1
|
Tamiaki H, Kichishima S. Chlorophyll Pigments and Their Synthetic Analogs. PLANT & CELL PHYSIOLOGY 2025; 66:153-167. [PMID: 39172630 PMCID: PMC11879082 DOI: 10.1093/pcp/pcae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Oxygenic phototrophs use chlorophylls (Chls) as photosynthetically active pigments. A variety of Chl molecules have been found in photosynthetic organisms, including green plants, algae and cyanobacteria. Here, we review their molecular structures with stereochemistry, occurrence in light-harvesting antennas and reaction centers, biosyntheses in the late stage, chemical stabilities and visible absorption maxima in diethyl ether. The observed maxima are comparable to those of semisynthetic Chl analogs, methyl pyropheophorbides, in dichloromethane. The effects of their peripheral substituents and core π-conjugation on the maxima of the monomeric states are discussed. Notably, the oxidation along the molecular x-axis in Chl-a produces its accessory pigments, Chls-b/c, and introduction of an electron-withdrawing formyl group along the y-axis perpendicular to the x-axis affords far-red light absorbing Chls-d/f.
Collapse
Affiliation(s)
- Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Saki Kichishima
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| |
Collapse
|
2
|
Fujii S, Tamiaki H. Self-aggregation of zinc bacteriochlorophyll-d analogs with an acylhydrazone moiety as the 13-keto-carbonyl alternative. Photochem Photobiol 2025; 101:63-69. [PMID: 38581225 PMCID: PMC11737012 DOI: 10.1111/php.13949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Zinc methyl 3-hydroxymethyl-pyropheophorbides-a possessing an acylhydrazinylidene group at the 131-position were prepared by chemically modifying chlorophyll-a, which were models of bacteriochlorophyll-d as one of the light-harvesting pigments in photosynthetic green bacteria. Similar to the self-aggregation of natural bacteriochlorophyll-d in the antenna systems called chlorosomes, some of the synthetic models self-aggregated in an aqueous Triton X-100 solution to give red-shifted and broadened visible absorption bands. The newly appeared oligomeric bands were ascribable to the exciton coupling of the chlorin π-systems along the molecular y-axis, leading to intense circular dichroism bands in the red-shifted Qy and Soret regions. The self-aggregation in the aqueous micelle was dependent on the steric size of the terminal substituent at the 13-acylhydrazone moiety. An increase in the length of the oligomethylene chain as the terminal moved the red-shifted Qy maxima to shorter wavelengths, and branched alkyl and benzyl substitutes afforded no more self-aggregates to leave monomeric species in the hydrophobic environment inside the micelle. These results indicated that the acyl groups on the 13-hydrazone as the alternative of the natural 13-ketone regulated the chlorosome-like self-aggregation.
Collapse
Affiliation(s)
- Satoru Fujii
- Graduate School of Life SciencesRitsumeikan UniversityKusatsuShigaJapan
| | - Hitoshi Tamiaki
- Graduate School of Life SciencesRitsumeikan UniversityKusatsuShigaJapan
| |
Collapse
|
3
|
Hashimoto Y, Takeda T, Ogasawara S, Tamiaki H. Self-aggregation of 13 2,13 2-disubstituted bacteriochlorophyll-d analog. Photochem Photobiol Sci 2024; 23:2227-2236. [PMID: 39604785 DOI: 10.1007/s43630-024-00662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Zinc methyl 132,132-disubstituted 3-hydroxymethyl-pyropheophorbides-a were prepared as models of bacteriochlorophyll-d, which self-aggregated in the main light-harvesting antenna (chlorosome) of photosynthetic green bacteria. The synthetic zinc 31-hydroxy-131-oxo-chlorins possessing methyl and methoxycarbonyl groups at the 132-position could not self-aggregate in an aqueous Triton X-100 solution. However, another model compound bearing an ethane-1,2-diyl group at the 132-position did self-aggregate under the same conditions to give red-shifted and broadened Qy and Soret absorption bands. The spiro-cyclopropane condensation slightly suppressed the chlorosome-like self-aggregation due to an increase in the steric hindrance around the 13-carbonyl group. The red-shifted and broadened values of these bands by the self-aggregation were dependent on the 132-substituents. The 132-substitution substantially controlled the aqueous J-aggregation.
