1
|
Lønning PE, Nikolaienko O, Knappskog S. Constitutional Epimutations: From Rare Events Toward Major Cancer Risk Factors? JCO Precis Oncol 2025; 9:e2400746. [PMID: 40179326 PMCID: PMC11995855 DOI: 10.1200/po-24-00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 04/05/2025] Open
Abstract
Constitutional epimutations are epigenetic aberrations that arise in normal cells prenatally. Two major forms exist: secondary constitutional epimutations (SCEs), associated with cis-acting genetic aberrations, and primary constitutional epimutations (PCEs), for which no associated genetic aberrations were identified. Some SCEs have been associated with risk of cancer (MLH1 and MSH2 with colon or endometrial cancers, BRCA1 with familial breast and ovarian cancers), although such epimutations are rare, with a total of <100 cases reported. This contrasts recent findings for PCE, where low-level mosaic BRCA1 epimutations are recorded in 5%-10% of healthy females across all age groups, including newborns. BRCA1 PCEs predict an elevated risk of high-grade serous ovarian cancer and triple-negative breast cancer (TNBC) and are estimated to account for about 20% of all TNBCs. A similarly high population frequency is observed for mosaic constitutional epimutations in MGMT, occurring as PCE or SCE, but not in MLH1. Contrasting BRCA1 and MLH1, a potential association with cancer risk for MGMT epimutations is yet unclear. In this review, we provide a summary of findings linking constitutional epimutations to cancer risk with emphasis on PCE. We also highlight challenges in detection of PCE exemplified by low-level mosaic epimutations in BRCA1 and indicate the need for further studies, hypothesizing that improved knowledge about PCE may add significantly to our understanding of cancer risk, carcinogenesis, and potentially development of other diseases as well.
Collapse
Affiliation(s)
| | - Oleksii Nikolaienko
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stian Knappskog
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Nikolaienko O, Anderson GL, Chlebowski RT, Jung SY, Harris HR, Knappskog S, Lønning PE. MGMT epimutations and risk of incident cancer of the colon, glioblastoma multiforme, and diffuse large B cell lymphomas. Clin Epigenetics 2025; 17:28. [PMID: 39980037 PMCID: PMC11841191 DOI: 10.1186/s13148-025-01835-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Constitutional BRCA1 epimutations (promoter hypermethylation) are associated with an elevated risk of triple-negative breast cancer and high-grade serous ovarian cancer. While MGMT epimutations are frequent in colon cancer, glioblastoma, and B-cell lymphoma, it remains unknown whether constitutional MGMT epimutations are associated with risk of any of these malignancies. METHODS We designed a nested case-control study, assessing potential associations between MGMT epimutations in blood from healthy individuals and subsequent risk of incident cancer. The study cohort was drawn from postmenopausal women, participating in the Women's Health Initiative (WHI) study, who had not been diagnosed with either colon cancer, glioblastoma, or B-cell lymphoma prior to study entry. The protocol included n = 400 women developing incident left-sided and n = 400 women developing right-sided colon cancer, n = 400 women developing diffuse large B-cell lymphomas, all matched on a 1:2 basis with cancer-free controls, and n = 195 women developing incident glioblastoma multiforme, matched on a 1:4 basis. All cancers were confirmed in centralized medical record review. Blood samples, collected at entry, were analyzed for MGMT epimutations by massive parallel sequencing. Associations between MGMT methylation and incident cancers were analyzed by Cox proportional hazards regression. RESULTS Analyzing epimutations affecting the key regulatory area of the MGMT promoter, the hazard ratio (HR) was 1.07 (95% CI 0.79-1.45) and 0.80 (0.59-1.08) for right- and left-sided colon cancer, respectively, 1.13 (0.78-1.64) for glioblastoma, and 1.11 (0.83-1.48) for diffuse large B-cell lymphomas. Sensitivity analyses limited to subregions of the MGMT promoter and to individuals with different genotypes of a functional SNP in the MGMT promoter (rs16906252), revealed no significant effect on HR for any of the cancer forms. Neither did we observe any effect of rs16906252 status on HR for any of the cancer forms among individuals methylated or non-methylated at the MGMT promoter. CONCLUSIONS Constitutional MGMT promoter methylation in normal tissue is not associated with an increased risk of developing colon cancer, glioblastoma, or B-cell lymphoma.
Collapse
Affiliation(s)
- Oleksii Nikolaienko
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Garnet L Anderson
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, USA
| | | | - Su Yon Jung
- Department of Epidemiology, Fielding School of Public Health, Translational Sciences Section, Jonsson Comprehensive Cancer Center, School of Nursing, University of California, Los Angeles, USA
| | - Holly R Harris
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, USA
| | - Stian Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Per E Lønning
- Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
3
|
Lønning PE, Nikolaienko O, Knappskog S. Constitutional BRCA1 Epimutations: A Key for Understanding Basal-Like Breast and High-Grade Serous Ovarian Cancer. Hum Mutat 2024; 2024:7353984. [PMID: 40225940 PMCID: PMC11919088 DOI: 10.1155/2024/7353984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 04/15/2025]
Abstract
Germline pathogenic genetic variants in the BRCA1 and BRCA2 genes are the most frequent causes of familial breast and ovarian cancer. Contrasting BRCA2, epimutations in the BRCA1 gene are frequently detected in tissue from triple-negative breast (TNBC) and high-grade serous ovarian cancers (HGSOC). While studies over the last decade have reported BRCA1 epimutations in white blood cells (WBC) from breast and ovarian cancer patients, the potential hazard ratio for incident TNBC and HGSOC was not formally assessed until recently. Conducting a prospective nested case-control study on women participating in the American Women's Health Initiative Study, we provided firm evidence that mosaic WBC BRCA1 epimutations, even at allele frequencies < 0.1%, are associated with a significantly increased risk of both incident HGSOC and TNBC > 5 years after WBC collection. In a second study assessing BRCA1 epimutations in WBC and matched tumor samples from TNBC, our results indicated such epimutations to be the underlying cause of around 20% of TNBC, far exceeding the percentage of cases carrying BRCA1 germline pathogenic genetic variants. We detected primary constitutional BRCA1 epimutations in tissues derived from all three germ layers. They occur independently of BRCA1 promoter haplotypes but are present on the same allele in all WBC within affected individuals. Moreover, epimutations are consistently found on the same allele in normal and tumor breast tissue as well as in WBC. This finding, together with BRCA1 epimutations detected in WBC from newborns, strongly indicates an early embryonic event with clonal expansion affecting all germ layers. Future work in the field must lead to an understanding of exactly when and how the BRCA1 epimutations occur and, most importantly, whether primary constitutional epimutations in genes other than BRCA1 may cause an elevated risk of other cancer types.
