1
|
Bioluminescent Dinoflagellates as a Bioassay for Toxicity Assessment. Int J Mol Sci 2022; 23:ijms232113012. [DOI: 10.3390/ijms232113012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Dinoflagellates bioluminescence mechanism depends upon a luciferin–luciferase reaction that promotes blue light emission (480 nm) in specialized luminogenic organelles called scintillons. The scintillons contain luciferin, luciferase and, in some cases, a luciferin-binding protein (LBP), which prevents luciferin from non-enzymatic oxidation in vivo. Even though dinoflagellate bioluminescence has been studied since the 1950s, there is still a lack of mechanistic understanding on whether the light emission process involves a peroxidic intermediate or not. Still, bioassays employing luminous dinoflagellates, usually from Gonyaulax or Pyrocystis genus, can be used to assess the toxicity of metals or organic compounds. In these dinoflagellates, the response to toxicity is observed as a change in luminescence, which is linked to cellular respiration. As a result, these changes can be used to calculate a percentage of light inhibition that correlates directly with toxicity. This current approach, which lies in between fast bacterial assays and more complex toxicity tests involving vertebrates and invertebrates, can provide a valuable tool for detecting certain pollutants, e.g., metals, in marine sediment and seawater. Thus, the present review focuses on how the dinoflagellates bioluminescence can be applied to evaluate the risks caused by contaminants in the marine environment.
Collapse
|
2
|
Wu Z, Luo H, Yu L, Lee WH, Li L, Mak YL, Lin S, Lam PKS. Characterizing ciguatoxin (CTX)- and Non-CTX-producing strains of Gambierdiscus balechii using comparative transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137184. [PMID: 32084685 DOI: 10.1016/j.scitotenv.2020.137184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Gambierdiscus spp. can produce the polyketide compound, ciguatoxin (CTX), and are hence responsible for ciguatera fish poisoning (CFP). Studying the molecular mechanism that regulates CTX production is crucial for understanding the environmental trigger of CTX as well as for better informing fishery management. Commonly, polyketide synthases are important for polyketide synthesis; however, no gene has been confirmatively assigned to CTX production. Here, suppression subtractive hybridization (SSH) and transcriptome sequencing (RNA-Seq) were used to compare a CTX-producing strain with a non-CTX-producing strain. Using both methods, a total of 52 polyketide synthase (PKS) genes were identified to be up-regulated in the CTX-producing G. balechii, including transcripts encoding single-domain PKSs as well as transcripts encoding multi-domain PKSs. Using reverse transcription quantitative PCR, the expression of these genes in the CTX-producing strain and in nitrogen-limited cultures of the strain was further documented. These data suggest that PKSs are likely involved in polyketide synthesis and potentially in CTX synthesis in this dinoflagellate species. Our study provides the candidate biomarkers for the detection of CTXs or CFP in waters or any other organisms as well as a valuable genomic resource for the research on Gambierdiscus and other dinoflagellates.
Collapse
Affiliation(s)
- Zhen Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Hao Luo
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Wai Hin Lee
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Yim Ling Mak
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China; Department of Marine Sciences, University of Connecticut, Groton, CT, USA.
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
3
|
Fajardo C, De Donato M, Rodulfo H, Martinez-Rodriguez G, Costas B, Mancera JM, Fernandez-Acero FJ. New Perspectives Related to the Bioluminescent System in Dinoflagellates: Pyrocystis lunula, a Case Study. Int J Mol Sci 2020; 21:E1784. [PMID: 32150894 PMCID: PMC7084563 DOI: 10.3390/ijms21051784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/19/2020] [Accepted: 03/03/2020] [Indexed: 11/22/2022] Open
Abstract
Pyrocystis lunula is considered a model organism due to its bioluminescence capacity linked to circadian rhythms. The mechanisms underlying the bioluminescent phenomenon have been well characterized in dinoflagellates; however, there are still some aspects that remain an enigma. Such is the case of the presence and diversity of the luciferin-binding protein (LBP), as well as the synthesis process of luciferin. Here we carry out a review of the literature in relation to the molecular players responsible for bioluminescence in dinoflagellates, with particular interest in P. lunula. We also carried out a phylogenetic analysis of the conservation of protein sequence, structure and evolutionary pattern of these key players. The basic structure of the luciferase (LCF) is quite conserved among the sequences reported to date for dinoflagellate species, but not in the case of the LBP, which has proven to be more variable in terms of sequence and structure. In the case of luciferin, its synthesis has been shown to be complex process with more than one metabolic pathway involved. The glutathione S-transferase (GST) and the P630 or blue compound, seem to be involved in this process. In the same way, various hypotheses regarding the role of bioluminescence in dinoflagellates are exposed.
Collapse
Affiliation(s)
- Carlos Fajardo
- Microbiology Laboratory, Institute of Viticulture and Agri-food Research (IVAGRO), Environmental and Marine Sciences Faculty. University of Cadiz (UCA), 11510 Puerto Real, Spain;
| | - Marcos De Donato
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, 76130 Queretaro, Mexico; (M.D.D.); (H.R.)
| | - Hectorina Rodulfo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, 76130 Queretaro, Mexico; (M.D.D.); (H.R.)
