1
|
Muñoz E, Loyola AC, Pitol-Palin L, Okamoto R, Shibli J, Messora M, Novaes AB, Scombatti de Souza S. Synthetic Bone Blocks Produced by Additive Manufacturing in the Repair of Critical Bone Defects. Tissue Eng Part C Methods 2024; 30:533-546. [PMID: 39311460 DOI: 10.1089/ten.tec.2024.0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
This study evaluated the efficacy of synthetic bone blocks, composed of hydroxyapatite (HA) or β-tricalcium phosphate (B-TCP), which were produced by additive manufacturing and used for the repair of critical size bone defects (CSDs) in rat calvaria. Sixty rats were divided into five groups (n = 12): blood clot (CONTROL), 3D-printed HA (HA), 3D-printed β-TCP (B-TCP), 3D-printed HA + autologous micrograft (HA+RIG), and 3D-printed β-TCP + autologous micrograft (B-TCP+RIG). CSDs were surgically created in the parietal bone and treated with the respective biomaterials. The animals were euthanized at 30 and 60 days postsurgery for microcomputed tomography (micro-CT) histomorphometric, and immunohistochemical analysis to assess new bone formation. Micro-CT analysis showed that both biomaterials were incorporated into the animals' calvaria. The HA+RIG group, especially at 60 days, exhibited a significant increase in bone formation compared with the control. The use of 3D-printed bioceramics resulted in thinner trabeculae but a higher number of trabeculae compared with the control. Histomorphometric analysis showed bone islands in close contact with the B-TCP and HA blocks at 30 days. The HA blocks (HA and HA+RIG groups) showed statistically higher new bone formation values with further improvement when autologous micrografts were included. Immunohistochemical analysis showed the expression of bone repair proteins. At 30 days, the HA+RIG group had moderate Osteopontin (OPN) staining, indicating that the repair process had started, whereas other groups showed no staining. At 60 days, the HA+RIG group showed slight staining, similar to that of the control. Osteocalcin (OCN) staining, indicating osteoblastic activity, showed moderate expression in the HA and HA+RIG groups at 30 days, with slight expression in the B-TCP and B-TCP+RIG groups. The combination of HA blocks with autologous micrografts significantly enhanced bone repair, suggesting that the presence of progenitor cells and growth factors in the micrografts contributed to the improved outcomes. It was concluded that 3D-printed bone substitute blocks, associated with autologous micrografts, are highly effective in promoting bone repair in CSDs in rat calvaria.
Collapse
Affiliation(s)
- Eladio Muñoz
- School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ana Carolina Loyola
- School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Leticia Pitol-Palin
- Araçatuba Dental School, São Paulo State University-UNESP, Araçatuba, Brazil
| | - Roberta Okamoto
- Araçatuba Dental School, São Paulo State University-UNESP, Araçatuba, Brazil
| | - Jamil Shibli
- Plenum Bioengenharia, M3 Health Indústria e Comércio de Produtos Médicos, Odontológicos e Correlatos S.A, Jundiaí, Brazil
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | - Michel Messora
- School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Arthur Belém Novaes
- School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | | |
Collapse
|
2
|
Regenerative Potential of Granulation Tissue in Periodontitis: A Systematic Review and Meta-analysis. Stem Cells Int 2023; 2023:8789852. [PMID: 36926181 PMCID: PMC10014158 DOI: 10.1155/2023/8789852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/27/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Methods Electronic searches were conducted in five databases including CENTRAL, MEDLINE, EMBASE, Web of Science, and Dentistry & Oral Sciences Source using a combination of MeSH terms and keywords up to 21 June 2022. Human studies including patients aged over 18 years with all forms of periodontitis were included. Following the risk of bias assessment, both qualitative and quantitative analyses were performed. Results A total of twelve studies were included in qualitative analysis and six of them in quantitative analyses. The evidence suggested that cells derived from periodontitis granulation tissue have osteogenic, adipogenic, chondrogenic, neurogenic, and angiogenic differentiation abilities as well as immunoregulatory properties. In particular, CD44+, CD73+, CD90+, CD105+, and CD146+ cells were found widely in granulation tissue whilst the only meta-analysis confirmed that CD90+ cells were present in lower numbers within the granulation tissue when compared with healthy periodontal tissue (WMD = -23.43%, 95% CI -30.43 to -16.44, p < 0.00001). Conclusions This review provided further evidence that granulation tissue from patients with periodontitis can be a potential stem cell source for regenerative therapy.
