo Suzuki
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan; (S.Y.); (M.K.); (S.S.)
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| |
Collapse
|
6
|
|
7
|
Fujiya W, Furukawa Y, Sugahara H, Koike M, Bajo KI, Chabot NL, Miura YN, Moynier F, Russell SS, Tachibana S, Takano Y, Usui T, Zolensky ME. Analytical protocols for Phobos regolith samples returned by the Martian Moons eXploration (MMX) mission. EARTH, PLANETS, AND SPACE : EPS 2021; 73:120. [PMID: 34776735 PMCID: PMC8550573 DOI: 10.1186/s40623-021-01438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/10/2021] [Indexed: 05/12/2023]
Abstract
Japan Aerospace Exploration Agency (JAXA) will launch a spacecraft in 2024 for a sample return mission from Phobos (Martian Moons eXploration: MMX). Touchdown operations are planned to be performed twice at different landing sites on the Phobos surface to collect > 10 g of the Phobos surface materials with coring and pneumatic sampling systems on board. The Sample Analysis Working Team (SAWT) of MMX is now designing analytical protocols of the returned Phobos samples to shed light on the origin of the Martian moons as well as the evolution of the Mars-moon system. Observations of petrology and mineralogy, and measurements of bulk chemical compositions and stable isotopic ratios of, e.g., O, Cr, Ti, and Zn can provide crucial information about the origin of Phobos. If Phobos is a captured asteroid composed of primitive chondritic materials, as inferred from its reflectance spectra, geochemical data including the nature of organic matter as well as bulk H and N isotopic compositions characterize the volatile materials in the samples and constrain the type of the captured asteroid. Cosmogenic and solar wind components, most pronounced in noble gas isotopic compositions, can reveal surface processes on Phobos. Long- and short-lived radionuclide chronometry such as 53Mn-53Cr and 87Rb-87Sr systematics can date pivotal events like impacts, thermal metamorphism, and aqueous alteration on Phobos. It should be noted that the Phobos regolith is expected to contain a small amount of materials delivered from Mars, which may be physically and chemically different from any Martian meteorites in our collection and thus are particularly precious. The analysis plan will be designed to detect such Martian materials, if any, from the returned samples dominated by the endogenous Phobos materials in curation procedures at JAXA before they are processed for further analyses.
Collapse
Affiliation(s)
- Wataru Fujiya
- Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 Japan
| | - Yoshihiro Furukawa
- Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, 980-8578 Japan
| | - Haruna Sugahara
- Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210 Japan
| | - Mizuho Koike
- Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526 Japan
| | - Ken-ichi Bajo
- Department of Earth and Planetary Sciences, Hokkaido University, N10W8 Kita-ku, Sapporo, 060-0810 Japan
| | - Nancy L. Chabot
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA
| | - Yayoi N. Miura
- Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032 Japan
| | - Frederic Moynier
- Institut de Physique du Globe de Paris, CNRS, University of Paris, Paris, France
| | - Sara S. Russell
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Shogo Tachibana
- Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210 Japan
- UTOPS, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yoshinori Takano
- Biogeochemistry Research Center, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima, Yokosuka, 237-0061 Japan
| | - Tomohiro Usui
- Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210 Japan
| | | |
Collapse
|
8
|
Furusho A, Akita T, Mita M, Naraoka H, Hamase K. Three-dimensional high-performance liquid chromatographic analysis of chiral amino acids in carbonaceous chondrites. J Chromatogr A 2020; 1625:461255. [PMID: 32709316 DOI: 10.1016/j.chroma.2020.461255] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/26/2022]
Abstract
A three-dimensional (3D) HPLC system in combination with fluorescence derivatization has been developed for the highly sensitive and selective analysis of chiral amino acids in extraterrestrial samples. As the targets, alanine (Ala), 2-aminobutyric acid (2AB), valine (Val), norvaline (nVal) and isovaline (iVal), frequently found chiral amino acids in the carbonaceous chondrites, were selected. These amino acids were pre-column derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), and the target analytes were separated from other amino acids and organic compounds by a reversed-phase column in the first dimension. The targets were further separated from interferences by an anion-exchange column in the second dimension, and their enantiomers were separated and determined in the third dimension by a Pirkle-type enantioselective column. The present 3D-HPLC system was validated and applied to the Murchison meteorite and the Antarctic meteorites, and all of the target amino acid enantiomers were clearly observed (0.78-22.33 nmol/g in the Murchison meteorite and 1.79-78.84 nmol/g in the Antarctic meteorites) without severe interferences. The %L values of the non-proteinogenic amino acids were almost 50% in both meteorites, and even the proteinogenic amino acids were almost racemic in the Antarctic meteorites.