| | - Gonzalo Martinez-Rodriguez
- Institute of Marine Sciences of Andalusia (ICMAN), Department of Marine Biology and Aquaculture, Spanish National Research Council (CSIC), 11519 Puerto Real, Spain;
| | - Benjamin Costas
- Interdisciplinary Centre of Marine and Environmental Research of the University of Porto (CIIMAR), 4450-208 Matosinhos, Portugal;
- Institute of Biomedical Sciences Abel Salazar (ICBAS-UP), University of Porto, 4050-313 Porto, Portugal
| | - Juan Miguel Mancera
- Faculty of Marine and Environmental Sciences, Biology Department, University of Cadiz (UCA), 11510 Puerto Real, Spain;
| | - Francisco Javier Fernandez-Acero
- Microbiology Laboratory, Institute of Viticulture and Agri-food Research (IVAGRO), Environmental and Marine Sciences Faculty. University of Cadiz (UCA), 11510 Puerto Real, Spain;
| |
Collapse
|
4
|
Fajardo C, Amil-Ruiz F, Fuentes-Almagro C, De Donato M, Martinez-Rodriguez G, Escobar-Niño A, Carrasco R, Mancera JM, Fernandez-Acero FJ. An “omic” approach to Pyrocystis lunula: New insights related with this bioluminescent dinoflagellate. J Proteomics 2019; 209:103502. [DOI: 10.1016/j.jprot.2019.103502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 01/10/2023]
|
5
|
Transcriptional and physiological responses to inorganic nutrition in a tropical Pacific strain of Alexandrium minutum: Implications for nutrient uptakes and assimilation. Gene 2019; 711:143950. [PMID: 31255736 DOI: 10.1016/j.gene.2019.143950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 11/22/2022]
Abstract
The marine dinoflagellate Alexandrium minutum is known to produce saxitoxins that cause paralytic shellfish poisoning in human worldwide through consumption of the contaminated shellfish mollusks. Despite numerous studies on the growth physiology and saxitoxin production of this species, the knowledge on the molecular basis of nutrient uptakes in relation to toxin production in this species is limited. In this study, relative expressions of the high-affinity transporter genes of nitrate, ammonium, and phosphate (AmNrt2, AmAmt1 and AmPiPT1) and the assimilation genes, nitrate reductase (AmNas), glutamine synthase (AmGSIII) and carbamoyl phosphate synthase (AmCPSII) from A. minutum were studied in batch clonal culture condition with two nitrogen sources (nitrate: NO3- or ammonium: NH4+) under different N:P ratios (high-P: N:P of 14 and 16, and low-P: N:P of 155). The expression of AmAmt1 was suppressed in excess NH4+-grown condition but was not observed in AmNrt2 and AmNas. Expressions of AmAmt1, AmNrt2, AmNas, AmGSIII, AmCPSII, and AmPiPT1 were high in P-deficient condition, showing that A. minutum is likely to take up nutrients for growth under P-stress condition. Conversely, relative expression of AmCPSII was incongruent with cell growth, but was well correlated with toxin quota, suggesting that the gene might involve in arginine metabolism and related toxin production pathway. The expression of AmGSIII is found coincided with higher toxin production and is believed to involve in mechanism to detoxify the cells from excess ammonium stress. The gene regulation observed in this study has provided better insights into the ecophysiology of A. minutum in relation to its adaptive strategies in unfavorable environments.
Collapse
|
6
|
The Mechanism of Diarrhetic Shellfish Poisoning Toxin Production in Prorocentrum spp.: Physiological and Molecular Perspectives. Toxins (Basel) 2016; 8:toxins8100272. [PMID: 27669302 PMCID: PMC5086633 DOI: 10.3390/toxins8100272] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/10/2016] [Accepted: 09/07/2016] [Indexed: 11/16/2022] Open
Abstract
Diarrhetic shellfish poisoning (DSP) is a gastrointestinal disorder caused by the consumption of seafood contaminated with okadaic acid (OA) and dinophysistoxins (DTXs). OA and DTXs are potent inhibitors of protein phosphatases 2A, 1B, and 2B, which may promote cancer in the human digestive system. Their expression in dinoflagellates is strongly affected by nutritional and environmental factors. Studies have indicated that the level of these biotoxins is inversely associated with the growth of dinoflagellates at low concentrations of nitrogen or phosphorus, or at extreme temperature. However, the presence of leucine or glycerophosphate enhances both growth and cellular toxin level. Moreover, the presence of ammonia and incubation in continuous darkness do not favor the toxin production. Currently, studies on the mechanism of this biotoxin production are scant. Full genome sequencing of dinoflagellates is challenging because of the massive genomic size; however, current advanced molecular and omics technologies may provide valuable insight into the biotoxin production mechanism and novel research perspectives on microalgae. This review presents a comprehensive analysis on the effects of various nutritional and physical factors on the OA and DTX production in the DSP toxin-producing Prorocentrum spp. Moreover, the applications of the current molecular technologies in the study on the mechanism of DSP toxin production are discussed.
Collapse
|
7
|
Valiadi M, Iglesias-Rodriguez MD. Diversity of the luciferin binding protein gene in bioluminescent dinoflagellates--insights from a new gene in Noctiluca scintillans and sequences from gonyaulacoid genera. J Eukaryot Microbiol 2013; 61:134-45. [PMID: 24373055 DOI: 10.1111/jeu.12091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 12/10/2013] [Accepted: 10/13/2013] [Indexed: 11/30/2022]
Abstract
Dinoflagellate bioluminescence systems operate with or without a luciferin binding protein, representing two distinct modes of light production. However, the distribution, diversity, and evolution of the luciferin binding protein gene within bioluminescent dinoflagellates are not well known. We used PCR to detect and partially sequence this gene from the heterotrophic dinoflagellate Noctiluca scintillans and a group of ecologically important gonyaulacoid species. We report an additional luciferin binding protein gene in N. scintillans which is not attached to luciferase, further to its typical combined bioluminescence gene. This supports the hypothesis that a profound re-organization of the bioluminescence system has taken place in this organism. We also show that the luciferin binding protein gene is present in the genera Ceratocorys, Gonyaulax, and Protoceratium, and is prevalent in bioluminescent species of Alexandrium. Therefore, this gene is an integral component of the standard molecular bioluminescence machinery in dinoflagellates. Nucleotide sequences showed high within-strain variation among gene copies, revealing a highly diverse gene family comprising multiple gene types in some organisms. Phylogenetic analyses showed that, in some species, the evolution of the luciferin binding protein gene was different from the organism's general phylogenies, highlighting the complex evolutionary history of dinoflagellate bioluminescence systems.