Collapse
Affiliation(s)
- Per E. Lønning
- K.G. Jebsen Center for Genome-Directed Cancer TherapyDepartment of OncologyHaukeland University Hospital, Bergen, Norway
| | - Oleksii Nikolaienko
- K.G. Jebsen Center for Genome-Directed Cancer TherapyDepartment of OncologyHaukeland University Hospital, Bergen, Norway
- Department of Clinical ScienceUniversity of Bergen, Bergen, Norway
| | - Stian Knappskog
- K.G. Jebsen Center for Genome-Directed Cancer TherapyDepartment of OncologyHaukeland University Hospital, Bergen, Norway
- Department of Clinical ScienceUniversity of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Xu L, Liddell B, Nesic K, Geissler F, Ashwood L, Wakefield M, Scott C, Waddell N, Kondrashova O. High-level tumour methylation of BRCA1 and RAD51C is required for homologous recombination deficiency in solid cancers. NAR Cancer 2024; 6:zcae033. [PMID: 39055334 PMCID: PMC11270467 DOI: 10.1093/narcan/zcae033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
In ovarian and breast cancer, promoter methylation of BRCA1 or RAD51C is a promising biomarker for PARP inhibitor response, as high levels lead to homologous recombination deficiency (HRD). Yet the extent and role of such methylation in other cancers is not clear. This study comprehensively investigated promoter methylation of eight homologous recombination repair genes across 23 solid cancer types. Here, we showed that BRCA1 methylated cancers were associated with reduced gene expression, loss of heterozygosity (LOH), TP53 mutations and genomic features of HRD. We identified BRCA1 methylation in 3% of the copy-number high subtype of endometrial cancer, and as a rare event in six other cancer types, including lung squamous cell, pancreatic, bladder and stomach cancer. RAD51C promoter methylation was widespread across multiple cancer types, but HRD features were only observed for cases which contained high-level tumour methylation and LOH of RAD51C. While RAD51C methylation was frequent in stomach adenocarcinoma (6%) and low-grade glioma (2.5%), it was mostly detected at a low tumour level, suggestive of heterozygous methylation, and was associated with CpG island methylator phenotype. Our findings indicate that high-level tumour methylation of BRCA1 and RAD51C should be explored as a PARP inhibitor biomarker across multiple cancers.
Collapse
Affiliation(s)
- Lijun Xu
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Brett Liddell
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Franziska Geissler
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Lauren M Ashwood
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Matthew J Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Nicola Waddell
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Olga Kondrashova
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Ibrahim MB, Flanagan J, Ibrahim T, Rouleau E. Unraveling noncoding DNA variants and epimutations: a paradigm shift in hereditary cancer research. Future Oncol 2024; 20:1289-1298. [PMID: 38722139 PMCID: PMC11318707 DOI: 10.2217/fon-2023-0665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/11/2024] [Indexed: 06/12/2024] Open
Abstract
Exhaustive efforts have been dedicated to uncovering genomic aberrations linked to cancer susceptibility. Noncoding sequence variants and epigenetic alterations significantly influence gene regulation and could contribute to cancer development. However, exploring noncoding regions in hereditary cancer susceptibility demands cutting-edge methodologies for functionally characterizing genomic discoveries. Additionally, comprehending the impact on cancer development of variants in noncoding DNA and the epigenome necessitates integrating diverse data through bioinformatic analyses. As novel technologies and analytical methods continue to advance, this realm of research is rapidly gaining traction. Within this mini-review, we delve into future research domains concerning aberrations in noncoding DNA regions, such as pseudoexons, promoter variants and cis-epimutations.
Collapse
Affiliation(s)
- Maria Baz Ibrahim
- Department of Oncogenetics & Tumor Biology, Paul Brousse Hospital, Villejuif, France
| | - James Flanagan
- Department of Surgery & Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, W12 8EE, UK
| | - Tony Ibrahim
- International Department of Medical Oncology, Gustave Roussy, 94805, Villejuif, France
| | - Etienne Rouleau
- Department of Biology & Pathology-Cancer Genetics Laboratory, Gustave Roussy, 94805, Villejuif, France
| |
Collapse
|
6
|
Geissler F, Nesic K, Kondrashova O, Dobrovic A, Swisher EM, Scott CL, J. Wakefield M. The role of aberrant DNA methylation in cancer initiation and clinical impacts. Ther Adv Med Oncol 2024; 16:17588359231220511. [PMID: 38293277 PMCID: PMC10826407 DOI: 10.1177/17588359231220511] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 02/01/2024] Open
Abstract
Epigenetic alterations, including aberrant DNA methylation, are now recognized as bone fide hallmarks of cancer, which can contribute to cancer initiation, progression, therapy responses and therapy resistance. Methylation of gene promoters can have a range of impacts on cancer risk, clinical stratification and therapeutic outcomes. We provide several important examples of genes, which can be silenced or activated by promoter methylation and highlight their clinical implications. These include the mismatch DNA repair genes MLH1 and MSH2, homologous recombination DNA repair genes BRCA1 and RAD51C, the TERT oncogene and genes within the P15/P16/RB1/E2F tumour suppressor axis. We also discuss how these methylation changes might occur in the first place - whether in the context of the CpG island methylator phenotype or constitutional DNA methylation. The choice of assay used to measure methylation can have a significant impact on interpretation of methylation states, and some examples where this can influence clinical decision-making are presented. Aberrant DNA methylation patterns in circulating tumour DNA (ctDNA) are also showing great promise in the context of non-invasive cancer detection and monitoring using liquid biopsies; however, caution must be taken in interpreting these results in cases where constitutional methylation may be present. Thus, this review aims to provide researchers and clinicians with a comprehensive summary of this broad, but important subject, illustrating the potentials and pitfalls of assessing aberrant DNA methylation in cancer.