Collapse
Affiliation(s)
- Aogu Furusho
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higasi-ku, Fukuoka 812-8582, Japan
| | - Takeyuki Akita
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higasi-ku, Fukuoka 812-8582, Japan
| | - Masashi Mita
- KAGAMI Inc., 7-7-15 Saito-asagi, Ibaraki 567-0085, Japan
| | - Hiroshi Naraoka
- Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higasi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
9
|
Fast enantiomeric separation of amino acids using liquid chromatography/mass spectrometry on a chiral crown ether stationary phase. J Biosci Bioeng 2020; 130:437-442. [PMID: 32616382 DOI: 10.1016/j.jbiosc.2020.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 11/21/2022]
Abstract
Fast enantiomeric separation of amino acids was studied by liquid chromatography/mass spectrometry (LC/MS) on a chiral crown ether stationary phase. A chiral crown ether bonded silica column (3 mm internal diameter (i.d.), 5 cm long) packed with 3 μm particles was employed instead of a 15 cm column packed with 5 μm particles used in our previous study. In addition, the extra-column variance, becoming more serious for smaller columns, was reduced by replacing 0.127 mm i.d. post-column tubes with shorter, smaller-diameter (0.0635 mm i.d.) tubes. The results demonstrated the benefits of using shorter columns packed with smaller particles and the reduction of the extra-column band broadening for fast enantiomeric separation. Finally, the enantiomeric separation of 18 pairs of proteinogenic amino acids was achieved within 2 min with a resolution (Rs) > 1.5 for each pair using an isocratic mobile phase of acetonitrile/water/trifluoroacetic acid (ACN/W/TFA) = 96/4/0.5, and a flow rate 1.2 mL/min at 30°C. This is the highest throughput method for simultaneous chiral separation of all proteinogenic amino acids except proline to date.
Collapse
|
10
|
Acquaviva A, Siano G, Quintas P, Filgueira MR, Castells CB. Chiral x achiral multidimensional liquid chromatography. Application to the enantioseparation of dintitrophenyl amino acids in honey samples and their fingerprint classification. J Chromatogr A 2020; 1614:460729. [PMID: 31785894 DOI: 10.1016/j.chroma.2019.460729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/18/2022]
Abstract
Most HPLC enantiomer separations are performed with columns packed with a chiral stationary phase (CSP) operated with an achiral mobile phase. The intrinsically limited chemical selectivity of most CSPs to the simultaneous resolution of several pairs of enantiomers means that complex mixtures of diverse pairs of enantiomers cannot be resolved in a single run due to peak overlapping. Moreover, some drawbacks remain when the analyte is present in very complex samples containing other achiral compounds which can co-elute with the enantiomer peaks. Multidimensional chromatography becomes an option to increase peak capacity and resolve these samples. The aim of this work was to study an online fully comprehensive 2D-LC mode utilizing a combination of a chiral column in the first dimension and an achiral column in the second dimension. The 2D-LC system was built with an active flow splitter pump in order to easily adjust the volume of sample transferred into the second dimension and to independently optimize the flow rate in the first dimension. The present LCxLC method was optimized for the separation of amino acids present in honey samples, taking into account key parameters that influence the bidimensional peak capacity (orthogonality, sampling frequency, etc.). The amino acids have been preconcentrated on a cation-exchange column followed by derivatization. Several amino acids present in different honey samples have been identified and the data generated has been analyzed by principal component analysis.