Collapse
Affiliation(s)
- Martha Valiadi
- Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| | | |
Collapse
|
8
|
Valiadi M, Iglesias-Rodriguez D. Understanding Bioluminescence in Dinoflagellates-How Far Have We Come? Microorganisms 2013; 1:3-25. [PMID: 27694761 PMCID: PMC5029497 DOI: 10.3390/microorganisms1010003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/20/2013] [Accepted: 08/24/2013] [Indexed: 11/27/2022] Open
Abstract
Some dinoflagellates possess the remarkable genetic, biochemical, and cellular machinery to produce bioluminescence. Bioluminescent species appear to be ubiquitous in surface waters globally and include numerous cosmopolitan and harmful taxa. Nevertheless, bioluminescence remains an enigmatic topic in biology, particularly with regard to the organisms' lifestyle. In this paper, we review the literature on the cellular mechanisms, molecular evolution, diversity, and ecology of bioluminescence in dinoflagellates, highlighting significant discoveries of the last quarter of a century. We identify significant gaps in our knowledge and conflicting information and propose some important research questions that need to be addressed to advance this research field.
Collapse
Affiliation(s)
- Martha Valiadi
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse, Plӧn 24306, Germany.
| | - Debora Iglesias-Rodriguez
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
9
|
Butterfield ER, Howe CJ, Nisbet RER. An analysis of dinoflagellate metabolism using EST data. Protist 2012; 164:218-36. [PMID: 23085481 DOI: 10.1016/j.protis.2012.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 01/03/2023]
Abstract
The dinoflagellates are an important group of eukaryotic, single celled algae. They are the sister group of the Apicomplexa, a group of intracellular parasites and photosynthetic algae including the malaria parasite Plasmodium. Many apicomplexan mitochondria have a number of unusual features, including the lack of a pyruvate dehydrogenase and the existence of a branched TCA cycle. Here, we analyse dinoflagellate EST (expressed sequence tag) data to determine whether these features are apicomplexan-specific, or if they are more widespread. We show that dinoflagellates have replaced a key subunit (E1) of pyruvate dehydrogenase with a subunit of bacterial origin and that transcripts encoding many of the proteins that are essential in a conventional ATP synthase/Complex V are absent, as is the case in Apicomplexa. There is a pathway for synthesis of starch or glycogen as a storage carbohydrate. Transcripts encoding isocitrate lyase and malate synthase are present, consistent with ultrastructural reports of a glyoxysome. Finally, evidence for a conventional haem biosynthesis pathway is found, in contrast to the Apicomplexa, Chromera and early branching dinoflagellates (Perkinsus, Oxyrrhis).
Collapse
Affiliation(s)
- Erin R Butterfield
- Sansom Institute for Health Research, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | | | | |
Collapse
|
10
|
Dinoflagellate tandem array gene transcripts are highly conserved and not polycistronic. Proc Natl Acad Sci U S A 2012; 109:15793-8. [PMID: 23019363 DOI: 10.1073/pnas.1206683109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dinoflagellates are an important component of the marine biota, but a large genome with high-copy number (up to 5,000) tandem gene arrays has made genomic sequencing problematic. More importantly, little is known about the expression and conservation of these unusual gene arrays. We assembled de novo a gene catalog of 74,655 contigs for the dinoflagellate Lingulodinium polyedrum from RNA-Seq (Illumina) reads. The catalog contains 93% of a Lingulodinium EST dataset deposited in GenBank and 94% of the enzymes in 16 primary metabolic KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, indicating it is a good representation of the transcriptome. Analysis of the catalog shows a marked underrepresentation of DNA-binding proteins and DNA-binding domains compared with other algae. Despite this, we found no evidence to support the proposal of polycistronic transcription, including a marked underrepresentation of sequences corresponding to the intergenic spacers of two tandem array genes. We also have used RNA-Seq to assess the degree of sequence conservation in tandem array genes and found their transcripts to be highly conserved. Interestingly, some of the sequences in the catalog have only bacterial homologs and are potential candidates for horizontal gene transfer. These presumably were transferred as single-copy genes, and because they are now all GC-rich, any derived from AT-rich contexts must have experienced extensive mutation. Our study not only has provided the most complete dinoflagellate gene catalog known to date, it has also exploited RNA-Seq to address fundamental issues in basic transcription mechanisms and sequence conservation in these algae.
Collapse
|
11
|
Valiadi M, Debora Iglesias-Rodriguez M, Amorim A. DISTRIBUTION AND GENETIC DIVERSITY OF THE LUCIFERASE GENE WITHIN MARINE DINOFLAGELLATES(1). JOURNAL OF PHYCOLOGY 2012; 48:826-836. [PMID: 27011098 DOI: 10.1111/j.1529-8817.2012.01144.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dinoflagellates are the most abundant protists that produce bioluminescence. Currently, there is an incomplete knowledge of the identity of bioluminescent species arising from inter- and intraspecific variability in bioluminescence properties. In this study, PCR primers were designed to amplify the dinoflagellate luciferase gene (lcf) from genetically distant bioluminescent species. One of the primer pairs was "universal," whereas others amplified longer gene sequences from subsets of taxa. The primers were used to study the distribution of lcf and assess bioluminescence potential in dinoflagellate strains representing a wide variety of taxa as well as multiple strains of selected species. Strains of normally bioluminescent species always contained lcf even when they were found not to produce light, thus demonstrating the utility of this methodology as a powerful tool for identifying bioluminescent species. Bioluminescence and lcf were confined to the Gonyaulacales, Noctilucales, and Peridiniales. Considerable variation was observed among genera, or even species within some genera, that contained this gene. Partial sequences of lcf were obtained for the genera Ceratocorys, Ceratium, Fragilidium, and Protoperidinium as well as from previously untested species or gene regions of Alexandrium and Gonyaulax. The sequences revealed high variation among gene copies that obscured the boundaries between species or even genera, some of which could be explained by the presence of two genetic variants within the same species of Alexandrium. Highly divergent sequences within Alexandrium and Ceratium show a more diverse composition of lcf than previously known.