Collapse
Affiliation(s)
- Franziska Geissler
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ksenija Nesic
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alexander Dobrovic
- University of Melbourne Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | | | - Clare L. Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
- Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Matthew J. Wakefield
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Nikolaienko O, Eikesdal HP, Ognedal E, Gilje B, Lundgren S, Blix ES, Espelid H, Geisler J, Geisler S, Janssen EAM, Yndestad S, Minsaas L, Leirvaag B, Lillestøl R, Knappskog S, Lønning PE. Prenatal BRCA1 epimutations contribute significantly to triple-negative breast cancer development. Genome Med 2023; 15:104. [PMID: 38053165 PMCID: PMC10698991 DOI: 10.1186/s13073-023-01262-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Normal cell BRCA1 epimutations have been associated with increased risk of triple-negative breast cancer (TNBC). However, the fraction of TNBCs that may have BRCA1 epimutations as their underlying cause is unknown. Neither are the time of occurrence and the potential inheritance patterns of BRCA1 epimutations established. METHODS To address these questions, we analyzed BRCA1 methylation status in breast cancer tissue and matched white blood cells (WBC) from 408 patients with 411 primary breast cancers, including 66 TNBCs, applying a highly sensitive sequencing assay, allowing allele-resolved methylation assessment. Furthermore, to assess the time of origin and the characteristics of normal cell BRCA1 methylation, we analyzed umbilical cord blood of 1260 newborn girls and 200 newborn boys. Finally, we assessed BRCA1 methylation status among 575 mothers and 531 fathers of girls with (n = 102) and without (n = 473) BRCA1 methylation. RESULTS We found concordant tumor and mosaic WBC BRCA1 epimutations in 10 out of 66 patients with TNBC and in four out of six patients with estrogen receptor (ER)-low expression (< 10%) tumors (combined: 14 out of 72; 19.4%; 95% CI 11.1-30.5). In contrast, we found concordant WBC and tumor methylation in only three out of 220 patients with 221 ER ≥ 10% tumors and zero out of 114 patients with 116 HER2-positive tumors. Intraindividually, BRCA1 epimutations affected the same allele in normal and tumor cells. Assessing BRCA1 methylation in umbilical WBCs from girls, we found mosaic, predominantly monoallelic BRCA1 epimutations, with qualitative features similar to those in adults, in 113/1260 (9.0%) of individuals, but no correlation to BRCA1 methylation status either in mothers or fathers. A significantly lower fraction of newborn boys carried BRCA1 methylation (9/200; 4.5%) as compared to girls (p = 0.038). Similarly, WBC BRCA1 methylation was found less common among fathers (16/531; 3.0%), as compared to mothers (46/575; 8.0%; p = 0.0003). CONCLUSIONS Our findings suggest prenatal BRCA1 epimutations might be the underlying cause of around 20% of TNBC and low-ER expression breast cancers. Such constitutional mosaic BRCA1 methylation likely arise through gender-related mechanisms in utero, independent of Mendelian inheritance.
Collapse
Affiliation(s)
- Oleksii Nikolaienko
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Hans P Eikesdal
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Elisabet Ognedal
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Bjørnar Gilje
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Steinar Lundgren
- Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Egil S Blix
- Department of Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Helge Espelid
- Department of Surgery, Haugesund Hospital, Haugesund, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stephanie Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, Stavanger University, Stavanger, Norway
| | - Synnøve Yndestad
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Laura Minsaas
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Beryl Leirvaag
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Reidun Lillestøl
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Stian Knappskog
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Per E Lønning
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway.
| |
Collapse
|
8
|
Coppedè F. Genes and the Environment in Cancer: Focus on Environmentally Induced DNA Methylation Changes. Cancers (Basel) 2023; 15:cancers15041019. [PMID: 36831363 PMCID: PMC9953779 DOI: 10.3390/cancers15041019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Cancer has traditionally been viewed as a genetic disorder resulting from the accumulation of gene mutations, chromosomal rearrangements, and aneuploidies in somatic cells [...].
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; ; Tel.: +39-050-2218544
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
9
|
Nikolaienko O, Lønning PE, Knappskog S. epialleleR: an R/Bioconductor package for sensitive allele-specific methylation analysis in NGS data. Gigascience 2022; 12:giad087. [PMID: 37919976 PMCID: PMC10622323 DOI: 10.1093/gigascience/giad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023] Open
Abstract
Low-level mosaic epimutations within the BRCA1 gene promoter occur in 5-8% of healthy individuals and are associated with a significantly elevated risk of breast and ovarian cancer. Similar events may also affect other tumor suppressor genes, potentially being a significant contributor to cancer burden. While this opens a new area for translational research, detection of low-level mosaic epigenetic events requires highly sensitive and robust methodology for methylation analysis. We here present epialleleR, a computational framework for sensitive detection, quantification, and visualization of mosaic epimutations in methylation sequencing data. Analyzing simulated and real data sets, we provide in-depth assessments of epialleleR performance and show that linkage to epihaplotype data is necessary to detect low-level methylation events. The epialleleR is freely available at https://github.com/BBCG/epialleleR and https://bioconductor.org/packages/epialleleR/ as an open-source R/Bioconductor package.
Collapse
Affiliation(s)
- Oleksii Nikolaienko
- K. G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
| | - Per Eystein Lønning
- K. G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- Department of Oncology, Haukeland University Hospital, Bergen 5021, Norway
| | - Stian Knappskog
- K. G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- Department of Oncology, Haukeland University Hospital, Bergen 5021, Norway
| |
Collapse
|
10
|
El-Ahwany E, Hassan M, Elzallat M, Abdelsalam L, El-Sawy MAH, Seyam M. Association of Sat-a and Alu methylation status with HCV-induced chronic liver disease and hepatocellular carcinoma. Virus Res 2022; 321:198928. [PMID: 36100006 DOI: 10.1016/j.virusres.2022.198928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The combination of epigenetic and genetic abnormalities contributes together to the development of liver cancer. The methylation status of the repetitive elements (REs) in DNA has been investigated in a variety of human illnesses. However, the methylation patterns of Sat-α and Alu REs in chronic liver disease (CLD) and hepatocellular carcinoma (HCC) caused by hepatitis C virus (HCV) have never been studied before. METHODOLOGY In this study, 3 groups of participants including 50 patients having HCV-induced CLD, 50 patients having HCV-induced HCC, and 46 healthy subjects were subjected to measurement of Sat-α and Alu methylation using the quantitative MethyLight assay. RESULTS Sat-α and Alu methylation percentages decreased significantly in both CLD and HCC, compared to control. Also, a significant Sat-α hypomethylation was detected in HCC, compared to CLD. In addition, Sat-α and Alu methylation showed a significant decline as lesion size grew. However, only Sat-α hypomethylation was significantly increased in association with portal vein thrombosis and the MELD score. Sat-α methylation percentage had the highest sensitivity and specificity for diagnosing HCC (100% and 84.4%) followed by α-fetoprotein (80% and 84.4%) and Alu methylation (66% and 61.5%). Furthermore, there was a strong positive correlation between Sat-α and Alu methylation. CONCLUSIONS Measuring Sat-α and Alu methylation provides us with a new tool for early detecting HCV-induced CLD and hepatocarcinogenesis. Sat-α has the potential to be utilized as an independent predictive parameter for HCC development and progression because of its ability to distinguish between CLD and HCC with their different MELD scores.