Collapse
Affiliation(s)
- A Acquaviva
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - G Siano
- Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i) FICH/UNL-CONICET, Santa Fe, Argentina
| | - P Quintas
- Laboratorio de Química Analítica para Investigación y Desarrollo (QUIANID) - Facultad de Ciencias Exactas y Naturales (FCEN) de la Universidad Nacional de Cuyo, Argentina
| | - M R Filgueira
- Nutrition and Biosciences - DuPont, 200 Powder Mill Road Wilmington, DE 19803, USA
| | - C B Castells
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina.
| |
Collapse
|
11
|
ISHII C, FURUSHO A, HSIEH CL, HAMASE K. Multi-Dimensional High-Performance Liquid Chromatographic Determination of Chiral Amino Acids and Related Compounds in Real World Samples. CHROMATOGRAPHY 2020. [DOI: 10.15583/jpchrom.2020.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Chiharu ISHII
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Aogu FURUSHO
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Chin-Ling HSIEH
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
12
|
|
13
|
Rybak MY, Rayevsky AV, Gudzera OI, Tukalo MA. Stereospecificity control in aminoacyl-tRNA-synthetases: new evidence of d-amino acids activation and editing. Nucleic Acids Res 2019; 47:9777-9788. [PMID: 31504788 PMCID: PMC6765224 DOI: 10.1093/nar/gkz756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 02/02/2023] Open
Abstract
The homochirality of amino acids is vital for the functioning of the translation apparatus. l-Amino acids predominate in proteins and d-amino acids usually represent diverse regulatory functional physiological roles in both pro- and eukaryotes. Aminoacyl-tRNA-synthetases (aaRSs) ensure activation of proteinogenic or nonproteinogenic amino acids and attach them to cognate or noncognate tRNAs. Although many editing mechanisms by aaRSs have been described, data about the protective role of aaRSs in d-amino acids incorporation remained unknown. Tyrosyl- and alanyl-tRNA-synthetases were represented as distinct members of this enzyme family. To study the potential to bind and edit noncognate substrates, Thermus thermophilus alanyl-tRNA-synthetase (AlaRS) and tyrosyl-tRNA-synthetase were investigated in the context of d-amino acids recognition. Here, we showed that d-alanine was effectively activated by AlaRS and d-Ala-tRNAAla, formed during the erroneous aminoacylation, was edited by AlaRS. On the other hand, it turned out that d-aminoacyl-tRNA-deacylase (DTD), which usually hydrolyzes d-aminoacyl-tRNAs, was inactive against d-Ala-tRNAAla. To support the finding about DTD, computational docking and molecular dynamics simulations were run. Overall, our work illustrates the novel function of the AlaRS editing domain in stereospecificity control during translation together with trans-editing factor DTD. Thus, we propose different evolutionary strategies for the maintenance of chiral selectivity during translation.