Collapse
Affiliation(s)
- Martha Valiadi
- Ocean and Earth Science, University of Southampton, National Oceanography Centre-Southampton, European Way, Southampton SO14 3ZH, UK Ocean and Earth Science, University of Southampton, National Oceanography Centre-Southampton, European Way, Southampton SO14 3ZH, UK Institute for Life Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UKUniversidade de Lisboa, Faculdade de Ciências, Centro de Oceanografia, 1747-016 Lisbon, Portugal
| | - M Debora Iglesias-Rodriguez
- Ocean and Earth Science, University of Southampton, National Oceanography Centre-Southampton, European Way, Southampton SO14 3ZH, UK Ocean and Earth Science, University of Southampton, National Oceanography Centre-Southampton, European Way, Southampton SO14 3ZH, UK Institute for Life Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UKUniversidade de Lisboa, Faculdade de Ciências, Centro de Oceanografia, 1747-016 Lisbon, Portugal
| | - Ana Amorim
- Ocean and Earth Science, University of Southampton, National Oceanography Centre-Southampton, European Way, Southampton SO14 3ZH, UK Ocean and Earth Science, University of Southampton, National Oceanography Centre-Southampton, European Way, Southampton SO14 3ZH, UK Institute for Life Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UKUniversidade de Lisboa, Faculdade de Ciências, Centro de Oceanografia, 1747-016 Lisbon, Portugal
| |
Collapse
|
12
|
Pochon X, Putnam HM, Burki F, Gates RD. Identifying and characterizing alternative molecular markers for the symbiotic and free-living dinoflagellate genus Symbiodinium. PLoS One 2012; 7:e29816. [PMID: 22238660 PMCID: PMC3251599 DOI: 10.1371/journal.pone.0029816] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/06/2011] [Indexed: 11/28/2022] Open
Abstract
Dinoflagellates in the genus Symbiodinium are best known as endosymbionts of corals and other invertebrate as well as protist hosts, but also exist free-living in coastal environments. Despite their importance in marine ecosystems, less than 10 loci have been used to explore phylogenetic relationships in this group, and only the multi-copy nuclear ribosomal Internal Transcribed Spacer (ITS) regions 1 and 2 have been used to characterize fine-scale genetic diversity within the nine clades (A-I) that comprise the genus. Here, we describe a three-step molecular approach focused on 1) identifying new candidate genes for phylogenetic analysis of Symbiodinium spp., 2) characterizing the phylogenetic relationship of these candidate genes from DNA samples spanning eight Symbiodinium clades (A-H), and 3) conducting in-depth phylogenetic analyses of candidate genes displaying genetic divergences equal or higher than those within the ITS-2 of Symbiodinium clade C. To this end, we used bioinformatics tools and reciprocal comparisons to identify homologous genes from 55,551 cDNA sequences representing two Symbiodinium and six additional dinoflagellate EST libraries. Of the 84 candidate genes identified, 7 Symbiodinium genes (elf2, coI, coIII, cob, calmodulin, rad24, and actin) were characterized by sequencing 23 DNA samples spanning eight Symbiodinium clades (A-H). Four genes displaying higher rates of genetic divergences than ITS-2 within clade C were selected for in-depth phylogenetic analyses, which revealed that calmodulin has limited taxonomic utility but that coI, rad24, and actin behave predictably with respect to Symbiodinium lineage C and are potential candidates as new markers for this group. The approach for targeting candidate genes described here can serve as a model for future studies aimed at identifying and testing new phylogenetically informative genes for taxa where transcriptomic and genomics data are available.
Collapse
Affiliation(s)
- Xavier Pochon
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i, Kane'ohe, Hawai'i, United States of America.
| | | | | | | |
Collapse
|
13
|
Jaeckisch N, Yang I, Wohlrab S, Glöckner G, Kroymann J, Vogel H, Cembella A, John U. Comparative genomic and transcriptomic characterization of the toxigenic marine dinoflagellate Alexandrium ostenfeldii. PLoS One 2011; 6:e28012. [PMID: 22164224 PMCID: PMC3229502 DOI: 10.1371/journal.pone.0028012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/29/2011] [Indexed: 01/09/2023] Open
Abstract
Many dinoflagellate species are notorious for the toxins they produce and ecological and human health consequences associated with harmful algal blooms (HABs). Dinoflagellates are particularly refractory to genomic analysis due to the enormous genome size, lack of knowledge about their DNA composition and structure, and peculiarities of gene regulation, such as spliced leader (SL) trans-splicing and mRNA transposition mechanisms. Alexandrium ostenfeldii is known to produce macrocyclic imine toxins, described as spirolides. We characterized the genome of A. ostenfeldii using a combination of transcriptomic data and random genomic clones for comparison with other dinoflagellates, particularly Alexandrium species. Examination of SL sequences revealed similar features as in other dinoflagellates, including Alexandrium species. SL sequences in decay indicate frequent retro-transposition of mRNA species. This probably contributes to overall genome complexity by generating additional gene copies. Sequencing of several thousand fosmid and bacterial artificial chromosome (BAC) ends yielded a wealth of simple repeats and tandemly repeated longer sequence stretches which we estimated to comprise more than half of the whole genome. Surprisingly, the repeats comprise a very limited set of 79–97 bp sequences; in part the genome is thus a relatively uniform sequence space interrupted by coding sequences. Our genomic sequence survey (GSS) represents the largest genomic data set of a dinoflagellate to date. Alexandrium ostenfeldii is a typical dinoflagellate with respect to its transcriptome and mRNA transposition but demonstrates Alexandrium-like stop codon usage. The large portion of repetitive sequences and the organization within the genome is in agreement with several other studies on dinoflagellates using different approaches. It remains to be determined whether this unusual composition is directly correlated to the exceptionally genome organization of dinoflagellates with a low amount of histones and histone-like proteins.