Collapse
Affiliation(s)
- Eman El-Ahwany
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Marwa Hassan
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Mohamed Elzallat
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Lobna Abdelsalam
- Human Genetics Department, Faculty of Medicine, Cairo University, Cairo, Egypt; Human Genetics Department, Faculty of Medicine, University of North Carolina, USA
| | | | - Moataz Seyam
- Hepato-Gastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
11
|
Durmus S, Gelisgen R, Uzun H. DNA Methylation Biomarkers in Cancer: Current Clinical Utility and Future Perspectives. Biomark Med 2022. [DOI: 10.2174/9789815040463122010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epigenetic alterations are related to inherited but reversible changes in
modifications that regulate gene activity beyond the DNA sequence. DNA methylation
is the best characterized epigenetic modification, controlling DNA stability, DNA
structure, transcription, and regulation, contributing to normal development and
differentiation. In this section, we first discuss the cellular functions of DNA
methylation and focus on how this fundamental biological process is impaired in
cancer. Changes in DNA methylation status in cancer have been heralded as promising
targets for the development of diagnostic, prognostic, and predictive biomarkers due to
their noninvasive accessibility in bodily fluids (such as blood, urine, stool),
reversibility, stability, and frequency. The absence of markers for definitive diagnosis
of most types of cancer and, in some cases, DNA methylation biomarkers being more
specific and sensitive than commonly used protein biomarkers indicate a strong need
for continued research to expand DNA methylation markers. Although the information
on changes in DNA methylation status in cancer and research on its clinical relevance
is rapidly increasing, the number of DNA methylation biomarkers currently available
as commercial tests is very small. Here, we focus on the importance of DNA
methylation location and target genes likely to be developed in the future for the
development of biomarkers in addition to existing commercial tests. Following a
detailed study of possible target genes, we summarize the current clinical application
status of the most studied and validated DNA methylation biomarkers, including
SEPT9, SDC2, BMP3, NDRG4, SFRP2, TFPI2, VIM and MGMT.
Collapse
Affiliation(s)
- Sinem Durmus
- Cerrahpasa Faculty of Medicine, Istanbul University,Department of Biochemistry,Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul,Turkey
| | - Remise Gelisgen
- Cerrahpasa Faculty of Medicine, Istanbul University,Department of Biochemistry,Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul,Turkey
| | - Hafize Uzun
- Department of Biochemistry, Faculty of Medicine, Istanbul Atlas University, Istanbul,Turkey
| |
Collapse
|
12
|
Galetzka D, Böck J, Wagner L, Dittrich M, Sinizyn O, Ludwig M, Rossmann H, Spix C, Radsak M, Scholz-Kreisel P, Mirsch J, Linke M, Brenner W, Marron M, Poplawski A, Haaf T, Schmidberger H, Prawitt D. Hypermethylation of RAD9A intron 2 in childhood cancer patients, leukemia and tumor cell lines suggest a role for oncogenic transformation. EXCLI JOURNAL 2022; 21:117-143. [PMID: 35221838 PMCID: PMC8859646 DOI: 10.17179/excli2021-4482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
Abstract
Most childhood cancers occur sporadically and cannot be explained by an inherited mutation or an unhealthy lifestyle. However, risk factors might trigger the oncogenic transformation of cells. Among other regulatory signals, hypermethylation of RAD9A intron 2 is responsible for the increased expression of RAD9A protein, which may play a role in oncogenic transformation. Here, we analyzed the RAD9A intron 2 methylation in primary fibroblasts of 20 patients with primary cancer in childhood and second primary cancer (2N) later in life, 20 matched patients with only one primary cancer in childhood (1N) and 20 matched cancer-free controls (0N), using bisulfite pyrosequencing and deep bisulfite sequencing (DBS). Four 1N patients and one 2N patient displayed elevated mean methylation levels (≥ 10 %) of RAD9A. DBS revealed ≥ 2 % hypermethylated alleles of RAD9A, indicative for constitutive mosaic epimutations. Bone marrow samples of NHL and AML tumor patients (n=74), EBV (Epstein Barr Virus) lymphoblasts (n=6), tumor cell lines (n=5) and FaDu subclones (n=13) were analyzed to substantiate our findings. We find a broad spectrum of tumor entities with an aberrant methylation of RAD9A. We detected a significant difference in mean methylation of RAD9A for NHL versus AML patients (p ≤0.025). Molecular karyotyping of AML samples during therapy with hypermethylated RAD9A showed an evolving duplication of 1.8 kb on Chr16p13.3 including the PKD1 gene. Radiation, colony formation assays, cell proliferation, PCR and molecular karyotyping SNP-array experiments using generated FaDu subclones suggest that hypermethylation of RAD9A intron 2 is associated with genomic imbalances in regions with tumor-relevant genes and survival of the cells. In conclusion, this is the very first study of RAD9A intron 2 methylation in childhood cancer and Leukemia. RAD9A epimutations may have an impact on leukemia and tumorigenesis and can potentially serve as a biomarker.