Collapse
Affiliation(s)
- Mariia Yu Rybak
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of the NAS of Ukraine, 150 Zabolotnogo Street, 03143, Kyiv, Ukraine
| | - Alexey V Rayevsky
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of the NAS of Ukraine, 150 Zabolotnogo Street, 03143, Kyiv, Ukraine
| | - Olga I Gudzera
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of the NAS of Ukraine, 150 Zabolotnogo Street, 03143, Kyiv, Ukraine
| | - Michael A Tukalo
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of the NAS of Ukraine, 150 Zabolotnogo Street, 03143, Kyiv, Ukraine
| |
Collapse
|
14
|
Naraoka H, Hashiguchi M, Sato Y, Hamase K. New Applications of High-Resolution Analytical Methods to Study Trace Organic Compounds in Extraterrestrial Materials. Life (Basel) 2019; 9:life9030062. [PMID: 31357539 PMCID: PMC6789776 DOI: 10.3390/life9030062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 11/16/2022] Open
Abstract
Organic compounds are present as complex mixtures in extraterrestrial materials including meteorites, which may have played important roles in the origin of life on the primitive Earth. However, the distribution and formation mechanisms of meteoritic organic compounds are not well understood, because conventional analytical methods have limited resolution and sensitivity to resolve their molecular complexity. In this study, advanced instrumental development and analyses are proposed in order to study the trace organic compounds of extraterrestrial materials: (1) a clean room environment to avoid organic contamination during analysis; (2) high-mass-resolution analysis (up to ~150,000 m/m) coupled with high-performance liquid chromatography (HPLC) in order to determine the elemental composition using exact mass for inferring the chemical structure; (3) superior chromatographic separation using a two-dimensional system in order to determine the structural and optical isomers of amino acids; and (4) in situ organic compound analysis and molecular imaging of the sample surface. This approach revealed a higher complexity of organic compounds with a heterogeneous distribution in meteorites. These new methods can be applied to study the chemical evolution of meteoritic organic compounds as well as the molecular occurrence in very-low-mass extraterrestrial materials such as asteroid-returned samples.
Collapse
Affiliation(s)
- Hiroshi Naraoka
- Research Center for Planetary Trace Organic Compounds, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
- Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Minako Hashiguchi
- Research Center for Planetary Trace Organic Compounds, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Sato
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenji Hamase
- Research Center for Planetary Trace Organic Compounds, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
15
|
Horak J, Lämmerhofer M. Stereoselective separation of underivatized and 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatized amino acids using zwitterionic quinine and quinidine type stationary phases by liquid chromatography–High resolution mass spectrometry. J Chromatogr A 2019; 1596:69-78. [DOI: 10.1016/j.chroma.2019.02.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/24/2022]
|
16
|
Fouad A, Ibrahim D, Adly FG, Ghanem A. An insight into chiral monolithic stationary phases for enantioselective high-performance liquid chromatography applications. J Sep Sci 2019; 42:2303-2340. [PMID: 31050176 DOI: 10.1002/jssc.201900159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 02/02/2023]
Abstract
In this review, three main classes of chiral monolithic stationary phases, namely silica-, organic polymer-, and hybrid-based monolithic stationary phases, are covered. Their preparations, applications, and advantages compared with the conventional-packed and open-tubular capillary columns are discussed. A detailed description of the different types and techniques used for the introduction of chiral selectors into the monolithic matrices such as immobilization, functionalization, coating, encapsulation, and bonding. Special emphasis is given to the recent developments of chiral selectors in HPLC monolithic stationary phases during the past 18 years.
Collapse
Affiliation(s)
- Ali Fouad
- Chirality Program, School of Science, Faculty of Science and Technology, University of Canberra, ACT, Australia.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Diana Ibrahim
- Chirality Program, School of Science, Faculty of Science and Technology, University of Canberra, ACT, Australia
| | - Frady G Adly
- Chirality Program, School of Science, Faculty of Science and Technology, University of Canberra, ACT, Australia
| | - Ashraf Ghanem
- Chirality Program, School of Science, Faculty of Science and Technology, University of Canberra, ACT, Australia
| |
Collapse
|
17
|
Nakano Y, Taniguchi M, Fukusaki E. High-sensitive liquid chromatography-tandem mass spectrometry-based chiral metabolic profiling focusing on amino acids and related metabolites. J Biosci Bioeng 2019; 127:520-527. [DOI: 10.1016/j.jbiosc.2018.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 12/18/2022]
|
18
|
Garcia AD, Meinert C, Sugahara H, Jones NC, Hoffmann SV, Meierhenrich UJ. The Astrophysical Formation of Asymmetric Molecules and the Emergence of a Chiral Bias. Life (Basel) 2019; 9:E29. [PMID: 30884807 PMCID: PMC6463258 DOI: 10.3390/life9010029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 11/17/2022] Open
Abstract
The biomolecular homochirality in living organisms has been investigated for decades, but its origin remains poorly understood. It has been shown that circular polarized light (CPL) and other energy sources are capable of inducing small enantiomeric excesses (ees) in some primary biomolecules, such as amino acids or sugars. Since the first findings of amino acids in carbonaceous meteorites, a scenario in which essential chiral biomolecules originate in space and are delivered by celestial bodies has arisen. Numerous studies have thus focused on their detection, identification, and enantiomeric excess calculations in extraterrestrial matrices. In this review we summarize the discoveries in amino acids, sugars, and organophosphorus compounds in meteorites, comets, and laboratory-simulated interstellar ices. Based on available analytical data, we also discuss their interactions with CPL in the ultraviolet (UV) and vacuum ultraviolet (VUV) regions, their abiotic chiral or achiral synthesis, and their enantiomeric distribution. Without doubt, further laboratory investigations and upcoming space missions are required to shed more light on our potential extraterrestrial molecular origins.
