1
|
Iram A, Dong Y, Ignea C. Synthetic biology advances towards a bio-based society in the era of artificial intelligence. Curr Opin Biotechnol 2024; 87:103143. [PMID: 38781699 DOI: 10.1016/j.copbio.2024.103143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Synthetic biology is a rapidly emerging field with broad underlying applications in health, industry, agriculture, or environment, enabling sustainable solutions for unmet needs of modern society. With the very recent addition of artificial intelligence (AI) approaches, this field is now growing at a rate that can help reach the envisioned goals of bio-based society within the next few decades. Integrating AI with plant-based technologies, such as protein engineering, phytochemicals production, plant system engineering, or microbiome engineering, potentially disruptive applications have already been reported. These include enzymatic synthesis of new-to-nature molecules, bioelectricity generation, or biomass applications as construction material. Thus, in the not-so-distant future, synthetic biologists will help attain the overarching goal of a sustainable yet efficient production system for every aspect of society.
Collapse
Affiliation(s)
- Attia Iram
- Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Yueming Dong
- Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Codruta Ignea
- Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada.
| |
Collapse
|
2
|
Hieronimus K, Donauer T, Klein J, Hinkel B, Spänle JV, Probst A, Niemeyer J, Kibrom S, Kiefer AM, Schneider L, Husemann B, Bischoff E, Möhring S, Bayer N, Klein D, Engels A, Ziehmer BG, Stieβ J, Moroka P, Schroda M, Deponte M. A Modular Cloning Toolkit for the production of recombinant proteins in Leishmania tarentolae. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:128-142. [PMID: 38799406 PMCID: PMC11121976 DOI: 10.15698/mic2024.04.821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
Modular Cloning (MoClo) is based on libraries of standardized genetic parts that can be directionally assembled via Golden Gate cloning in one-pot reactions into transcription units and multigene constructs. Here, a team of bachelor students established a MoClo toolkit for the protist Leishmania tarentolae in the frame of the international Genetically Engineered Machine (iGEM) competition. Our modular toolkit is based on a domesticated version of a commercial LEXSY expression vector and comprises 34 genetic parts encoding various affinity tags, targeting signals as well as fluorescent and luminescent proteins. We demonstrated the utility of our kit by the successful production of 16 different tagged versions of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein in L. tarentolae liquid cultures. While highest yields of secreted recombinant RBD were obtained for GST-tagged fusion proteins 48 h post induction, C-terminal peptide tags were often degraded and resulted in lower yields of secreted RBD. Fusing secreted RBD to a synthetic O-glycosylation SP20 module resulted in an apparent molecular mass shift around 10 kDa. No disadvantage regarding the production of RBD was detected when the three antibiotics of the LEXSY system were omitted during the 48-h induction phase. Furthermore, the successful purification of secreted RBD from the supernatant of L. tarentolae liquid cultures was demonstrated in pilot experiments. In summary, we established a MoClo toolkit and exemplified its application for the production of recombinant proteins in L. tarentolae.
Collapse
Affiliation(s)
- Katrin Hieronimus
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Tabea Donauer
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Jonas Klein
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Bastian Hinkel
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Julia Vanessa Spänle
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Anna Probst
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Justus Niemeyer
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Salina Kibrom
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Anna Maria Kiefer
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Luzia Schneider
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Britta Husemann
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Eileen Bischoff
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Sophie Möhring
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Nicolas Bayer
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Dorothée Klein
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Adrian Engels
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Benjamin Gustav Ziehmer
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Julian Stieβ
- Faculty of Computer Science, RPTU Kaiserslautern, D-67663
Kaiserslautern, Germany
| | - Pavlo Moroka
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Michael Schroda
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| |
Collapse
|
3
|
Bertgen L, Bökenkamp JE, Schneckmann T, Koch C, Räschle M, Storchová Z, Herrmann JM. Distinct types of intramitochondrial protein aggregates protect mitochondria against proteotoxic stress. Cell Rep 2024; 43:114018. [PMID: 38551959 DOI: 10.1016/j.celrep.2024.114018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Mitochondria consist of hundreds of proteins, most of which are inaccessible to the proteasomal quality control system of the cytosol. How cells stabilize the mitochondrial proteome during challenging conditions remains poorly understood. Here, we show that mitochondria form spatially defined protein aggregates as a stress-protecting mechanism. Two different types of intramitochondrial protein aggregates can be distinguished. The mitoribosomal protein Var1 (uS3m) undergoes a stress-induced transition from a soluble, chaperone-stabilized protein that is prevalent under benign conditions to an insoluble, aggregated form upon acute stress. The formation of Var1 bodies stabilizes mitochondrial proteostasis, presumably by sequestration of aggregation-prone proteins. The AAA chaperone Hsp78 is part of a second type of intramitochondrial aggregate that transiently sequesters proteins and promotes their folding or Pim1-mediated degradation. Thus, mitochondrial proteins actively control the formation of distinct types of intramitochondrial protein aggregates, which cooperate to stabilize the mitochondrial proteome during proteotoxic stress conditions.