Collapse
Affiliation(s)
- Nina Jaeckisch
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- * E-mail: (NJ); (UJ)
| | - Ines Yang
- Medizinische Hochschule Hannover, Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Hannover, Germany
| | - Sylke Wohlrab
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Gernot Glöckner
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Juergen Kroymann
- Université Paris-Sud/CNRS, Laboratoire d'Ecologie, Systématique et Evolution, Orsay, France
| | - Heiko Vogel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Allan Cembella
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Uwe John
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- * E-mail: (NJ); (UJ)
| |
Collapse
|
14
|
Analysis of Codon Usage Patterns in Toxic Dinoflagellate Alexandrium tamarense through Expressed Sequence Tag Data. Comp Funct Genomics 2010; 2010:138538. [PMID: 21052492 PMCID: PMC2967832 DOI: 10.1155/2010/138538] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/01/2010] [Indexed: 11/29/2022] Open
Abstract
We have analyzed synonymous codon usage in the genome of A. tamarense CCMP 1598 for protein-coding sequences from 10865 expressed sequence tags (ESTs). We reconstructed a total of 4284 unigenes, including 74 ribosomal protein and 40 plastid-related genes, from ESTs using FrameDP, an open reading frame (ORF) prediction program. Correspondence analysis of A. tamarense genes based on codon usage showed that the GC content at the third base of synonymous codons (GC3s) was strongly correlated with the first axis (r = 0.93 with P < .001). On the other hand, the second axis discriminated between presumed highly and low expressed genes, with expression levels being confirmed by the analysis of EST frequencies (r = −0.89 with P < .001). Our results suggest that mutational bias is the major factor in shaping codon usage in A. tamarense genome, but other factors, namely, translational selection, hydropathy, and aromaticity, also appear to influence the selection of codon usage in this species.
Collapse
|
15
|
Yang I, John U, Beszteri S, Glöckner G, Krock B, Goesmann A, Cembella AD. Comparative gene expression in toxic versus non-toxic strains of the marine dinoflagellate Alexandrium minutum. BMC Genomics 2010; 11:248. [PMID: 20403159 PMCID: PMC2874808 DOI: 10.1186/1471-2164-11-248] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 04/19/2010] [Indexed: 12/05/2022] Open
Abstract
Background The dinoflagellate Alexandrium minutum typically produces paralytic shellfish poisoning (PSP) toxins, which are known only from cyanobacteria and dinoflagellates. While a PSP toxin gene cluster has recently been characterized in cyanobacteria, the genetic background of PSP toxin production in dinoflagellates remains elusive. Results We constructed and analysed an expressed sequence tag (EST) library of A. minutum, which contained 15,703 read sequences yielding a total of 4,320 unique expressed clusters. Of these clusters, 72% combined the forward-and reverse reads of at least one bacterial clone. This sequence resource was then used to construct an oligonucleotide microarray. We analysed the expression of all clusters in three different strains. While the cyanobacterial PSP toxin genes were not found among the A. minutum sequences, 192 genes were differentially expressed between toxic and non-toxic strains. Conclusions Based on this study and on the lack of identified PSP synthesis genes in the two existent Alexandrium tamarense EST libraries, we propose that the PSP toxin genes in dinoflagellates might be more different from their cyanobacterial counterparts than would be expected in the case of a recent gene transfer. As a starting point to identify possible PSP toxin-associated genes in dinoflagellates without relying on a priori sequence information, the sequences only present in mRNA pools of the toxic strain can be seen as putative candidates involved in toxin synthesis and regulation, or acclimation to intracellular PSP toxins.
Collapse
Affiliation(s)
- Ines Yang
- Alfred-Wegener-Institut für Polar-und Meeresforschung, Bremerhaven, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Joseph SJ, Fernández-Robledo JA, Gardner MJ, El-Sayed NM, Kuo CH, Schott EJ, Wang H, Kissinger JC, Vasta GR. The Alveolate Perkinsus marinus: biological insights from EST gene discovery. BMC Genomics 2010; 11:228. [PMID: 20374649 PMCID: PMC2868825 DOI: 10.1186/1471-2164-11-228] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 04/07/2010] [Indexed: 12/05/2022] Open
Abstract
Background Perkinsus marinus, a protozoan parasite of the eastern oyster Crassostrea virginica, has devastated natural and farmed oyster populations along the Atlantic and Gulf coasts of the United States. It is classified as a member of the Perkinsozoa, a recently established phylum considered close to the ancestor of ciliates, dinoflagellates, and apicomplexans, and a key taxon for understanding unique adaptations (e.g. parasitism) within the Alveolata. Despite intense parasite pressure, no disease-resistant oysters have been identified and no effective therapies have been developed to date. Results To gain insight into the biological basis of the parasite's virulence and pathogenesis mechanisms, and to identify genes encoding potential targets for intervention, we generated >31,000 5' expressed sequence tags (ESTs) derived from four trophozoite libraries generated from two P. marinus strains. Trimming and clustering of the sequence tags yielded 7,863 unique sequences, some of which carry a spliced leader. Similarity searches revealed that 55% of these had hits in protein sequence databases, of which 1,729 had their best hit with proteins from the chromalveolates (E-value ≤ 1e-5). Some sequences are similar to those proven to be targets for effective intervention in other protozoan parasites, and include not only proteases, antioxidant enzymes, and heat shock proteins, but also those associated with relict plastids, such as acetyl-CoA carboxylase and methyl erythrithol phosphate pathway components, and those involved in glycan assembly, protein folding/secretion, and parasite-host interactions. Conclusions Our transcriptome analysis of P. marinus, the first for any member of the Perkinsozoa, contributes new insight into its biology and taxonomic position. It provides a very informative, albeit preliminary, glimpse into the expression of genes encoding functionally relevant proteins as potential targets for chemotherapy, and evidence for the presence of a relict plastid. Further, although P. marinus sequences display significant similarity to those from both apicomplexans and dinoflagellates, the presence of trans-spliced transcripts confirms the previously established affinities with the latter. The EST analysis reported herein, together with the recently completed sequence of the P. marinus genome and the development of transfection methodology, should result in improved intervention strategies against dermo disease.
