1
|
Kim DH, Lim ST, Kim HR, Kang EJ, Ahn HK, Lee YG, Sun DS, Kwon JH, Lee SC, Lee HW, Kim MK, Keam B, Park KU, Shin SH, Yun HJ. Impact of PIK3CA and cell cycle pathway genetic alterations on durvalumab efficacy in patients with head and neck squamous cell carcinoma: Post hoc analysis of TRIUMPH study. Oral Oncol 2024; 151:106739. [PMID: 38458039 DOI: 10.1016/j.oraloncology.2024.106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVES This study aimed to investigate whether genetic alterations in PI3KCA and the cell cycle pathways influence the efficacy of durvalumab, an immune checkpoint inhibitor, in patients with head and neck squamous cell carcinoma (HNSCC) who had previously failed platinum-based treatment. MATERIALS AND METHODS We obtained data from a phase II umbrella trial of patients with HNSCC who failed platinum-based treatment (TRIUMPH, NCT03292250). Patients receiving durvalumab treatment comprised those with PIK3CA alterations (Group A), those with cell cycle pathway alterations such as CDKN2A (Group B), and those with no druggable genetic alterations (Group C). We analyzed the overall response rate (ORR), progression-free survival (PFS), and overall survival (OS) in each group and evaluated the potential predictive factors for durvalumab. RESULTS We analyzed the data of 87 patients: 18, 12, and 57 in groups A, B, and C, respectively. The ORRs were 27.8 %, 8.3 %, and 15.8 % in Groups A, B, and C, respectively (P = 0.329), and the median PFS for each group was 2.3, 1.6, and 1.7 months, respectively, with no significant differences between the groups (P = 0.24). Notably, patients with lower neutrophil-lymphocyte ratio (NLR) (≤5.8) had longer PFS (median, 2.8 vs 1.6 months, P < 0.001), while those with lower platelet-lymphocyte ratio (PLR) (≤491.2) exhibited longer PFS (median, 1.8 vs 1.2 months, P < 0.001). CONCLUSION Durvalumab's efficacy was similar, irrespective of the presence of PIK3CA or cell cycle pathway genetic alterations in patients with platinum-resistant HNSCC. The NLR and PLR may be promising predictive biomarkers.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung Taek Lim
- Hematology and Medical Oncology, Wonju Severance Christianity Hospital, Wonju, Republic of Korea
| | - Hye Ryun Kim
- Divison of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Seoul, Republic of Korea
| | - Eun Joo Kang
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee Kyung Ahn
- Department of Medical Oncology, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Yun-Gyoo Lee
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Der Sheng Sun
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hye Kwon
- Division of Hematology-Oncology, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sang-Cheol Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Hyun Woo Lee
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Min Kyoung Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Bhumsuk Keam
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Keon-Uk Park
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Seong-Hoon Shin
- Department of Internal Medicine, Kosin University Gospel Hospital, Busan, Republic of Korea.