Collapse
Affiliation(s)
- Yamato Hashimoto
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Toyoho Takeda
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Shin Ogasawara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
4
|
Matsubara S, Shoji S, Tamiaki H. Biomimetic light-harvesting antennas via the self-assembly of chemically programmed chlorophylls. Chem Commun (Camb) 2024; 60:12513-12524. [PMID: 39376203 DOI: 10.1039/d4cc04363d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The photosynthetic pigment "chlorophyll" possesses attractive photophysical properties, including efficient sunlight absorption, photoexcited energy transfer, and charge separation, which are advantageous for applications for photo- and electro-functional materials such as artificial photosynthesis and solar cells. However, these functions cannot be realized by individual chlorophyll molecules alone; rather, they are achieved by the formation of sophisticated supramolecules through the self-assembly of the pigments. Here, we present strategies for constructing and developing artificial light-harvesting systems by mimicking photosynthetic antenna complexes through the highly ordered supramolecular self-assembly of synthetic dyes, particularly chlorophyll derivatives.
Collapse
Affiliation(s)
- Shogo Matsubara
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi, 466-8555, Japan
| | - Sunao Shoji
- Faculty of Engineering, Nara Women's University, Nara 630-8506, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
5
|
Yasui M, Tamiaki H. Supramolecular chirality in self-assembly of zinc protobacteriochlorophyll-d analogs possessing enantiomeric esterifying groups. Photochem Photobiol Sci 2024; 23:421-434. [PMID: 38265754 DOI: 10.1007/s43630-023-00528-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024]
Abstract
Zinc 3-hydroxymethyl-pyroprotopheophorbides-a esterified with a chiral secondary alcohol at the 17-propionate residue were prepared as bacteriochlorophyll-d analogs. The synthetic zinc 31-hydroxy-131-oxo-porphyrins self-aggregated in an aqueous Triton X-100 micellar solution to give red-shifted and broadened Soret and Qy absorption bands in comparison with their monomeric bands. The intense, exciton-coupled circular dichroism spectra of their self-aggregates were dependent on the chirality of the esterifying groups. The observation indicated that the self-aggregates based on the J-type stacking of the porphyrin cores were sensitive to the peripheral 17-propionate residues. The supramolecular structures of the present J-aggregates as models of bacteriochlorophyll aggregates in natural chlorosomes were remotely regulated by the esterifying groups.
Collapse
Affiliation(s)
- Mizuki Yasui
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
6
|
Zhou JN, Cheng KQ, Zhang X, Yang S, Liu J, Li W, Li Q, Han J, Xie XY, Cui G. Mechanistic insights into photoinduced energy and charge transfer dynamics between magnesium-centered tetrapyrroles and carbon nanotubes. Phys Chem Chem Phys 2023; 25:30627-30635. [PMID: 37933177 DOI: 10.1039/d3cp04573k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Functionalizing single-walled carbon nanotubes (SWNTs) with light-harvesting molecules is a facile way to construct donor-acceptor nanoarchitectures with intriguing optoelectronic properties. Magnesium-centered bacteriochlorin (MgBC), chlorin (MgC), and porphyrin (MgP) are a series of tetrapyrrole macrocycles comprising a central metal and four coordinated aromatic or antiaromatic five-membered rings linked by methine units, which show excellent visible light absorption. To delineate the effects of the aromaticity of coordinated rings on the optoelectronic properties of the nanocomposites, the photoinduced energy and charge transfer dynamics between Mg-centered tetrapyrroles and SWNTs are explored. The results show that excited energy transfer (EET) can occur within MgP@SWNT ascribed to the stabilization of the highest occupied molecular orbital (HOMO) in MgP with the increase of aromatic coordinated rings, while only electron transfer can take place in MgBC@SWNT and MgC@SWNT. Non-adiabatic dynamics simulations demonstrate that electron and hole transfer from MgP to SWNT is asynchronous. The electron transfer is ultrafast with a timescale of ca. 50 fs. By contrast, the hole transfer is significantly suppressed, although it can be accelerated to some extent when using a lower excitation energy of 2.2 eV as opposed to 3.1 eV. Further analysis reveals that the large energy gaps between charge-donor and charge-acceptor states play a crucial role in regulating photoexcited state relaxation dynamics. Our theoretical insights elucidate the structure-functionality interrelations between Mg-centered tetrapyrroles and SWNTs and provide a comprehensive understanding of the underlying charge transfer mechanism within MgP@SWNT nanocomposites, which paves the way for the forthcoming development of SWNT-based photo-related functional materials with targeted applications.