Collapse
|
3
|
Histomorphometric Comparison of New Bone Formed After Maxillary Sinus Lift With Lateral and Crestal Approaches Using Periostal Mesenchymal Stem Cells and Beta-Tricalcium Phosphate: A Controlled Clinical Trial. J Craniofac Surg 2022; 33:1607-1613. [DOI: 10.1097/scs.0000000000008319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022] Open
|
4
|
Astarita C, Arora CL, Trovato L. Tissue regeneration: an overview from stem cells to micrografts. J Int Med Res 2021; 48:300060520914794. [PMID: 32536230 PMCID: PMC7297485 DOI: 10.1177/0300060520914794] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regenerative medicine represents a major challenge for the scientific community. The choice of the biological sources used, such as stem cells and grafts, is crucial. Stem cell therapy is mainly related to the use of mesenchymal stem cells; however, clinical trials are still needed to investigate their safety. The micrografting technique was conceived by Cicero Parker Meek in 1958. It is based on the principle that by increasing the superficial area of skin grafts and reducing the size of its particles, it is possible to cover an area larger than the original donor site. Stem cells are pluripotent cells that have the capacity to differentiate into all cell types and are self-renewing, whereas micrografts derive from a small fragment of an autologous tissue and exhibit limited differentiative potential compared with stem cells. Therefore, stem cells and micrografts cannot be considered equivalent, although in some cases they exhibit similar regenerative potential, which is the focus of this review. Last, stem cell therapies remain limited because of complex and costly processes, making them not very feasible in clinical practice, whereas obtaining micrografts is generally a one-step procedure that does not require any advanced tissue manipulation.
Collapse
Affiliation(s)
- Carlo Astarita
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Human Brain Wave, corso Galileo Ferraris 63, 10128 Turin, Italy
| | - Camilla L Arora
- Human Brain Wave, corso Galileo Ferraris 63, 10128 Turin, Italy
| | - Letizia Trovato
- Human Brain Wave, corso Galileo Ferraris 63, 10128 Turin, Italy
| |
Collapse
|
5
|
Kawakami S, Shiota M, Kon K, Shimogishi M, Iijima H, Kasugai S. Autologous micrografts from the palatal mucosa for bone regeneration in calvarial defects in rats: a radiological and histological analysis. Int J Implant Dent 2021; 7:6. [PMID: 33491155 PMCID: PMC7829308 DOI: 10.1186/s40729-020-00288-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The application of dental implants is often restricted by bone volume. In such cases, bone grafts are required, although bone graft materials have some disadvantages. Therefore, other effective approaches are needed. Our previous study showed that the autologous micrograft, a dissociated cell suspension made out of palatal connective tissue grafts, promoted bone-marrow cell proliferation and differentiation under osteogenic conditions. In this study, we aimed to evaluate the effects of dissociated soft-tissue suspensions relevant to bone regeneration in animal model. MATERIAL AND METHODS Twelve-week-old male Wistar rats were used in the study. Defects were created in rat calvaria, and were filled with hydrogel containing either dissociated soft-tissue suspension (test) or sucrose (control). The new bone formation was evaluated at 1 and 2 weeks after surgery (n = 16) by radiological and histological analysis. RESULTS The conducted radiological analysis showed that the new bone volume was significantly greater in the dissociated soft-tissue suspension group. This finding was further confirmed by the conducted histological analysis. CONCLUSIONS The dissociated mucosa tissue suspension enhanced bone regeneration in vivo; thus, it is a promising potential method to aid the successful application for bone augmentation in the implant practice.