Collapse
Affiliation(s)
- Danuta Galetzka
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre, Mainz, Germany
| | - Julia Böck
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany.,Institute of Pathology, Julius Maximilians University, Würzburg, Germany
| | - Lukas Wagner
- Center for Pediatrics and Adolescent Medicine, University Medical Centre, Mainz, Germany
| | - Marcus Dittrich
- Bioinformatics Department, Julius Maximilians University, Würzburg, Germany
| | - Olesja Sinizyn
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre, Mainz, Germany
| | | | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre, Mainz, Germany
| | - Claudia Spix
- Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre, Mainz, Germany
| | - Markus Radsak
- Department of Hematology, University Medical Centre, Mainz, Germany
| | | | - Johanna Mirsch
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Germany
| | - Matthias Linke
- Institute of Human Genetics, University Medical Centre, Mainz, Germany
| | - Walburgis Brenner
- Department of Obstetrics and Women's Health, University Medical Centre, Mainz, Germany
| | - Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre, Mainz, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre, Mainz, Germany
| | - Dirk Prawitt
- Center for Pediatrics and Adolescent Medicine, University Medical Centre, Mainz, Germany
| |
Collapse
|
13
|
Ruiz de la Cruz M, de la Cruz Montoya AH, Rojas Jiménez EA, Martínez Gregorio H, Díaz Velásquez CE, Paredes de la Vega J, de la Cruz Hernández-Hernández F, Vaca Paniagua F. Cis-Acting Factors Causing Secondary Epimutations: Impact on the Risk for Cancer and Other Diseases. Cancers (Basel) 2021; 13:cancers13194807. [PMID: 34638292 PMCID: PMC8508567 DOI: 10.3390/cancers13194807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 12/25/2022] Open
Abstract
Epigenetics affects gene expression and contributes to disease development by alterations known as epimutations. Hypermethylation that results in transcriptional silencing of tumor suppressor genes has been described in patients with hereditary cancers and without pathogenic variants in the coding region of cancer susceptibility genes. Although somatic promoter hypermethylation of these genes can occur in later stages of the carcinogenic process, constitutional methylation can be a crucial event during the first steps of tumorigenesis, accelerating tumor development. Primary epimutations originate independently of changes in the DNA sequence, while secondary epimutations are a consequence of a mutation in a cis or trans-acting factor. Secondary epimutations have a genetic basis in cis of the promoter regions of genes involved in familial cancers. This highlights epimutations as a novel carcinogenic mechanism whose contribution to human diseases is underestimated by the scarcity of the variants described. In this review, we provide an overview of secondary epimutations and present evidence of their impact on cancer. We propose the necessity for genetic screening of loci associated with secondary epimutations in familial cancer as part of prevention programs to improve molecular diagnosis, secondary prevention, and reduce the mortality of these diseases.
Collapse
Affiliation(s)
- Miguel Ruiz de la Cruz
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | | | - Ernesto Arturo Rojas Jiménez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
| | - Héctor Martínez Gregorio
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
| | - Clara Estela Díaz Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
| | - Jimena Paredes de la Vega
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
| | - Fidel de la Cruz Hernández-Hernández
- Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Felipe Vaca Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
- Correspondence: ; Tel.: +52-55-5623-1333 (ext. 39788)
| |
Collapse
|
14
|
Nikolaienko O, Lønning PE, Knappskog S. ramr: an R/Bioconductor package for detection of rare aberrantly methylated regions. Bioinformatics 2021; 38:133-140. [PMID: 34383893 PMCID: PMC8696093 DOI: 10.1093/bioinformatics/btab586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/26/2021] [Accepted: 08/11/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION With recent advances in the field of epigenetics, the focus is widening from large and frequent disease- or phenotype-related methylation signatures to rare alterations transmitted mitotically or transgenerationally (constitutional epimutations). Merging evidence indicate that such constitutional alterations, albeit occurring at a low mosaic level, may confer risk of disease later in life. Given their inherently low incidence rate and mosaic nature, there is a need for bioinformatic tools specifically designed to analyze such events. RESULTS We have developed a method (ramr) to identify aberrantly methylated DNA regions (AMRs). ramr can be applied to methylation data obtained by array or next-generation sequencing techniques to discover AMRs being associated with elevated risk of cancer as well as other diseases. We assessed accuracy and performance metrics of ramr and confirmed its applicability for analysis of large public datasets. Using ramr we identified aberrantly methylated regions that are known or may potentially be associated with development of colorectal cancer and provided functional annotation of AMRs that arise at early developmental stages. AVAILABILITY AND IMPLEMENTATION The R package is freely available at https://github.com/BBCG/ramr and https://bioconductor.org/packages/ramr. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Per Eystein Lønning
- K. G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Stian Knappskog
- K. G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
15
|
Cristall K, Bidard FC, Pierga JY, Rauh MJ, Popova T, Sebbag C, Lantz O, Stern MH, Mueller CR. A DNA methylation-based liquid biopsy for triple-negative breast cancer. NPJ Precis Oncol 2021; 5:53. [PMID: 34135468 PMCID: PMC8209161 DOI: 10.1038/s41698-021-00198-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Here, we present a next-generation sequencing (NGS) methylation-based blood test called methylation DETEction of Circulating Tumour DNA (mDETECT) designed for the optimal detection and monitoring of metastatic triple-negative breast cancer (TNBC). Based on a highly multiplexed targeted sequencing approach, this assay incorporates features that offer superior performance and included 53 amplicons from 47 regions. Analysis of a previously characterised cohort of women with metastatic TNBC with limited quantities of plasma (<2 ml) produced an AUC of 0.92 for detection of a tumour with a sensitivity of 76% for a specificity of 100%. mDETECTTNBC was quantitative and showed superior performance to an NGS TP53 mutation-based test carried out on the same patients and to the conventional CA15-3 biomarker. mDETECT also functioned well in serum samples from metastatic TNBC patients where it produced an AUC of 0.97 for detection of a tumour with a sensitivity of 93% for a specificity of 100%. An assay for BRCA1 promoter methylation was also incorporated into the mDETECT assay and functioned well but its clinical significance is currently unclear. Clonal Hematopoiesis of Indeterminate Potential was investigated as a source of background in control subjects but was not seen to be significant, though a link to adiposity may be relevant. The mDETECTTNBC assay is a liquid biopsy able to quantitatively detect all TNBC cancers and has the potential to improve the management of patients with this disease.