Collapse
Affiliation(s)
- Jia-Ning Zhou
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Ke-Qin Cheng
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Xiaolong Zhang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Shubin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Wenzuo Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Qingzhong Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Juan Han
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Xiao-Ying Xie
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
- Hefei National Laboratory, Hefei, 230088, China
| |
Collapse
|
7
|
Hirose M, Tsukatani Y, Harada J, Tamiaki H. Characterization of regioisomeric diterpenoid tails in bacteriochlorophylls produced by geranylgeranyl reductase from Halorhodospira halochloris and Blastochloris viridis. PHOTOSYNTHESIS RESEARCH 2022; 154:1-12. [PMID: 35852706 DOI: 10.1007/s11120-022-00938-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Geranylgeranyl reductase (GGR) encoded by the bchP gene catalyzes the reductions of three unsaturated C = C double bonds (C6 = C7, C10 = C11, and C14 = C15) in a geranylgeranyl (GG) group of the esterifying moiety in 17-propionate residue of bacteriochlorophyll (BChl) molecules. It was recently reported that GGR in Halorhodospira halochloris potentially catalyzes two hydrogenations, yielding BChl with a tetrahydrogeranylgeranyl (THGG) tail. Furthermore, its engineered GGR, in which N-terminal insertion peptides characteristic for H. halochloris were deleted, performed single hydrogenation, producing BChl with a dihydrogeranylgeranyl (DHGG) tail. In some of these enzymatic reactions, it remained unclear in which order the C = C double bond in a GG group was first reduced. In this study, we demonstrated that the (variant) GGR from H. halochloris catalyzed an initial reduction of the C6 = C7 double bond to yield a 6,7-DHGG tail. The intact GGR of H. halochloris catalyzed the further hydrogenation of the C14 = C15 double bonds to give a 6,7,14,15-THGG group, whereas deleting the characteristic peptide region from the GGR suppressed the C14 = C15 reduction. We also verified that in a model bacterium, Blastochloris viridis producing standard BChl-b, the reduction of a GG to phytyl group occurred via 10,11-DHGG and 6,7,10,11-THGG. The high-performance liquid chromatographic elution profiles of BChls-a/b employed in this study are essential for identifying the regioisomeric diterpenoid tails in the BChls of phototrophic bacteria distributed in nature and elucidating GGR enzymatic reactions.
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yusuke Tsukatani
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, 237-0061, Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Fukuoka, 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
8
|
Shoji S, Stepanenko V, Würthner F, Tamiaki H. Self-assembly of a zinc bacteriochlorophyll- d analog with a lipophilic tertiary amide group in the 17-substituent. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sunao Shoji
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Vladimir Stepanenko
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
9
|
Takeda T, Kitagawa Y, Tamiaki H. Substituted Methylenation at the 13 2 -Position of a Chlorophyll-a Derivative via Mixed Aldol Condensation, Optical Properties of the Synthetic Bacteriochlorophyll-d Analogs, and Self-aggregation of Their Zinc Complexes. Photochem Photobiol 2022; 98:1059-1067. [PMID: 35119101 DOI: 10.1111/php.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/30/2022]
Abstract
Chlorophyll-a derivatives possessing a substituted methylene group at the 132 -position were prepared by the mixed aldol condensation of methyl 3-hydroxymethyl-pyropheophorbide-a with aldehydes bearing a methyl, p-nitro/cyanophenyl, or pentafluorophenyl group. Their electronic absorption spectra were dependent on the substituents at the methylene terminal. The Soret bands were broadened with increasing the group electronegativity of the substituents, which was ascribable to the charge transfer from the core chlorin to the peripheral substituent in a molecule. Although their Qy absorption and fluorescence emission bands resembled each other, the emission intensities decreased with an increase in the electronegativity because of the intramolecular electron transfer quenching. Some of their zinc complexes self-aggregated in a less polar organic solvent to give red-shifted and broadened absorption bands with intense circular dichroism couplets, which were similar to those of bacteriochlorophyll-c/d aggregates in natural chlorosomes as the main light-harvesting antennas of green photosynthetic bacteria and their models. The J-aggregation was suppressed with an enhancement in the size of the 132 -substituents.