Collapse
Affiliation(s)
- Sawako Kawakami
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Makoto Shiota
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kazuhiro Kon
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Masahiro Shimogishi
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Hajime Iijima
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Shohei Kasugai
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
6
|
Takagi S, Oyama T, Jimi S, Saparov A, Ohjimi H. A Novel Autologous Micrografts Technology in Combination with Negative Pressure Wound Therapy (NPWT) for Quick Granulation Tissue Formation in Chronic/Refractory Ulcer. Healthcare (Basel) 2020; 8:healthcare8040513. [PMID: 33255590 PMCID: PMC7712274 DOI: 10.3390/healthcare8040513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Negative pressure wound therapy (NPWT) has been commonly used over the years for a wide range of chronic/refractory lesions. Alternatively, autologous micrografting technology is recently becoming a powerful modality for initiating wound healing. The case presented is of a patient with a lower leg ulcer that had responded poorly to NPWT alone for three weeks. Consequently, the patient was put on a combination therapy of NPWT and micrografting. After injection of a dermal tissue micrografts suspension into the entire wound bed, NPWT was performed successively for two weeks, resulting in fresh granulation tissue formation. Thereafter, the autologous skin graft was taken well. This case study indicates that for a chronic/refractory ulcer patient with poor NPWT outcome, combination therapy using micrografting treatment and NPWT could rapidly initiate and enhance granulation tissue formation, creating a favorable bedding for subsequent skin grafting.
Collapse
Affiliation(s)
- Satoshi Takagi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.O.); (H.O.)
- Correspondence:
| | - Takuto Oyama
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.O.); (H.O.)
| | - Shiro Jimi
- Central Lab for Pathology and Morphology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan;
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Hiroyuki Ohjimi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.O.); (H.O.)
| |
Collapse
|
7
|
Araújo CRG, Astarita C, D’Aquino R, Pelegrine AA. Evaluation of Bone Regeneration in Rat Calvaria Using Bone Autologous Micrografts and Xenografts: Histological and Histomorphometric Analysis. MATERIALS 2020; 13:ma13194284. [PMID: 32992850 PMCID: PMC7579544 DOI: 10.3390/ma13194284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
The aim of this study was to investigate the effect of the use of autologous micrografts obtained by the Rigenera® Micrografting Technology and xenograft on critical size defects created in the calvaria of rats. Forty-eight rats were randomly divided into four groups for each of the two evaluation times (15 and 30 days) (n = 6). After general anesthesia, a 5-mm diameter bone defect was created in the calvaria of each animal. Each defect was filled with the following materials: blood clot, autologous bone graft, xenograft, and xenograft associated with autologous micrografts. Histomorphometric and histological analysis showed that the group that have received the Rigenera® processed autologous micrografts combined with the xenograft and the group that received autologous bone graft resulted in greater bone formation in both time points when compared with the use of the xenograft alone and blood clot.
Collapse
Affiliation(s)
- Carlos R. G. Araújo
- Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Department of Implant Dentistry, Campinas 13045-755, Brazil; (C.R.G.A.); (A.A.P.)
| | - Carlo Astarita
- Human Brain Wave Srl, corso Galileo Ferraris 63, 10128 Turin, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence:
| | - Riccardo D’Aquino
- Human Brain Wave Srl, corso Galileo Ferraris 63, 10128 Turin, Italy;
| | - André A. Pelegrine
- Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Department of Implant Dentistry, Campinas 13045-755, Brazil; (C.R.G.A.); (A.A.P.)
| |
Collapse
|
8
|
Bone Tissue Regeneration in the Oral and Maxillofacial Region: A Review on the Application of Stem Cells and New Strategies to Improve Vascularization. Stem Cells Int 2019; 2019:6279721. [PMID: 32082383 PMCID: PMC7012224 DOI: 10.1155/2019/6279721] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
Bone tissue engineering techniques are a promising alternative for the use of autologous bone grafts to reconstruct bone defects in the oral and maxillofacial region. However, for successful bone regeneration, adequate vascularization is a prerequisite. This review presents and discusses the application of stem cells and new strategies to improve vascularization, which may lead to feasible clinical applications. Multiple sources of stem cells have been investigated for bone tissue engineering. The stromal vascular fraction (SVF) of human adipose tissue is considered a promising single source for a heterogeneous population of essential cells with, amongst others, osteogenic and angiogenic potential. Enhanced vascularization of tissue-engineered grafts can be achieved by different mechanisms: vascular ingrowth directed from the surrounding host tissue to the implanted graft, vice versa, or concomitantly. Vascular ingrowth into the implanted graft can be enhanced by (i) optimizing the material properties of scaffolds and (ii) their bioactivation by incorporation of growth factors or cell seeding. Vascular ingrowth directed from the implanted graft towards the host tissue can be achieved by incorporating the graft with either (i) preformed microvascular networks or (ii) microvascular fragments (MF). The latter may have stimulating actions on both vascular ingrowth and outgrowth, since they contain angiogenic stem cells like SVF, as well as vascularized matrix fragments. Both adipose tissue-derived SVF and MF are cell sources with clinical feasibility due to their large quantities that can be harvested and applied in a one-step surgical procedure. During the past years, important advancements of stem cell application and vascularization in bone tissue regeneration have been made. The development of engineered in vitro 3D models mimicking the bone defect environment would facilitate new strategies in bone tissue engineering. Successful clinical application requires innovative future investigations enhancing vascularization.