Collapse
Affiliation(s)
- Sandeep J Joseph
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Voolstra CR, Sunagawa S, Schwarz JA, Coffroth MA, Yellowlees D, Leggat W, Medina M. Evolutionary analysis of orthologous cDNA sequences from cultured and symbiotic dinoflagellate symbionts of reef-building corals (Dinophyceae: Symbiodinium). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 4:67-74. [PMID: 20403741 DOI: 10.1016/j.cbd.2008.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 11/13/2008] [Accepted: 11/16/2008] [Indexed: 10/21/2022]
Abstract
Dinoflagellates are ubiquitous marine and freshwater protists. The endosymbiotic relationship between dinoflagellates of the genus Symbiodinium (also known as zooxanthellae) and corals forms the basis of coral reefs. We constructed and analyzed a cDNA library from a cultured Symbiodinium species clade A (CassKB8). The majority of annotated ESTs from the Symbiodinium sp. CassKB8 library cover metabolic genes. Most of those belong to either carbohydrate or energy metabolism. In addition, components of extracellular signal transduction pathways and genes that play a role in cell-cell communication were identified. In a subsequent analysis, we determined all orthologous cDNA sequences between this library (1,484 unique sequences) and a library from a Symbiodinium species clade C (C3) (3,336 unique sequences) that was isolated directly from its symbiotic host. A set of 115 orthologs were identified between Symbiodinium sp. CassKB8 and Symbiodinium sp. C3. These orthologs were subdivided into three groups that show different characteristics and functions: conserved across eukaryotes (CE), dinoflagellate-specific (DS) and Symbiodinium-specific (SS). Orthologs conserved across eukaryotes are mainly comprised of housekeeping genes, photosynthesis-related transcripts and metabolic proteins, whereas the function for most of the dinoflagellate-specific orthologs remains unknown. A dN/dS analysis identified the highest ratio in a Symbiodinium-specific ortholog and evidence for positive selection in a dinoflagellate-specific gene. Evolution of genes and pathways in different dinoflagellates seems to be affected by different lifestyles, and a symbiotic lifestyle may affect population structure and strength of selection. This study is the first evolutionary comparative analysis of orthologs from two coral dinoflagellate symbionts.
Collapse
Affiliation(s)
- Christian R Voolstra
- School of Natural Sciences, University of California, Merced, P.O. Box 2039, Merced, CA 95344, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Uribe P, Fuentes D, Valdés J, Shmaryahu A, Zúñiga A, Holmes D, Valenzuela PDT. Preparation and analysis of an expressed sequence tag library from the toxic dinoflagellate Alexandrium catenella. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:692-700. [PMID: 18478293 DOI: 10.1007/s10126-008-9107-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 04/10/2008] [Accepted: 04/10/2008] [Indexed: 05/26/2023]
Abstract
Dinoflagellates of the genus Alexandrium are photosynthetic microalgae that have an extreme importance due to the impact of some toxic species on shellfish aquaculture industry. Alexandrium catenella is the species responsible for the production of paralytic shellfish poisoning in Chile and other geographical areas. We have constructed a cDNA library from midexponential cells of A. catenella grown in culture free of associated bacteria and sequenced 10,850 expressed sequence tags (ESTs) that were assembled into 1,021 contigs and 5,475 singletons for a total of 6,496 unigenes. Approximately 41.6% of the unigenes showed similarity to genes with predicted function. A significant number of unigenes showed similarity with genes from other dinoflagellates, plants, and other protists. Among the identified genes, the most expressed correspond to those coding for proteins of luminescence, carbohydrate metabolism, and photosynthesis. The sequences of 9,847 ESTs have been deposited in Gene Bank (accession numbers EX 454357-464203).
Collapse
Affiliation(s)
- Paulina Uribe
- Fundación Ciencia para la Vida, Av. Zañartu 1482, Nuñoa, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
19
|
Suzuki-Ogoh C, Wu C, Ohmiya Y. C-terminal region of the active domain enhances enzymatic activity in dinoflagellate luciferase. Photochem Photobiol Sci 2008; 7:208-11. [PMID: 18264588 DOI: 10.1039/b713157g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dinoflagellate luciferase of Lingulodinium polyedrum has three catalytic domains in its single polypeptide chain (M(r) = 137 kDa), and each 42 kDa domain is enzymatically active. Deletion mutants for N- or C-terminal regions of domain 3 of the luciferase, ranging from 29 to 38 kDa, were constructed and expressed in E. coli cells. The activities of N-terminal deleted mutants were above 20% of wild type, but showed different pH-activity profiles. By contrast, the activities of C-terminal deleted mutants decreased drastically to below 1% of wild type, although their pH-activity profiles and spectra were identical to those of wild type L. polyedrum luciferase. These results indicate that the C-terminal region of this enzyme could be important for the bioluminescence reaction, although based on crystal structure of the luciferase domain, this region does not contain active or regulatory sites.