Collapse
Affiliation(s)
- Lea Bertgen
- Cell Biology, University of Kaiserslautern, RPTU, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Jan-Eric Bökenkamp
- Molecular Genetics, University of Kaiserslautern, RPTU, Paul-Ehrlich-Strasse 24, 67663 Kaiserslautern, Germany
| | - Tim Schneckmann
- Cell Biology, University of Kaiserslautern, RPTU, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Christian Koch
- Cell Biology, University of Kaiserslautern, RPTU, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, RPTU, Paul-Ehrlich-Strasse 24, 67663 Kaiserslautern, Germany
| | - Zuzana Storchová
- Molecular Genetics, University of Kaiserslautern, RPTU, Paul-Ehrlich-Strasse 24, 67663 Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, University of Kaiserslautern, RPTU, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany.
| |
Collapse
|
4
|
O’Riordan N, Jurić V, O’Neill SK, Roche AP, Young PW. A Yeast Modular Cloning (MoClo) Toolkit Expansion for Optimization of Heterologous Protein Secretion and Surface Display in Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:1246-1258. [PMID: 38483353 PMCID: PMC11036508 DOI: 10.1021/acssynbio.3c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/20/2024]
Abstract
Saccharomyces cerevisiae is an attractive host for the expression of secreted proteins in a biotechnology context. Unfortunately, many heterologous proteins fail to enter, or efficiently progress through, the secretory pathway, resulting in poor yields. Similarly, yeast surface display has become a widely used technique in protein engineering but achieving sufficient levels of surface expression of recombinant proteins is often challenging. Signal peptides (SPs) and translational fusion partners (TFPs) can be used to direct heterologous proteins through the yeast secretory pathway, however, selection of the optimal secretion promoting sequence is largely a process of trial and error. The yeast modular cloning (MoClo) toolkit utilizes type IIS restriction enzymes to facilitate an efficient assembly of expression vectors from standardized parts. We have expanded this toolkit to enable the efficient incorporation of a panel of 16 well-characterized SPs and TFPs and five surface display anchor proteins into S. cerevisiae expression cassettes. The secretion promoting signals are validated by using five different proteins of interest. Comparison of intracellular and secreted protein levels reveals the optimal secretion promoting sequence for each individual protein. Large, protein of interest-specific variations in secretion efficiency are observed. SP sequences are also used with the five surface display anchors, and the combination of SP and anchor protein proves critical for efficient surface display. These observations highlight the value of the described panel of MoClo compatible parts to allow facile screening of SPs and TFPs and anchor proteins for optimal secretion and/or surface display of a given protein of interest in S. cerevisiae.
Collapse
Affiliation(s)
- Nicola
M. O’Riordan
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
| | - Vanja Jurić
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Sarah K. O’Neill
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
| | - Aoife P. Roche
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
| | - Paul W. Young
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| |
Collapse
|
5
|
van Schaik J, Li Z, Cheadle J, Crook N. Engineering the Maize Root Microbiome: A Rapid MoClo Toolkit and Identification of Potential Bacterial Chassis for Studying Plant-Microbe Interactions. ACS Synth Biol 2023; 12:3030-3040. [PMID: 37712562 DOI: 10.1021/acssynbio.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Sustainably enhancing crop production is a global necessity to meet the escalating demand for staple crops while sustainably managing their associated carbon/nitrogen inputs. Leveraging plant-associated microbiomes is a promising avenue for addressing this demand. However, studying these communities and engineering them for sustainable enhancement of crop production have remained a challenge due to limited genetic tools and methods. In this work, we detail the development of the Maize Root Microbiome ToolKit (MRMTK), a rapid Modular Cloning (MoClo) toolkit that only takes 2.5 h to generate desired constructs (5400 potential plasmids) that replicate and express heterologous genes in Enterobacter ludwigii strain AA4 (Elu), Pseudomonas putida strain AA7 (Ppu), Herbaspirillum robiniae strain AA6 (Hro), Stenotrophomonas maltophilia strain AA1 (Sma), and Brucella pituitosa strain AA2 (Bpi), which comprise a model maize root synthetic community (SynCom). In addition to these genetic tools, we describe a highly efficient transformation protocol (107-109 transformants/μg of DNA) 1 for each of these strains. Utilizing this highly efficient transformation protocol, we identified endogenous Expression Sequences (ES; promoter and ribosomal binding sites) for each strain via genomic promoter trapping. Overall, MRMTK is a scalable and adaptable platform that expands the genetic engineering toolbox while providing a standardized, high-efficiency transformation method across a diverse group of root commensals. These results unlock the ability to elucidate and engineer plant-microbe interactions promoting plant growth for each of the 5 bacterial strains in this study.
Collapse
Affiliation(s)
- John van Schaik
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Zidan Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - John Cheadle
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| |
Collapse
|