Collapse
Affiliation(s)
- Adrien D Garcia
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France.
| | - Cornelia Meinert
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France.
| | - Haruna Sugahara
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France.
- Japan Aerospace Exploration Agency⁻Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Chuo Sagamihara, Kanagawa 252-5210, Japan.
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
| | - Søren V Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
| | - Uwe J Meierhenrich
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France.
| |
Collapse
|
19
|
Nakano Y, Taniguchi M, Umakoshi Y, Watai D, Fukusaki E. High-Throughput LC-MS/MS Method for Chiral Amino Acid Analysis Without Derivatization. Methods Mol Biol 2019; 2030:253-261. [PMID: 31347123 DOI: 10.1007/978-1-4939-9639-1_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
D-Amino acids have recently attracted much attention in various research fields including medical, clinical, and food industry due to their important biological functions that differ from L-amino acid. Most chiral amino acid separation techniques require complicated derivatization procedures in order to achieve the desirable chromatographic behavior and detectability. This chapter describes a highly sensitive analytical method for the enantioseparation of chiral amino acids without any derivatization process using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The method allows the simultaneous analysis of 18 D-amino acids with high sensitivity and reproducibility. Additionally, this chapter also focuses on the application of the method to real samples for the quantification of targeted amino acids.
Collapse
Affiliation(s)
- Yosuke Nakano
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Moyu Taniguchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yutaka Umakoshi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Daisuke Watai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan.
| |
Collapse
|
20
|
YAMAMOTO S, NISHIDA N, KINOSHITA M, SUZUKI S. On-Line Derivatization and Concentration of Aspartic Acid Using <i>In Situ</i> Photopolymerized Carboxylic Acid Type Polyacrylamide Gels as a Permselective Preconcentrator. CHROMATOGRAPHY 2018. [DOI: 10.15583/jpchrom.2018.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | | | | | - Shigeo SUZUKI
- Faculty of Pharmaceutical Sciences, Kindai University
| |
Collapse
|
21
|
Enantioselective multiple heartcut two-dimensional ultra-high-performance liquid chromatography method with a Coreshell chiral stationary phase in the second dimension for analysis of all proteinogenic amino acids in a single run. J Chromatogr A 2018; 1562:69-77. [PMID: 29859685 DOI: 10.1016/j.chroma.2018.05.062] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/23/2018] [Accepted: 05/27/2018] [Indexed: 11/21/2022]
Abstract
A multiple heartcut (MHC) 2D-UHPLC method with UV detection has been developed for the enantioselective analysis of complex amino acid mixtures in a single run. The MHC method is based on an achiral gradient RPLC separation with 1.8 μm C18 phase (100 × 2.1 mm ID column) in the first dimension (1D) and enantioselective isocratic separation on a tert-butylcarbamoylquinine-based 2.7 μm Coreshell particle column (50 × 3 mm ID) in the second dimension (2D). Pre-column derivatization has been performed with Sanger's reagent (2,4-dinitrofluorobenzene) yielding chromogenic 2,4-dinitrophenylated amino acids (DNP-AAs). Heartcuts of 40 μL fractions of the 1D peaks were sampled into the 2D system via a two-position four-port dual valve connected to two loop decks each equipped with six 40 μL parking loops. Using this setup, 25 amino acids (20 proteinogenic plus allo-Thr, allo-Ile, homoserine (Hse), Orn, β-Ala) have been analyzed enantioselectively in a fully automated manner with a single chiral column within 130 min total run time (1D and 2D). All 2D separations together took 101.5 min (29 cuts with 3.5 min run time each) and thus the total analysis time was quite efficiently utilized. Faster separations were restricted by some software constraints which did not allow to adjust run times in 2D individually. The practical utility of this enantioselective MHC method is documented by application for the absolute configuration determination of the amino acids in gramicidin and bacitracin. Further optimizations should lead to a generic enantioselective amino acid analyzer for the quality control of synthetic peptides and the structural characterization of non-ribosomal peptides.