Collapse
Affiliation(s)
- Toyoho Takeda
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yuichi Kitagawa
- Division of Materials Chemistry, Faculty of Engineering, Hokkaido University, Sapporo Hokkaido, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
10
|
Sakaguchi K, Kishi M, Tamiaki H. Self-aggregation of Synthetic 20- O-Substituted Bacteriochlorophyll- d Analogs. CHEM LETT 2021. [DOI: 10.1246/cl.210216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kana Sakaguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Masashi Kishi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
11
|
Hirose M, Harada J, Tamiaki H. In Vitro Hydrolysis of Zinc Chlorophyllide a Homologues by a BciC Enzyme. Biochemistry 2020; 59:4622-4626. [PMID: 33258578 DOI: 10.1021/acs.biochem.0c00850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chlorosomes in green photosynthetic bacteria are the largest and most efficient light-harvesting antenna systems of all phototrophs. The core part of chlorosomes consists of bacteriochlorophyll c, d, or e molecules. In their biosynthetic pathway, a BciC enzyme catalyzes the removal of the C132-methoxycarbonyl group of chlorophyllide a. In this study, the in vitro enzymatic reactions of chlorophyllide a analogues, C132-methylene- and ethylene-inserted zinc complexes, were examined using a BciC protein from Chlorobaculum tepidum. As the products, their hydrolyzed free carboxylic acids were observed without the corresponding demethoxycarbonylated compounds. The results showed that the in vivo demethoxycarbonylation of chlorophyllide a by an action of the BciC enzyme would occur via two steps: (1) an enzymatic hydrolysis of a methyl ester at the C132-position, followed by (2) a spontaneous (nonenzymatic) decarboxylation in the resulting carboxylic acid.
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Graduated School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduated School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
12
|
Funakoshi D, Nomura Y, Shoji S, Tamiaki H. Zinc 7,8-Dihydroxylated Chlorophyll-a Derivative as a Synthetic Model of Natural Bacteriochlorophyll-a. CHEM LETT 2020. [DOI: 10.1246/cl.200585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Daichi Funakoshi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yosaku Nomura
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Sunao Shoji
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
13
|
Hirose M, Teramura M, Harada J, Tamiaki H. BciC-Catalyzed C13 2 -Demethoxycarbonylation of Metal Pheophorbide a Alkyl Esters. Chembiochem 2020; 21:1473-1480. [PMID: 31900999 DOI: 10.1002/cbic.201900745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 11/10/2022]
Abstract
Bacteriochlorophyll c molecules self-aggregate to form large oligomers in the core part of chlorosomes, which are the main light-harvesting antenna systems of green photosynthetic bacteria. In the biosynthetic pathway of bacteriochlorophyll c, a BciC enzyme catalyzes the removal of the C132 -methoxycarbonyl group of chlorophyllide a, which possesses a free propionate residue at the C17-position and a magnesium ion as the central metal. The in vitro C132 -demethoxycarbonylations of chlorophyll a derivatives with various alkyl propionate residues and central metals were examined by using the BciC enzyme derived from one green sulfur bacteria species, Chlorobaculum tepidum. The BciC enzymatic reactions of zinc pheophorbide a alkyl esters were gradually suppressed with an increase of the alkyl chain length in the C17-propionate residue (from methyl to pentyl esters) and finally the hexyl ester became inactive for the BciC reaction. Although not only the zinc but also nickel and copper complexes were demethoxycarbonylated by the BciC enzyme, the reactions were largely dependent on the coordination ability of the central metals: Zn>Ni>Cu. The above substrate specificity indicates that the BciC enzyme would not bind directly to the carboxy group of chlorophyllide a, but would bind to its central magnesium to form the stereospecific complex of BciC with chlorophyllide a, giving pyrochlorophyllide a, which lacks the (132 R)-methoxycarbonyl group.