Collapse
|
9
|
A Multicentre Study: The Use of Micrografts in the Reconstruction of Full-Thickness Posttraumatic Skin Defects of the Limbs-A Whole Innovative Concept in Regenerative Surgery. Stem Cells Int 2019; 2019:5043518. [PMID: 31885613 PMCID: PMC6915006 DOI: 10.1155/2019/5043518] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/06/2019] [Accepted: 10/03/2019] [Indexed: 12/25/2022] Open
Abstract
The skin graft is a surgical technique commonly used in the reconstructive surgery of the limbs, in order to repair skin loss, as well as to repair the donor area of the flaps and cover the dermal substitutes after engraftment. The unavoidable side effect of this technique consists of unaesthetic scars. In order to achieve the healing of posttraumatic ulcers by means of tissue regeneration and to avoid excessive scarring, a new innovative technology based on the application of autologous micrografts, obtained by Rigenera technology, was reported. This technology was able to induce tissue repair by highly viable skin micrografts of 80 micron size achieved by a mechanical disaggregation method. The specific cell population of these micrografts includes progenitor cells, which in association with the fragment of the Extracellular Matrix (ECM) and growth factors derived by patients' own tissue initiate biological processes of regeneration enhancing the wound healing process. We have used this technique in 70 cases of traumatic wounds of the lower and upper limbs, characterized by extensive loss of skin substance and soft tissue. In all cases, we have applied the Rigenera protocol using skin micrografts, achieving in 69 cases the complete healing of wounds in a period between 35 and 84 days. For each patient, the reconstructive outcome was evaluated weekly to assess the efficacy of this technique and any arising complication. A visual analogue scale (VAS) was administered to assess the amount of pain felt after the micrografts' application, whereas we evaluated the scars according to the Vancouver scale and the wound prognosis according to Wound Bed Score. We have thus been able to demonstrate that Rigenera procedure is very effective in stimulating skin regeneration, while reducing the outcome scar.
Collapse
|
10
|
Viganò M, Tessaro I, Trovato L, Colombini A, Scala M, Magi A, Toto A, Peretti G, de Girolamo L. Rationale and pre-clinical evidences for the use of autologous cartilage micrografts in cartilage repair. J Orthop Surg Res 2018; 13:279. [PMID: 30400946 PMCID: PMC6218996 DOI: 10.1186/s13018-018-0983-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/19/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The management of cartilage lesions is an open issue in clinical practice, and regenerative medicine represents a promising approach, including the use of autologous micrografts whose efficacy was already tested in different clinical settings. The aim of this study was to characterize in vitro the effect of autologous cartilage micrografts on chondrocyte viability and differentiation and perform an evaluation of their application in racehorses affected by joint diseases. MATERIALS AND METHODS Matched human chondrocytes and micrografts were obtained from articular cartilage using Rigenera® procedure. Chondrocytes were cultured in the presence or absence of micrografts and chondrogenic medium to assess cell viability and cell differentiation. For the pre-clinical evaluation, three racehorses affected by joint diseases were treated with a suspension of autologous micrografts and PRP in arthroscopy interventions. Clinical and radiographic follow-ups were performed up to 4 months after the procedure. RESULTS Autologous micrografts support the formation of chondrogenic micromasses thanks to their content of matrix and growth factors, such as transforming growth factor β (TGFβ) and insulin-like growth factor 1 (IGF-1). On the other hand, no significant differences were observed on the gene expression of type II collagen, aggrecan, and SOX9. Preliminary data in the treatment of racehorses are suggestive of a potential in vivo use of micrografts to treat cartilage lesions. CONCLUSION The results reported in this study showed the role of articular micrografts in the promoting chondrocyte differentiation suggesting their potential use in the clinical practice to treat articular lesions.