Collapse
|
22
|
Sugahara H, Meinert C, Nahon L, Jones NC, Hoffmann SV, Hamase K, Takano Y, Meierhenrich UJ. d-Amino acids in molecular evolution in space - Absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:743-758. [PMID: 29357311 DOI: 10.1016/j.bbapap.2018.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/22/2017] [Accepted: 01/05/2018] [Indexed: 02/02/2023]
Abstract
Living organisms on the Earth almost exclusively use l-amino acids for the molecular architecture of proteins. The biological occurrence of d-amino acids is rare, although their functions in various organisms are being gradually understood. A possible explanation for the origin of biomolecular homochirality is the delivery of enantioenriched molecules via extraterrestrial bodies, such as asteroids and comets on early Earth. For the asymmetric formation of amino acids and their precursor molecules in interstellar environments, the interaction with circularly polarized photons is considered to have played a potential role in causing chiral asymmetry. In this review, we summarize recent progress in the investigation of chirality transfer from chiral photons to amino acids involving the two major processes of asymmetric photolysis and asymmetric synthesis. We will discuss analytical data on cometary and meteoritic amino acids and their potential impact delivery to the early Earth. The ongoing and future ambitious space missions, Hayabusa2, OSIRIS-REx, ExoMars 2020, and MMX, are scheduled to provide new insights into the chirality of extraterrestrial organic molecules and their potential relation to the terrestrial homochirality. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.
Collapse
Affiliation(s)
- Haruna Sugahara
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France
| | - Cornelia Meinert
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France
| | - Laurent Nahon
- L'Orme des Merisiers, Synchrotron SOLEIL, BP 48 Saint Aubin, 91192 Gif-sur-Yvette, France
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Søren V Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinori Takano
- Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan
| | - Uwe J Meierhenrich
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France.
| |
Collapse
|
23
|
Development of a liquid chromatography-tandem mass spectrometry method for quantitative analysis of trace d-amino acids. J Biosci Bioeng 2017; 123:134-138. [DOI: 10.1016/j.jbiosc.2016.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/05/2016] [Accepted: 07/11/2016] [Indexed: 02/02/2023]
|
24
|
Ilisz I, Péter A, Lindner W. State-of-the-art enantioseparations of natural and unnatural amino acids by high-performance liquid chromatography. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Methods for the comprehensive structural elucidation of constitution and stereochemistry of lipopeptides. J Chromatogr A 2016; 1428:280-91. [DOI: 10.1016/j.chroma.2015.05.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 01/15/2023]
|
26
|
KOGA R, MIYOSHI Y, SATO Y, MITA M, KONNO R, LINDNER W, HAMASE K. Enantioselective Determination of Phenylalanine, Tyrosine and 3,4-Dihydroxyphenylalanine in the Urine of D-Amino Acid Oxidase Deficient Mice Using Two-Dimensional High-Performance Liquid Chromatography. CHROMATOGRAPHY 2016. [DOI: 10.15583/jpchrom.2015.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Reiko KOGA
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Yurika MIYOSHI
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Yu SATO
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | - Ryuichi KONNO
- Department of Pharmaceutical Sciences, International University of Health and Welfare
| | | | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|