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Graduated School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Misato Teramura
- Graduated School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Jiro Harada
- Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduated School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
14
|
Nakano T, Tamiaki H. Synthesis and Self‐Aggregation of Chlorophyll‐
a
Derivatives with Ethynylene and Phenylene Groups Inserted Between the Hydroxymethyl Group and the Chlorin π‐Skeleton. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Takeo Nakano
- Graduate School of Life SciencesRitsumeikan University Kusatsu Shiga 525-8577 Japan
| | - Hitoshi Tamiaki
- Graduate School of Life SciencesRitsumeikan University Kusatsu Shiga 525-8577 Japan
| |
Collapse
|
15
|
Liu D, Yang H, Yuan Y, Zhu H, Zhang M, Wei X, Sun D, Wang X, Yang S, Yang L. Comparative Transcriptome Analysis Provides Insights Into Yellow Rind Formation and Preliminary Mapping of the Clyr ( Yellow Rind) Gene in Watermelon. FRONTIERS IN PLANT SCIENCE 2020; 11:192. [PMID: 32218790 PMCID: PMC7078170 DOI: 10.3389/fpls.2020.00192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
As an important appearance trait, the rind color of watermelon fruit affects the commodity value and further determines consumption choices. In this study, a comparative transcriptome analysis was conducted to elucidate the genes and pathways involved in the formation of yellow rind fruit in watermelon using a yellow rind inbred line WT4 and a green rind inbred line WM102. A total of 2,362 differentially expressed genes (DEGs) between WT4 and WM102 at three different stages (0, 7, and 14 DAP) were identified and 9,770 DEGs were obtained by comparing the expression level at 7 DAP and 14 DAP with the former stages of WT4. The function enrichment of DEGs revealed a number of pathways and terms in biological processes, cellular components, and molecular functions that were related to plant pigment metabolism, suggesting that there may be a group of common core genes regulating rind color formation. In addition, next-generation sequencing aided bulked-segregant analysis (BSA-seq) of the yellow rind pool and green rind pool selected from an F2 population revealed that the yellow rind gene (Clyr) was mapped on the top end of chromosome 4. Based on the BSA-seq analysis result, Clyr was further confined to a region of 91.42 kb by linkage analysis using 1,106 F2 plants. These results will aid in identifying the key genes and pathways associated with yellow rind formation and elucidating the molecular mechanism of rind color formation in watermelon.
Collapse
Affiliation(s)
- Dongming Liu
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Huihui Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Minjuan Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Dongling Sun
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xiaojuan Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Shichao Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
16
|
Doi M, Tamiaki H. Synthesis of Sedimentary Porphyrin-like Chlorophyll- a Derivatives Lacking the 3-Substituent. CHEM LETT 2020. [DOI: 10.1246/cl.190911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Marie Doi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
17
|
Ohashi K, Kinoshita Y, Tamiaki H. Syntheses of Chalcone-Type Chlorophyll Derivatives Possessing a Bacteriochlorin, Chlorin or Porphyrin π-System and Their Optical Properties. Photochem Photobiol 2018; 95:755-761. [PMID: 30378689 DOI: 10.1111/php.13044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Abstract
C3-(Trans-2-arylethenyl)carbonylated chlorophyll derivatives possessing a bacteriochlorin or chlorin π-system were synthesized by cross-aldol (Claisen-Schmidt) condensation of methyl pyrobacteriopheophorbide-a or 3-acetyl-3-devinyl-pyropheophorbide-a bearing the C3-acetyl group with p-(un)substituted benzaldehydes under basic conditions. The corresponding porphyrin-type chlorophyll derivatives were prepared by the oxidation (17,18-didehydrogenation) of the chlorin-type. Their Qy absorption and fluorescence emission maxima in dichloromethane correlated well with Hammett substituent constants of the p-substituents. Several electron-withdrawing p-substituents suppressed the emission due to photoinduced electron transfer quenching in a molecule. The substitution sensitivities for their maxima and fluorescence quantum yields decreased in the order of bacteriochlorin-, chlorin- and porphyrin-type derivatives.