Collapse
Affiliation(s)
- Chie Suzuki-Ogoh
- Research Institute for Cell Engineering, National Institute for Advanced Industrial Science and Technology (AIST), Osaka, 563-8577, Japan
| | | | | |
Collapse
|
20
|
Nisbet RER, Hiller RG, Barry ER, Skene P, Barbrook AC, Howe CJ. Transcript analysis of dinoflagellate plastid gene minicircles. Protist 2007; 159:31-9. [PMID: 17936070 DOI: 10.1016/j.protis.2007.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 07/06/2007] [Indexed: 11/30/2022]
Abstract
The dinoflagellate chloroplast genome is fragmented into a number of plasmid-like minicircles, mostly containing one or more genes, and with a conserved core. We show here that, in addition to the transcripts of similar sizes to individual genes that have been reported previously, there are larger transcripts beginning and ending close to the core region. These may give rise to the smaller transcripts by processing. We also show that previously reported ORFs (open reading frames) are represented by transcripts that are significantly more abundant than those for non-coding regions, indicating that the ORFs are indeed functional. We show that 'empty' minicircles are also transcribed. We propose a model for linkage of DNA replication and transcription in dinoflagellate chloroplasts.
Collapse
Affiliation(s)
- R Ellen R Nisbet
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | | | | | | | | | | |
Collapse
|
21
|
Sanchez-Puerta MV, Lippmeier JC, Apt KE, Delwiche CF. Plastid genes in a non-photosynthetic dinoflagellate. Protist 2006; 158:105-17. [PMID: 17150410 DOI: 10.1016/j.protis.2006.09.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Accepted: 09/19/2006] [Indexed: 11/29/2022]
Abstract
Dinoflagellates are a diverse group of protists, comprising photosynthetic and heterotrophic free-living species, as well as parasitic ones. About half of them are photosynthetic with peridinin-containing plastids being the most common. It is uncertain whether non-photosynthetic dinoflagellates are primitively so, or have lost photosynthesis. Studies of heterotrophic species from this lineage may increase our understanding of plastid evolution. We analyzed an EST project of the early-diverging heterotrophic dinoflagellate Crypthecodinium cohnii looking for evidence of past endosymbiosis. A large number of putative genes of cyanobacterial or algal origin were identified using BLAST, and later screened by metabolic function. Phylogenetic analyses suggest that several proteins could have been acquired from a photosynthetic endosymbiont, arguing for an earlier plastid acquisition in dinoflagellates. In addition, intact N-terminal plastid-targeting peptides were detected, indicating that C. cohnii may contain a reduced plastid and that some of these proteins are imported into this organelle. A number of metabolic pathways, such as heme and isoprenoid biosynthesis, seem to take place in the plastid. Overall, these data indicate that C. cohnii is derived from a photosynthetic ancestor and provide a model for loss of photosynthesis in dinoflagellates and their relatives. This represents the first extensive genomic analysis of a heterotrophic dinoflagellate.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742-5815, USA
| | | | | | | |
Collapse
|
22
|
Barbrook AC, Santucci N, Plenderleith LJ, Hiller RG, Howe CJ. Comparative analysis of dinoflagellate chloroplast genomes reveals rRNA and tRNA genes. BMC Genomics 2006; 7:297. [PMID: 17123435 PMCID: PMC1679814 DOI: 10.1186/1471-2164-7-297] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 11/23/2006] [Indexed: 11/30/2022] Open
Abstract
Background Peridinin-containing dinoflagellates have a highly reduced chloroplast genome, which is unlike that found in other chloroplast containing organisms. Genome reduction appears to be the result of extensive transfer of genes to the nuclear genome. Unusually the genes believed to be remaining in the chloroplast genome are found on small DNA 'minicircles'. In this study we present a comparison of sets of minicircle sequences from three dinoflagellate species. Results PCR was used to amplify several minicircles from Amphidinium carterae so that a homologous set of gene-containing minicircles was available for Amphidinium carterae and Amphidinium operculatum, two apparently closely related peridinin-containing dinoflagellates. We compared the sequences of these minicircles to determine the content and characteristics of their chloroplast genomes. We also made comparisons with minicircles which had been obtained from Heterocapsa triquetra, another peridinin-containing dinoflagellate. These in silico comparisons have revealed several genetic features which were not apparent in single species analyses. The features include further protein coding genes, unusual rRNA genes, which we show are transcribed, and the first examples of tRNA genes from peridinin-containing dinoflagellate chloroplast genomes. Conclusion Comparative analysis of minicircle sequences has allowed us to identify previously unrecognised features of dinoflagellate chloroplast genomes, including additional protein and RNA genes. The chloroplast rRNA gene sequences are radically different from those in other organisms, and in many ways resemble the rRNA genes found in some highly reduced mitochondrial genomes. The retention of certain tRNA genes in the dinoflagellate chloroplast genome has important implications for models of chloroplast-mitochondrion interaction.