Collapse
Affiliation(s)
- Katrina Cristall
- Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Francois-Clement Bidard
- Circulating Tumor Biomarkers Laboratory, SiRIC, Translational Research Department, Institut Curie, Paris, France.,Department of Medical Oncology, Institut Curie, Paris, France
| | - Jean-Yves Pierga
- Circulating Tumor Biomarkers Laboratory, SiRIC, Translational Research Department, Institut Curie, Paris, France.,Department of Medical Oncology, Institut Curie, Paris, France.,Université Paris Descartes, Paris, France
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Tatiana Popova
- INSERM U830 Cancer, Heterogeneity, Instability and Plasticity (CHIP), Institut Curie, Paris, France
| | - Clara Sebbag
- Department of Medical Oncology, Institut Curie, Paris, France
| | - Olivier Lantz
- Circulating Tumor Biomarkers Laboratory, SiRIC, Translational Research Department, Institut Curie, Paris, France.,INSERM CIC BT 1428, Institut Curie, Paris, France.,INSERM U932, Institut Curie, Paris, France
| | - Marc-Henri Stern
- INSERM U830 Cancer, Heterogeneity, Instability and Plasticity (CHIP), Institut Curie, Paris, France
| | - Christopher R Mueller
- Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada. .,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada. .,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
16
|
Reid BM, Fridley BL. DNA Methylation in Ovarian Cancer Susceptibility. Cancers (Basel) 2020; 13:E108. [PMID: 33396385 PMCID: PMC7795210 DOI: 10.3390/cancers13010108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetic alterations are somatically acquired over the lifetime and during neoplastic transformation but may also be inherited as widespread 'constitutional' alterations in normal tissues that can cause cancer predisposition. Epithelial ovarian cancer (EOC) has an established genetic susceptibility and mounting epidemiological evidence demonstrates that DNA methylation (DNAm) intermediates as well as independently contributes to risk. Targeted studies of known EOC susceptibility genes (CSGs) indicate rare, constitutional BRCA1 promoter methylation increases familial and sporadic EOC risk. Blood-based epigenome-wide association studies (EWAS) for EOC have detected a total of 2846 differentially methylated probes (DMPs) with 71 genes replicated across studies despite significant heterogeneity. While EWAS detect both symptomatic and etiologic DMPs, adjustments and analytic techniques may enrich risk associations, as evidenced by the detection of dysregulated methylation of BNC2-a known CSG identified by genome-wide associations studies (GWAS). Integrative genetic-epigenetic approaches have mapped methylation quantitative trait loci (meQTL) to EOC risk, revealing DNAm variations that are associated with nine GWAS loci and, further, one novel risk locus. Increasing efforts to mapping epigenome variation across populations and cell types will be key to decoding both the genomic and epigenomic causal pathways to EOC.
Collapse
Affiliation(s)
- Brett M. Reid
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Brooke L. Fridley
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
17
|
Falk M, Hausmann M. A Paradigm Revolution or Just Better Resolution-Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation? Cancers (Basel) 2020; 13:E18. [PMID: 33374540 PMCID: PMC7793109 DOI: 10.3390/cancers13010018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
DNA double-strand breaks (DSBs) have been recognized as the most serious lesions in irradiated cells. While several biochemical pathways capable of repairing these lesions have been identified, the mechanisms by which cells select a specific pathway for activation at a given DSB site remain poorly understood. Our knowledge of DSB induction and repair has increased dramatically since the discovery of ionizing radiation-induced foci (IRIFs), initiating the possibility of spatiotemporally monitoring the assembly and disassembly of repair complexes in single cells. IRIF exploration revealed that all post-irradiation processes-DSB formation, repair and misrepair-are strongly dependent on the characteristics of DSB damage and the microarchitecture of the whole affected chromatin domain in addition to the cell status. The microscale features of IRIFs, such as their morphology, mobility, spatiotemporal distribution, and persistence kinetics, have been linked to repair mechanisms. However, the influence of various biochemical and structural factors and their specific combinations on IRIF architecture remains unknown, as does the hierarchy of these factors in the decision-making process for a particular repair mechanism at each individual DSB site. New insights into the relationship between the physical properties of the incident radiation, chromatin architecture, IRIF architecture, and DSB repair mechanisms and repair efficiency are expected from recent developments in optical superresolution microscopy (nanoscopy) techniques that have shifted our ability to analyze chromatin and IRIF architectures towards the nanoscale. In the present review, we discuss this relationship, attempt to correlate still rather isolated nanoscale studies with already better-understood aspects of DSB repair at the microscale, and consider whether newly emerging "correlated multiscale structuromics" can revolutionarily enhance our knowledge in this field.
Collapse
Affiliation(s)
- Martin Falk
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany;
| |
Collapse
|
18
|
Neja SA. Site-Specific DNA Demethylation as a Potential Target for Cancer Epigenetic Therapy. Epigenet Insights 2020; 13:2516865720964808. [PMID: 35036833 PMCID: PMC8756105 DOI: 10.1177/2516865720964808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 09/13/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant promoter DNA hypermethylation is a typical characteristic of cancer and it is often seen in malignancies. Recent studies showed that regulatory cis-elements found up-stream of many tumor suppressor gene promoter CpG island (CGI) attract DNA methyltransferases (DNMT) that hypermethylates and silence the genes. As epigenetic alterations are potentially reversible, they make attractive targets for therapeutic intervention. The currently used decitabine (DAC) and azacitidine (AZA) are DNMT inhibitors that follow the passive demethylation pathway. However, they lead to genome-wide demethylation of CpGs in cells, which makes difficult to use it for causal effect analysis and treatment of specific epimutations. Demethylation through specific demethylase enzymes is thus critical for epigenetic resetting of silenced genes and modified chromatins. Yet DNA-binding factors likely play a major role to guide the candidate demethylase enzymes upon its fusion. Before the advent of clustered regulatory interspaced short palindromic repeats (CRISPR), both zinc finger proteins (ZNFs) and transcription activator-like effector protein (TALEs) were used as binding platforms for ten-eleven translocation (TET) enzymes and both systems were able to induce transcription at targeted loci in an in vitro as well as in vivo model. Consequently, the development of site-specific and active demethylation molecular trackers becomes more than hypothetical to makes a big difference in the treatment of cancer in the future. This review is thus to recap the novel albeit distinct studies on the potential use of site-specific demethylation for the development of epigenetic based cancer therapy.