Collapse
Affiliation(s)
- Kota Ohashi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yusuke Kinoshita
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
18
|
Mizoguchi T, Isaji M, Yamano N, Harada J, Fujii R, Tamiaki H. Molecular Structures and Functions of Chlorophylls-a Esterified with Geranylgeranyl, Dihydrogeranylgeranyl, and Tetrahydrogeranylgeranyl Groups at the 17-Propionate Residue in a Diatom, Chaetoceros calcitrans. Biochemistry 2017. [PMID: 28627163 DOI: 10.1021/acs.biochem.7b00381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The 17-propionate ester group of chlorophyll(Chl)-a in some oxygenic phototrophs was investigated using HPLC. Chls-a esterified with partially dehydrogenated forms of a phytyl group were found in fully grown cells of a diatom, Chaetoceros calcitrans: geranylgeranyl (GG), dihydrogeranylgeranyl (DHGG), and tetrahydrogeranylgeranyl (THGG). Chls-a bearing such esterifying groups were reported to be found only in greening processes of higher plants, and thus these Chls-a have been thought to be biosynthetic precursors for phytylated Chl-a. Their molecular structures were unambiguously determined using 1H and 13C NMR spectroscopy and mass spectrometry. In particular, the positions of C═C double bonds in DHGG were identified at C2═C3, C6═C7, and C14═C15, and those in THGG were determined to be at C2═C3 and C14═C15. Notably, the present DHGG was different from the previously determined DHGG of bacteriochlorophyll-a in purple bacteria (C2═C3, C10═C11, and C14═C15). Moreover, thylakoid membranes as well as fucoxanthin-chlorophyll-a/c proteins called FCPs were isolated from the diatom, and their Chl-a compositions were analyzed. Chls-a esterified with GG, DHGG, and THGG were detected by HPLC, indicating that such Chls-a were not merely biosynthetic precursors, but photosynthetically active pigments.
Collapse
Affiliation(s)
- Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University , Kusatsu, Shiga 525-8577, Japan
| | - Megumi Isaji
- Graduate School of Life Sciences, Ritsumeikan University , Kusatsu, Shiga 525-8577, Japan
| | | | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine , Kurume, Fukuoka 830-0011, Japan
| | | | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University , Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
19
|
Zhang Q, Zhang C, Cao L, Wang Z, An B, Lin Z, Huang R, Zhang Z, Wang C, Lin W. Förster Energy Transport in Metal–Organic Frameworks Is Beyond Step-by-Step Hopping. J Am Chem Soc 2016; 138:5308-15. [DOI: 10.1021/jacs.6b01345] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qiongqiong Zhang
- Collaborative
Innovation Center of Chemistry for Energy Materials, State Key Laboratory
of Physical Chemistry of Solid Surfaces, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Cankun Zhang
- Collaborative
Innovation Center of Chemistry for Energy Materials, State Key Laboratory
of Physical Chemistry of Solid Surfaces, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Lingyun Cao
- Collaborative
Innovation Center of Chemistry for Energy Materials, State Key Laboratory
of Physical Chemistry of Solid Surfaces, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Zi Wang
- Collaborative
Innovation Center of Chemistry for Energy Materials, State Key Laboratory
of Physical Chemistry of Solid Surfaces, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Bing An
- Collaborative
Innovation Center of Chemistry for Energy Materials, State Key Laboratory
of Physical Chemistry of Solid Surfaces, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Zekai Lin
- Department
of Chemistry, University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States
| | - Ruiyun Huang
- Collaborative
Innovation Center of Chemistry for Energy Materials, State Key Laboratory
of Physical Chemistry of Solid Surfaces, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Zhiming Zhang