Collapse
Affiliation(s)
- Marco Viganò
- IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161 Milan, Italy
| | - Irene Tessaro
- IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161 Milan, Italy
| | - Letizia Trovato
- Human Brain Wave, corso Galileo Ferraris 63, 10128 Turin, Italy
| | | | - Marco Scala
- Primus Gel srl, Via Casaregis, 30, 16129 Genoa, Italy
| | - Alberto Magi
- Clinica Veterinaria San Rossore, via delle cascine 149, 56100 Pisa, Italy
| | - Andrea Toto
- Clinica Veterinaria San Rossore, via delle cascine 149, 56100 Pisa, Italy
| | - Giuseppe Peretti
- IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161 Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 20133 Milan, Italy
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161 Milan, Italy
| |
Collapse
|
11
|
Maxillary Sinus Lift Using Autologous Periosteal Micrografts: A New Regenerative Approach and a Case Report of a 3-Year Follow-Up. Case Rep Dent 2018; 2018:3023096. [PMID: 30140472 PMCID: PMC6081519 DOI: 10.1155/2018/3023096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/14/2018] [Indexed: 12/30/2022] Open
Abstract
This case report discusses about an innovative bone regeneration method that involves the use of autologous periosteal micrografts, which were used for a maxillary sinus floor lift in a 52-year-old female patient. This method allows for harvesting of a graft that is to be seeded on a PLGA scaffold and involves collection of a very little amount of palatal periosteal tissue in the same surgical site after elevation of a flap and disaggregation of it by using a Rigenera® filter. Histological samples collected at the time of implant installation demonstrate a good degree of bone regeneration. The clinical and radiographic outcomes at the 3-year follow-up visit showed an adequate stability of hard and soft tissues around the implants. This report demonstrates the possibility to obtain a sufficient quality and quantity of bone with a progenitor cell-based micrograft and in turn make the site appropriate for an implant-supported rehabilitation procedure, with stable results over a period of two years.
Collapse
|
12
|
Ceccarelli G, Presta R, Lupi SM, Giarratana N, Bloise N, Benedetti L, Cusella De Angelis MG, Rodriguez Y Baena R. Evaluation of Poly(Lactic-co-glycolic) Acid Alone or in Combination with Hydroxyapatite on Human-Periosteal Cells Bone Differentiation and in Sinus Lift Treatment. Molecules 2017; 22:molecules22122109. [PMID: 29207466 PMCID: PMC6149689 DOI: 10.3390/molecules22122109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/03/2023] Open
Abstract
Most recent advances in tissue engineering in the fields of oral surgery and dentistry have aimed to restore hard and soft tissues. Further improvement of these therapies may involve more biological approaches and the use of dental tissue stem cells in combination with inorganic/organic scaffolds. In this study, we analyzed the osteoconductivity of two different inorganic scaffolds based on poly (lactic-co-glycolic) acid alone (PLGA-Fisiograft) or in combination with hydroxyapatite (PLGA/HA-Alos) in comparison with an organic material based on equine collagen (PARASORB Sombrero) both in vitro and in vivo. We developed a simple in vitro model in which periosteum-derived stem cells were grown in contact with chips of these scaffolds to mimic bone mineralization. The viability of cells and material osteoconductivity were evaluated by osteogenic gene expression and histological analyses at different time points. In addition, the capacity of scaffolds to improve bone healing in sinus lift was examined. Our results demonstrated that the osteoconductivity of PLGA/HA-Alos and the efficacy of scaffolds in promoting bone healing in the sinus lift were increased. Thus, new clinical approaches in sinus lift follow-up should be considered to elucidate the clinical potential of these two PLGA-based materials in dentistry.