Collapse
|
19
|
Poduval DB, Ognedal E, Sichmanova Z, Valen E, Iversen GT, Minsaas L, Lønning PE, Knappskog S. Assessment of tumor suppressor promoter methylation in healthy individuals. Clin Epigenetics 2020; 12:131. [PMID: 32859265 PMCID: PMC7455917 DOI: 10.1186/s13148-020-00920-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Background The number of tumor suppressor genes for which germline mutations have been linked to cancer risk is steadily increasing. However, while recent reports have linked constitutional normal tissue promoter methylation of BRCA1 and MLH1 to ovarian and colon cancer risk, the role of epigenetic alterations as cancer risk factors remains largely unknown, presenting an important area for future research. Currently, we lack fast and sensitive methods for assessment of promoter methylation status across known tumor suppressor genes. Results In this paper, we present a novel NGS-based approach assessing promoter methylation status across a large panel of defined tumor suppressor genes to base-pair resolution. The method omits the limitations related to commonly used array-approaches. Our panel includes 565 target regions covering the promoters of 283 defined tumor suppressors, selected by pre-specified criteria, and was applied for rapid targeted methylation-specific NGS. The feasibility of the method was assessed by analyzing normal tissue DNA (white blood cells, WBC) samples from 34 healthy postmenopausal women and by performing preliminary assessment of the methylation landscape of tumor suppressors in these individuals. The mean target coverage was 189.6x providing a sensitivity of 0.53%, sufficient for promoter methylation assessment of low-level methylated genes like BRCA1. Within this limited test-set, we detected 206 regions located in the promoters of 149 genes to be differentially methylated (hyper- or hypo-) at > 99% confidence level. Seven target regions in gene promoters (CIITA, RASSF1, CHN1, PDCD1LG2, GSTP1, XPA, and ZNF668) were found to be hyper-methylated in a minority of individuals, with a > 20 percent point difference in mean methylation across the region between individuals. In an exploratory hierarchical clustering analysis, we found that the individuals analyzed may be grouped into two main groups based on their WBC methylation profile across the 283 tumor suppressor gene promoters. Conclusions Methylation-specific NGS of our tumor suppressor panel, with detailed assessment of differential methylation in healthy individuals, presents a feasible method for identification of novel epigenetic risk factors for cancer.
Collapse
Affiliation(s)
- Deepak B Poduval
- K.G. Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Elisabet Ognedal
- K.G. Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway.,Present address: Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Zuzana Sichmanova
- K.G. Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Gjertrud T Iversen
- K.G. Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Laura Minsaas
- K.G. Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Per E Lønning
- K.G. Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Stian Knappskog
- K.G. Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
20
|
Casalino L, Verde P. Multifaceted Roles of DNA Methylation in Neoplastic Transformation, from Tumor Suppressors to EMT and Metastasis. Genes (Basel) 2020; 11:E922. [PMID: 32806509 PMCID: PMC7463745 DOI: 10.3390/genes11080922] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Among the major mechanisms involved in tumorigenesis, DNA methylation is an important epigenetic modification impacting both genomic stability and gene expression. Methylation of promoter-proximal CpG islands (CGIs) and transcriptional silencing of tumor suppressors represent the best characterized epigenetic changes in neoplastic cells. The global cancer-associated effects of DNA hypomethylation influence chromatin architecture and reactivation of repetitive elements. Moreover, recent analyses of cancer cell methylomes highlight the role of the DNA hypomethylation of super-enhancer regions critically controlling the expression of key oncogenic players. We will first summarize some basic aspects of DNA methylation in tumorigenesis, along with the role of dysregulated DNA methyltransferases and TET (Ten-Eleven Translocation)-family methylcytosine dioxygenases. We will then examine the potential contribution of epimutations to causality and heritability of cancer. By reviewing some representative genes subjected to hypermethylation-mediated silencing, we will survey their oncosuppressor functions and roles as biomarkers in various types of cancer. Epithelial-to-mesenchymal transition (EMT) and the gain of stem-like properties are critically involved in cancer cell dissemination, metastasis, and therapeutic resistance. However, the driver vs passenger roles of epigenetic changes, such as DNA methylation in EMT, are still poorly understood. Therefore, we will focus our attention on several aspects of DNA methylation in control of EMT and metastasis suppressors, including both protein-coding and noncoding genes.
Collapse
Affiliation(s)
- Laura Casalino
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80100 Naples, Italy
| | - Pasquale Verde
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80100 Naples, Italy
| |
Collapse
|
21
|
Glodzik D, Bosch A, Hartman J, Aine M, Vallon-Christersson J, Reuterswärd C, Karlsson A, Mitra S, Niméus E, Holm K, Häkkinen J, Hegardt C, Saal LH, Larsson C, Malmberg M, Rydén L, Ehinger A, Loman N, Kvist A, Ehrencrona H, Nik-Zainal S, Borg Å, Staaf J. Comprehensive molecular comparison of BRCA1 hypermethylated and BRCA1 mutated triple negative breast cancers. Nat Commun 2020; 11:3747. [PMID: 32719340 PMCID: PMC7385112 DOI: 10.1038/s41467-020-17537-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
Homologous recombination deficiency (HRD) is a defining characteristic in BRCA-deficient breast tumors caused by genetic or epigenetic alterations in key pathway genes. We investigated the frequency of BRCA1 promoter hypermethylation in 237 triple-negative breast cancers (TNBCs) from a population-based study using reported whole genome and RNA sequencing data, complemented with analyses of genetic, epigenetic, transcriptomic and immune infiltration phenotypes. We demonstrate that BRCA1 promoter hypermethylation is twice as frequent as BRCA1 pathogenic variants in early-stage TNBC and that hypermethylated and mutated cases have similarly improved prognosis after adjuvant chemotherapy. BRCA1 hypermethylation confers an HRD, immune cell type, genome-wide DNA methylation, and transcriptional phenotype similar to TNBC tumors with BRCA1-inactivating variants, and it can be observed in matched peripheral blood of patients with tumor hypermethylation. Hypermethylation may be an early event in tumor development that progress along a common pathway with BRCA1-mutated disease, representing a promising DNA-based biomarker for early-stage TNBC.
Collapse
Affiliation(s)
- Dominik Glodzik
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA, Cambridge, UK
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ana Bosch
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
- Department of Oncology, Skåne University Hospital, SE-22184, Lund, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institute, SE-17177, Stockholm, Sweden
| | - Mattias Aine
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, SE-22184, Lund, Sweden
| | - Johan Vallon-Christersson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Christel Reuterswärd
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Anna Karlsson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Shamik Mitra
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Emma Niméus
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
- Division of Surgery, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Karolina Holm
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Jari Häkkinen
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Cecilia Hegardt
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Lao H Saal
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Christer Larsson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Martin Malmberg
- Department of Oncology, Skåne University Hospital, SE-22184, Lund, Sweden
| | - Lisa Rydén
- Division of Surgery, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Anna Ehinger
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
- Department of Genetics and Pathology, Laboratory Medicine, Region Skåne, SE-22184, Lund, Sweden
| | - Niklas Loman
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
- Department of Oncology, Skåne University Hospital, SE-22184, Lund, Sweden
| | - Anders Kvist
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Hans Ehrencrona
- Department of Genetics and Pathology, Laboratory Medicine, Region Skåne, SE-22184, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-22184, Lund, Sweden
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, The Clinical School University of Cambridge, Cambridge Biomedical Research Campus, CB2 0QQ, Cambridge, UK
| | - Åke Borg
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Johan Staaf
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden.