- Collaborative
Innovation Center of Chemistry for Energy Materials, State Key Laboratory
of Physical Chemistry of Solid Surfaces, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Cheng Wang
- Collaborative
Innovation Center of Chemistry for Energy Materials, State Key Laboratory
of Physical Chemistry of Solid Surfaces, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Wenbin Lin
- Collaborative
Innovation Center of Chemistry for Energy Materials, State Key Laboratory
of Physical Chemistry of Solid Surfaces, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
- Department
of Chemistry, University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
20
|
Saga Y, Hirota K, Harada J, Tamiaki H. In Vitro Enzymatic Activities of Bacteriochlorophyll a Synthase Derived from the Green Sulfur Photosynthetic Bacterium Chlorobaculum tepidum. Biochemistry 2015; 54:4998-5005. [PMID: 26258685 DOI: 10.1021/acs.biochem.5b00311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The activity of an enzyme encoded by the CT1610 gene in the green sulfur photosynthetic bacterium Chlorobaculum tepidum, which was annotated as bacteriochlorophyll (BChl) a synthase, BchG (denoted as tepBchG), was examined in vitro using the lysates of Escherichia coli containing the heterologously expressed enzyme. BChl a possessing a geranylgeranyl group at the 17-propionate residue (BChl aGG) was produced from bacteriochlorophyllide (BChlide) a and geranylgeranyl pyrophosphate in the presence of tepBchG. Surprisingly, tepBchG catalyzed the formation of BChl a bearing a farnesyl group (BChl aF) as in the enzymatic production of BChl aGG, indicating loose recognition of isoprenoid pyrophosphates in tepBchG. In contrast to such loose recognition of isoprenoid substrates, BChlide c and chlorophyllide a gave no esterifying product upon being incubated with geranylgeranyl or farnesyl pyrophosphate in the presence of tepBchG. These results confirm that tepBchG undoubtedly acts as the BChl a synthase in Cba. tepidum. The enzymatic activity of tepBchG was higher than that of BchG of Rhodobacter sphaeroides at 45 °C, although the former activity was lower than the latter below 35 °C.
Collapse
Affiliation(s)
- Yoshitaka Saga
- †Department of Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan.,‡PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Keiya Hirota
- †Department of Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Jiro Harada
- §Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Hitoshi Tamiaki
- ∥Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
21
|
Lindsey JS. De novo synthesis of gem-dialkyl chlorophyll analogues for probing and emulating our green world. Chem Rev 2015; 115:6534-620. [PMID: 26068531 DOI: 10.1021/acs.chemrev.5b00065] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
22
|
Harada J, Mizoguchi T, Satoh S, Tsukatani Y, Yokono M, Noguchi M, Tanaka A, Tamiaki H. Specific gene bciD for C7-methyl oxidation in bacteriochlorophyll e biosynthesis of brown-colored green sulfur bacteria. PLoS One 2013; 8:e60026. [PMID: 23560066 PMCID: PMC3613366 DOI: 10.1371/journal.pone.0060026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/20/2013] [Indexed: 11/18/2022] Open
Abstract
The gene named bciD, which encodes the enzyme involved in C7-formylation in bacteriochlorophyll e biosynthesis, was found and investigated by insertional inactivation in the brown-colored green sulfur bacterium Chlorobaculum limnaeum (previously called Chlorobium phaeobacteroides). The bciD mutant cells were green in color, and accumulated bacteriochlorophyll c homologs bearing the 7-methyl group, compared to C7-formylated BChl e homologs in the wild type. BChl-c homolog compositions in the mutant were further different from those in Chlorobaculum tepidum which originally produced BChl c: (3(1) S)-8-isobutyl-12-ethyl-BChl c was unusually predominant.