Collapse
Affiliation(s)
- Gabriele Ceccarelli
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, University of Pavia, 27100 Pavia, Italy.
- Center for Health Technologies, University of Pavia, 27100 Pavia, Italy.
| | - Rossella Presta
- Department of Clinico-Surgical, Diagnostic and Pediatric Sciences, School of Dentistry, University of Pavia, P.le Golgi 2, 27100 Pavia, Italy.
| | - Saturnino Marco Lupi
- Department of Clinico-Surgical, Diagnostic and Pediatric Sciences, School of Dentistry, University of Pavia, P.le Golgi 2, 27100 Pavia, Italy.
| | - Nefele Giarratana
- Department of Development and Regeneration, Laboratory of Translational Cardiomyology, KU Leuven, B-3000 Leuven, Belgium.
| | - Nora Bloise
- Center for Health Technologies, University of Pavia, 27100 Pavia, Italy.
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy.
- Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri S.p.A, IRCCS, Via S. Boezio 28, 27100 Pavia, Italy.
| | - Laura Benedetti
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, University of Pavia, 27100 Pavia, Italy.
- Center for Health Technologies, University of Pavia, 27100 Pavia, Italy.
| | - Maria Gabriella Cusella De Angelis
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, University of Pavia, 27100 Pavia, Italy.
- Center for Health Technologies, University of Pavia, 27100 Pavia, Italy.
| | - Ruggero Rodriguez Y Baena
- Department of Clinico-Surgical, Diagnostic and Pediatric Sciences, School of Dentistry, University of Pavia, P.le Golgi 2, 27100 Pavia, Italy.
| |
Collapse
|
13
|
Rodriguez Y Baena R, D'Aquino R, Graziano A, Trovato L, Aloise AC, Ceccarelli G, Cusella G, Pelegrine AA, Lupi SM. Autologous Periosteum-Derived Micrografts and PLGA/HA Enhance the Bone Formation in Sinus Lift Augmentation. Front Cell Dev Biol 2017; 5:87. [PMID: 29021982 PMCID: PMC5623661 DOI: 10.3389/fcell.2017.00087] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022] Open
Abstract
Sinus lift augmentation is a procedure required for the placement of a dental implant, whose success can be limited by the quantity or quality of available bone. To this purpose, the first aim of the current study was to evaluate the ability of autologous periosteum-derived micrografts and Poly(lactic-co-glycolic acid) (PLGA) supplemented with hydroxyl apatite (HA) to induce bone augmentation in the sinus lift procedure. Secondly, we compared the micrograft's behavior with respect to biomaterial alone, including Bio-Oss® and PLGA/HA, commercially named Alos. Sinus lift procedure was performed on 24 patients who required dental implants and who, according to the study design and procedure performed, were divided into three groups: group A (Alos + periosteum-derived micrografts); group B (Alos alone); and group C (Bio-Oss® alone). Briefly, in group A, a small piece of periosteum was collected from each patient and mechanically disaggregated by Rigenera® protocol using the Rigeneracons medical device. This protocol allowed for the obtainment of autologous micrografts, which in turn were used to soak the Alos scaffold. At 6 months after the sinus lift procedure and before the installation of dental implants, histological and radiographic evaluations in all three groups were performed. In group A, where sinus lift augmentation was performed using periosteum-derived micrografts and Alos, the bone regeneration was much faster than in the control groups where it was performed with Alos or Bio-Oss® alone (groups B and C, respectively). In addition, the radiographic evaluation in the patients of group A showed a radio-opacity after 4 months, while after 6 months, the prosthetic rehabilitation was improved and was maintained after 2 years post-surgery. In summary, we report on the efficacy of periosteum-derived micrografts and Alos to augment sinus lift in patients requiring dental implants. This efficacy is supported by an increased percentage of vital mineralized tisssue in the group treated with both periosteum-derived micrografts and Alos, with respect to the control group of Alos or Bio-Oss® alone, as confirmed by histological analysis and radiographic evaluations at 6 months from treatment.