| |
Collapse
|
22
|
Analysis of BRCA1 and RAD51C Promoter Methylation in Italian Families at High-Risk of Breast and Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12040910. [PMID: 32276467 PMCID: PMC7226593 DOI: 10.3390/cancers12040910] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Previous studies on breast and ovarian carcinoma (BC and OC) revealed constitutional BRCA1 and RAD51C promoter hypermethylation as epigenetic alterations leading to tumor predisposition. Nevertheless, the impact of epimutations at these genes is still debated. One hundred and eight women affected by BC, OC, or both and considered at very high risk of carrying BRCA1 germline mutations were studied. All samples were negative for pathogenic variants or variants of uncertain significance at BRCA testing. Quantitative BRCA1 and RAD51C promoter methylation analyses were performed by Epityper mass spectrometry on peripheral blood samples and results were compared with those in controls. All the 108 analyzed cases showed methylation levels at the BRCA1/RAD51C promoter comparable with controls. Mean methylation levels (± stdev) at the BRCA1 promoter were 4.3% (± 1.4%) and 4.4% (± 1.4%) in controls and patients, respectively (p > 0.05; t-test); mean methylation levels (± stdev) at the RAD51C promoter were 4.3% (± 0.9%) and 3.7% (± 0.9%) in controls and patients, respectively (p > 0.05; t-test). Based on these observations; the analysis of constitutional methylation at promoters of these genes does not seem to substantially improve the definition of cancer risks in patients. These data support the idea that epimutations represent a very rare event in high-risk BC/OC populations.
Collapse
|
23
|
Dámaso E, Canet-Hermida J, Vargas-Parra G, Velasco À, Marín F, Darder E, Del Valle J, Fernández A, Izquierdo À, Mateu G, Oliveras G, Escribano C, Piñol V, Uchima HI, Soto JL, Hitchins M, Farrés R, Lázaro C, Queralt B, Brunet J, Capellá G, Pineda M. Highly sensitive MLH1 methylation analysis in blood identifies a cancer patient with low-level mosaic MLH1 epimutation. Clin Epigenetics 2019; 11:171. [PMID: 31779681 PMCID: PMC6883525 DOI: 10.1186/s13148-019-0762-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Constitutional MLH1 methylation (epimutation) is a rare cause of Lynch syndrome. Low-level methylation (≤ 10%) has occasionally been described. This study aimed to identify low-level constitutional MLH1 epimutations and determine its causal role in patients with MLH1-hypermethylated colorectal cancer. Eighteen patients with MLH1-hypermethylated colorectal tumors in whom MLH1 methylation was previously undetected in blood by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) were screened for MLH1 methylation using highly sensitive MS-melting curve analysis (MS-MCA). Constitutional methylation was characterized by different approaches. MS-MCA identified one patient (5.6%) with low-level MLH1 methylation (~ 1%) in blood and other normal tissues, which was confirmed by clonal bisulfite sequencing in blood. The patient had developed three clonally related gastrointestinal MLH1-methylated tumor lesions at 22, 24, and 25 years of age. The methylated region in normal tissues overlapped with that reported for other carriers of constitutional MLH1 epimutations. Low-level MLH1 methylation and reduced allelic expression were linked to the same genetic haplotype, whereas the opposite allele was lost in patient’s tumors. Mutation screening of MLH1 and other hereditary cancer genes was negative. Herein, a highly sensitive MS-MCA-based approach has demonstrated its utility for the identification of low-level constitutional MLH1 epigenetic mosaicism. The eventual identification and characterization of additional cases will be critical to ascertain the cancer risks associated with constitutional MLH1 epigenetic mosaicism.
Collapse
Affiliation(s)
- Estela Dámaso
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Av. Gran Via de l'Hospitalet, 199-203, 08908 L' Hospitalet de Llobregat, Barcelona, Spain
| | - Júlia Canet-Hermida
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Av. Gran Via de l'Hospitalet, 199-203, 08908 L' Hospitalet de Llobregat, Barcelona, Spain
| | - Gardenia Vargas-Parra
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Av. Gran Via de l'Hospitalet, 199-203, 08908 L' Hospitalet de Llobregat, Barcelona, Spain.,Department of General and Digestive Surgery, Dr Josep Trueta University Hospital, Girona, Spain
| | - Àngela Velasco
- Department of General and Digestive Surgery, Dr Josep Trueta University Hospital, Girona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | - Fátima Marín
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Av. Gran Via de l'Hospitalet, 199-203, 08908 L' Hospitalet de Llobregat, Barcelona, Spain.,Department of General and Digestive Surgery, Dr Josep Trueta University Hospital, Girona, Spain
| | - Esther Darder
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | - Jesús Del Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Av. Gran Via de l'Hospitalet, 199-203, 08908 L' Hospitalet de Llobregat, Barcelona, Spain.,Department of General and Digestive Surgery, Dr Josep Trueta University Hospital, Girona, Spain
| | - Anna Fernández
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Av. Gran Via de l'Hospitalet, 199-203, 08908 L' Hospitalet de Llobregat, Barcelona, Spain
| | - Àngel Izquierdo
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | - Gemma Mateu
- Pathology Department, Dr Josep Trueta University Hospital, Girona, Spain
| | - Glòria Oliveras
- Pathology Department, Dr Josep Trueta University Hospital, Girona, Spain
| | | | - Virgínia Piñol
- Department of Gastroenterology, Dr Josep Trueta University Hospital, Girona, Spain
| | - Hugo-Ikuo Uchima
- Department of Gastroenterology, Dr Josep Trueta University Hospital, Girona, Spain
| | - José Luis Soto
- Hereditary Cancer Program Valencian Region, Molecular Genetics Laboratory, Elche University Hospital, Elche, Alicante, Spain
| | - Megan Hitchins
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, CA, Los Angeles, USA
| | - Ramon Farrés
- Department of General and Digestive Surgery, Dr Josep Trueta University Hospital, Girona, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Av. Gran Via de l'Hospitalet, 199-203, 08908 L' Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Bernat Queralt
- Department of Medical Oncology, Catalan Institute of Oncology, Girona, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Av. Gran Via de l'Hospitalet, 199-203, 08908 L' Hospitalet de Llobregat, Barcelona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Medical Sciences Department, School of Medicine, University of Girona, Girona, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Av. Gran Via de l'Hospitalet, 199-203, 08908 L' Hospitalet de Llobregat, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Av. Gran Via de l'Hospitalet, 199-203, 08908 L' Hospitalet de Llobregat, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|