Collapse
Affiliation(s)
- Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
- * E-mail: (JH); (HT)
| | - Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Souichirou Satoh
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yusuke Tsukatani
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masato Noguchi
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sapporo, Hokkaido, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- * E-mail: (JH); (HT)
| |
Collapse
|
23
|
|
24
|
Garcia Costas AM, Tsukatani Y, Rijpstra WIC, Schouten S, Welander PV, Summons RE, Bryant DA. Identification of the bacteriochlorophylls, carotenoids, quinones, lipids, and hopanoids of "Candidatus Chloracidobacterium thermophilum". J Bacteriol 2012; 194:1158-68. [PMID: 22210764 PMCID: PMC3294765 DOI: 10.1128/jb.06421-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/19/2011] [Indexed: 11/20/2022] Open
Abstract
"Candidatus Chloracidobacterium thermophilum" is a recently discovered chlorophototroph from the bacterial phylum Acidobacteria, which synthesizes bacteriochlorophyll (BChl) c and chlorosomes like members of the green sulfur bacteria (GSB) and the green filamentous anoxygenic phototrophs (FAPs). The pigments (BChl c homologs and carotenoids), quinones, lipids, and hopanoids of cells and chlorosomes of this new chlorophototroph were characterized in this study. "Ca. Chloracidobacterium thermophilum" methylates its antenna BChls at the C-8(2) and C-12(1) positions like GSB, but these BChls were esterified with a variety of isoprenoid and straight-chain alkyl alcohols as in FAPs. Unlike the chlorosomes of other green bacteria, "Ca. Chloracidobacterium thermophilum" chlorosomes contained two major xanthophyll carotenoids, echinenone and canthaxanthin. These carotenoids may confer enhanced protection against reactive oxygen species and could represent a specific adaptation to the highly oxic natural environment in which "Ca. Chloracidobacterium thermophilum" occurs. Dihydrogenated menaquinone-8 [menaquinone-8(H(2))], which probably acts as a quencher of energy transfer under oxic conditions, was an abundant component of both cells and chlorosomes of "Ca. Chloracidobacterium thermophilum." The betaine lipid diacylglycerylhydroxymethyl-N,N,N-trimethyl-β-alanine, esterified with 13-methyl-tetradecanoic (isopentadecanoic) acid, was a prominent polar lipid in the membranes of both "Ca. Chloracidobacterium thermophilum" cells and chlorosomes. This lipid may represent a specific adaptive response to chronic phosphorus limitation in the mats. Finally, three hopanoids, diploptene, bacteriohopanetetrol, and bacteriohopanetetrol cyclitol ether, which may help to stabilize membranes during diel shifts in pH and other physicochemical conditions in the mats, were detected in the membranes of "Ca. Chloracidobacterium thermophilum."
Collapse
Affiliation(s)
- Amaya M. Garcia Costas
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yusuke Tsukatani
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - W. Irene C. Rijpstra
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, Den Burg, The Netherlands
| | - Stefan Schouten
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, Den Burg, The Netherlands
| | - Paula V. Welander
- Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Roger E. Summons
- Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
25
|
Wen J, Harada J, Buyle K, Yuan K, Tamiaki H, Oh-Oka H, Loomis RA, Blankenship RE. Characterization of an FMO variant of Chlorobaculum tepidum carrying bacteriochlorophyll a esterified by geranylgeraniol. Biochemistry 2010; 49:5455-63. [PMID: 20521767 DOI: 10.1021/bi1006805] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Fenna-Matthews-Olson light-harvesting antenna (FMO) protein has been a model system for understanding pigment-protein interactions in the energy transfer process in photosynthesis. All previous studies have utilized wild-type FMO proteins from several species. Here we report the purification and characterization of the first FMO protein variant generated via replacement of the esterifying alcohol at the C-17 propionate residue of bacteriochlorophyll (BChl) a, phytol, with geranylgeraniol, which possesses three more double bonds. The FMO protein still assembles with the modified pigment, but both the whole cell absorption and the biochemical purification indicate that the mutant cells contain a much less mature FMO protein. The gene expression was checked using qRT-PCR, and none of the genes encoding BChl a-binding proteins are strongly regulated at the transcriptional level. The smaller amount of the FMO protein in the mutant cell is probably due to the degradation of the apo-FMO protein at different stages after it does not bind the normal pigment. The absorption, fluorescence, and CD spectra of the purified FMO variant protein are similar to those of the wild-type FMO protein except the conformations of most pigments are more heterogeneous, which broadens the spectral bands. Interestingly, the lowest-energy pigment binding site seems to be unchanged and is the only peak that can be well resolved in 77 K absorption spectra. The excited-state lifetime of the variant FMO protein is unchanged from that of the wild type and shows a temperature-dependent modulation similar to that of the wild type. The variant FMO protein is less thermally stable than the wild type. The assembly of the FMO protein and also the implications of the decreased FMO/chlorosome stoichiometry are discussed in terms of the topology of these two antennas on the cytoplasmic membrane.
Collapse
Affiliation(s)
- Jianzhong Wen
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Miyatake T, Tanigawa S, Kato S, Tamiaki H. Aqueous self-aggregates of amphiphilic zinc 31-hydroxy- and 31-methoxy-chlorins for supramolecular light-harvesting systems. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|