Collapse
Affiliation(s)
- Adrian C Barbrook
- Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Nicole Santucci
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, Sydney, NSW 2145, Australia
| | - Lindsey J Plenderleith
- Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Roger G Hiller
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
23
|
Akimoto H, Kinumi T, Ohmiya Y. Circadian rhythm of a TCA cycle enzyme is apparently regulated at the translational level in the dinoflagellate Lingulodinium polyedrum. J Biol Rhythms 2006; 20:479-89. [PMID: 16275767 DOI: 10.1177/0748730405280811] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previously, the authors have reported that intracellular amounts of several metabolic-related enzymes from the photosynthetic dinoflagellate Lingulodinium polyedrum(formerly Gonyaulax polyedra) showed a daily rhythm under a 12:12 h LD cycle. This led the authors to hypothesize that a circadian clock controls metabolism, including the tricarboxylic acid (TCA) cycle. In this study, the authors investigated daily changes in the levels of mRNA, protein, and enzyme activity of several metabolic enzymes during 12:12 h LD, 8:16 h LD, and constant light conditions. The NADP-dependent isocitrate dehydrogenase (NADPICDH) in the TCA cycle exhibited circadian changes of protein abundance and enzyme activity under all conditions, whereas its mRNA level remained constant throughout the cycle. These results indicate that the rhythm of NADPICDH is regulated by a circadian control of protein synthesis or modification rather than by message levels and suggest that the TCA cycle may be controlled by the circadian clock system.
Collapse
Affiliation(s)
- Hidetoshi Akimoto
- Light and Control Research Area, PRESTO, Japan Science and Technology Agency, Osaka
| | | | | |
Collapse
|
24
|
Nozaki H. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended. JOURNAL OF PLANT RESEARCH 2005; 118:247-55. [PMID: 16032387 DOI: 10.1007/s10265-005-0219-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Accepted: 05/06/2005] [Indexed: 05/03/2023]
Abstract
A recent hypothesis on the origin of eukaryotic phototrophs proposes that red algae, green plants (land plants plus green algae), and glaucophytes constitute the primary photosynthetic eukaryotes, whose plastids may have originated directly from a cyanobacterium-like prokaryote via primary endosymbiosis, whereas the plastids of other lineages of eukaryotic phototrophs appear to be the result of secondary endosymbiotic events involving a phototrophic eukaryote and a host cell. However, the phylogenetic relationships among the three lineages of primary photosynthetic eukaryotes remained unresolved because previous nuclear multigene phylogenies used incomplete red algal gene sequences derived mainly from Porphyra (Rhodophyceae, one of the two lineages of the Rhodophyta), and lacked sequences from the Cyanidiophyceae (the other red algal lineage). Recently, the complete nuclear genome sequences from the red alga Cyanidioschyzon merolae 10D of the Cyanidiophyceae were determined. Using this genomic information, nuclear multigene phylogenetic analyses of various lineages of mitochondrion-containing eukaryotes were conducted. Since bacterial and amitochondrial eukaryotic genes present serious problems to eukaryotic phylogenies, basal eukaryotes were deduced based on the paralogous comparison of the concatenated alpha- and beta-tubulin. The comparison demonstrated that cellular slime molds (Amoebozoa) represent the most basal position within the mitochondrion-containing organisms. With the cellular slime molds as the outgroup, phylogenetic analyses based on a 1,525-amino acid sequence of four concatenated nuclear genes [actin, elongation factor-1alpha( EF-1alpha), alpha-tubulin, and beta-tubulin] resolved the presence of two large, robust monophyletic groups and the basal eukaryotic lineages (Amoebozoa). One of the two groups corresponded to the Opisthokonta (Metazoa and Fungi), whereas the other included various lineages containing primary and secondary plastids (red algae, green plants, glaucophytes, euglenoids, heterokonts, and apicomplexans), Ciliophora, Kinetoplastida, dinoflagellates, and Heterolobosea, for which the red algae represented the most basal lineage. Therefore, the plastid primary endosymbiosis likely occurred once in the common ancestor of the latter group, and the primary plastids were subsequently lost in the ancestor(s) of organisms within the group that now lacks primary plastids. A new concept of Plantae was proposed for phototrophic and nonphototrophic organisms belonging to this group on the basis of their common history of plastid primary endosymbiosis. This new scenario of plastid evolution is discussed here, and is compared with recent genome information and findings on the secondary endosymbiosis of the Euglena plastid.
Collapse
Affiliation(s)
- Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
25
|
Patron NJ, Waller RF, Archibald JM, Keeling PJ. Complex protein targeting to dinoflagellate plastids. J Mol Biol 2005; 348:1015-24. [PMID: 15843030 DOI: 10.1016/j.jmb.2005.03.030] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/09/2005] [Accepted: 03/11/2005] [Indexed: 11/30/2022]
Abstract
Protein trafficking pathways to plastids are directed by N-terminal targeting peptides. In plants this consists of a relatively simple transit peptide, while in organisms with secondary plastids (which reside within the endomembrane system) a signal peptide is appended to the transit peptide. Despite amino acid compositional differences between organisms, often due to nucleotide biases, the features of plastid targeting sequences are generally consistent within species. Dinoflagellate algae deviate from this trend. We have conducted an expressed sequence tag (EST) survey of the peridinin-plastid containing dinoflagellate Heterocapsa triquetra to identify and characterize numerous targeting presequences of plastid proteins encoded in the nucleus. Consistent with targeting systems present in other secondary plastid-containing organisms, these all possess a canonical signal peptide at their N termini, however two major classes of transit peptides occur. Both classes possess a common N-terminal portion of the transit peptide, but one class of transit peptides contains a hydrophobic domain that has been reported to act as a stop-transfer membrane anchor, temporarily arresting protein insertion into the endoplasmic reticulum. A second class of transit peptide lacks this feature. These two classes are represented approximately equally, and for any given protein the class is conserved across all dinoflagellate taxa surveyed to date. This dichotomy suggests that two mechanisms, perhaps even trafficking routes, may direct proteins to dinoflagellate plastids. A four-residue phenylalanine-based motif is also a consistent feature of H. triquetra transit peptides, which is an ancient feature predating red algae and galucophytes that was lost in green plastids.
Collapse
Affiliation(s)
- Nicola J Patron
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Botany, University of British Columbia, 3529-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | | | | | | |
Collapse
|