Collapse
Affiliation(s)
- Ruggero Rodriguez Y Baena
- Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Riccardo D'Aquino
- Private Practice, Turin, Italy.,Human Brain Wave S.r.L., Turin, Italy
| | - Antonio Graziano
- Human Brain Wave S.r.L., Turin, Italy.,Sbarro Health Research Organization (SHRO), Temple University of Philadelphia, Philadelphia, PA, United States
| | | | - Antonio C Aloise
- Department of Implantology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil
| | - Gabriele Ceccarelli
- Department of Public Health, Experimental Medicine and Forensics, University of Pavia, Pavia, Italy.,Centre for Health Technologies, University of Pavia, Pavia, Italy
| | - Gabriella Cusella
- Department of Public Health, Experimental Medicine and Forensics, University of Pavia, Pavia, Italy.,Centre for Health Technologies, University of Pavia, Pavia, Italy
| | - André A Pelegrine
- Department of Implantology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil
| | - Saturnino M Lupi
- Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
Ceccarelli G, Gentile P, Marcarelli M, Balli M, Ronzoni FL, Benedetti L, Cusella De Angelis MG. In Vitro and In Vivo Studies of Alar-Nasal Cartilage Using Autologous Micro-Grafts: The Use of the Rigenera ® Protocol in the Treatment of an Osteochondral Lesion of the Nose. Pharmaceuticals (Basel) 2017; 10:53. [PMID: 28608799 PMCID: PMC5490410 DOI: 10.3390/ph10020053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 12/26/2022] Open
Abstract
Cartilage defects represent a serious problem due to the poor regenerative properties of this tissue. Regarding the nose, nasal valve collapse is associated with nasal blockage and persistent airway obstruction associated with a significant drop in the quality of life for patients. In addition to surgical techniques, several cell-based tissue-engineering strategies are studied to improve cartilage support in the nasal wall, that is, to ameliorate wall insufficiency. Nevertheless, there are no congruent data available on the benefit for patients during the follow-up time. In this manuscript, we propose an innovative approach in the treatment of cartilage defects in the nose (nasal valve collapse) based on autologous micro-grafts obtained by mechanical disaggregation of a small portion of cartilage tissue (Rigenera® protocol). In particular, we first analyzed in vitro murine and human cartilage micro-grafts; secondly, we analyzed the clinical results of a patient with pinched nose deformity treated with autologous micro-grafts of chondrocytes obtained by Rigenera® protocol. The use of autologous micro-graft produced promising results in surgery treatment of cartilage injuries and could be safely and easily administrated to patients with cartilage tissue defects.
Collapse
Affiliation(s)
- Gabriele Ceccarelli
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, University of Pavia, Pavia 27100, Italy.
- Center for Health Technologies, University of Pavia, Pavia 27100, Italy.
| | - Pietro Gentile
- Chief of Plastic and Reconstructive Surgery, Catholic University, Tirana 1005, Albania.
- Plastic and Reconstructive Surgery Department, University of Rome "Tor Vergata", Rome 00173, Italy.
| | - Marco Marcarelli
- Santa Croce Hospital, Unit of Orthopedics and Traumatology of Chieri and Moncalieri, Turin 10024, Italy.
| | - Martina Balli
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, University of Pavia, Pavia 27100, Italy.
- Center for Health Technologies, University of Pavia, Pavia 27100, Italy.
| | - Flavio Lorenzo Ronzoni
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, University of Pavia, Pavia 27100, Italy.
- Center for Health Technologies, University of Pavia, Pavia 27100, Italy.
| | - Laura Benedetti
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, University of Pavia, Pavia 27100, Italy.
- Center for Health Technologies, University of Pavia, Pavia 27100, Italy.
| | - Maria Gabriella Cusella De Angelis
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, University of Pavia, Pavia 27100, Italy.
- Center for Health Technologies, University of Pavia, Pavia 27100, Italy.
| |
Collapse
|
15
|
De Francesco F, Graziano A, Trovato L, Ceccarelli G, Romano M, Marcarelli M, Cusella De Angelis GM, Cillo U, Riccio M, Ferraro GA. A Regenerative Approach with Dermal Micrografts in the Treatment of Chronic Ulcers. Stem Cell Rev Rep 2016; 13:139-148. [DOI: 10.1007/s12015-016-9692-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|