| | - Hwan Jung Yun
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Mann JE, Smith JD, Kulkarni A, Foltin SK, Scheftz EB, Murray IR, Gensterblum-Miller E, Brummel CV, Bhangale A, Hoesli RC, Brenner JC. Genome-wide open reading frame profiling identifies fibroblast growth factor signaling as a driver of PD-L1 expression in head and neck squamous cell carcinoma. Oral Oncol 2023; 146:106562. [PMID: 37666053 PMCID: PMC11308298 DOI: 10.1016/j.oraloncology.2023.106562] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
Head and neck squamous cell carcinomas (HNSCC) are associated with significant treatment-related morbidity and poor disease-free and disease-specific survival, especially in the recurrent and metastatic (R/M HNSCC) setting. Inhibition of the programmed death-1/ligand-1 (PD-1/PD-L1) immune checkpoint is accepted as a first-line treatment strategy for R/M HNSCC and has expanded into the neoadjuvant, definitive, and adjuvant settings. To understand cellular signals modulating the PD-L1 in HNSCC, we profiled a HNSCC cell-line with a genome-wide open reading frame (ORF) library of 17,000 individual constructs (14,000 unique genes). We identified 335 ORFs enriched in PD-L1high cells and independently validated five of these ORFs (FGF6, IL17A, CD300C, KLR1C and NFKBIA) as drivers of PD-L1 upregulation. We showed that exogenous FGF ligand is sufficient to induce PD-L1 expression in multiple HNSCC cell lines and human immature dendritic cells. Accordingly, overexpression of FGFR1, FGFR3 or the FGFR3 S249C and D786N mutants common to HNSCC tumors also induced PD-L1 overexpression on tumor cells. Small molecule inhibition of FGF signaling abrogated PD-L1 upregulation in these models and also blocked "classical" IFNγ-regulated PD-L1 expression in a STAT1-independent manner. Finally, we found that FGF specifically upregulated a glycosylated form of PD-L1 in our study, and exogenous FGF led to concomitant upregulation of glycosyltransferases that may stabilize PD-L1 on the surface of HNSCC cells. Taken together, our study supports a potential role for FGF/FGFR pathway signaling as a mechanism driving immune escape and rationalizes further exploration of novel combination therapies to improve clinical responses to PD-1/PD-L1 axis inhibition in HNSCC.
Collapse
Affiliation(s)
- Jacqueline E Mann
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 41809, USA
| | - Joshua D Smith
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aditi Kulkarni
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susan K Foltin
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erin B Scheftz
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Isabel R Murray
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth Gensterblum-Miller
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 41809, USA
| | - Collin V Brummel
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Apurva Bhangale
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca C Hoesli
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - J Chad Brenner
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 41809, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Kleszcz R. Advantages of the Combinatorial Molecular Targeted Therapy of Head and Neck Cancer-A Step before Anakoinosis-Based Personalized Treatment. Cancers (Basel) 2023; 15:4247. [PMID: 37686523 PMCID: PMC10486994 DOI: 10.3390/cancers15174247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The molecular initiators of Head and Heck Squamous Cell Carcinoma (HNSCC) are complex. Human Papillomavirus (HPV) infection is linked to an increasing number of HNSCC cases, but HPV-positive tumors generally have a good prognosis. External factors that promote the development of HPV-negative HNSCC include tobacco use, excessive alcohol consumption, and proinflammatory poor oral hygiene. On a molecular level, several events, including the well-known overexpression of epidermal growth factor receptors (EGFR) and related downstream signaling pathways, contribute to the development of HNSCC. Conventional chemotherapy is insufficient for many patients. Thus, molecular-based therapy for HNSCC offers patients a better chance at a cure. The first molecular target for therapy of HNSCC was EGFR, inhibited by monoclonal antibody cetuximab, but its use in monotherapy is insufficient and induces resistance. This article describes attempts at combinatorial molecular targeted therapy of HNSCC based on several molecular targets and exemplary drugs/drug candidates. The new concept of anakoinosis-based therapy, which means treatment that targets the intercellular and intracellular communication of cancer cells, is thought to be the way to improve the clinical outcome for HNSCC patients. The identification of a link between molecular targeted therapy and anakoinosis raises the potential for further progress in HPV-negative HNSCC therapy.
Collapse
Affiliation(s)
- Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Str., 60-781 Poznan, Poland
| |
Collapse
|
4
|
Wu CP, Hung CY, Hsieh YJ, Murakami M, Huang YH, Su TY, Hung TH, Yu JS, Wu YS, Ambudkar SV. ABCB1 and ABCG2 Overexpression Mediates Resistance to the Phosphatidylinositol 3-Kinase Inhibitor HS-173 in Cancer Cell Lines. Cells 2023; 12:cells12071056. [PMID: 37048130 PMCID: PMC10093605 DOI: 10.3390/cells12071056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Constitutive activation of the phosphoinositide-3-kinase (PI3K)/Akt signaling pathway is crucial for tumor growth and progression. As such, this pathway has been an enticing target for drug discovery. Although HS-173 is a potent PI3K inhibitor that halts cancer cell proliferation via G2/M cell cycle arrest, the resistance mechanisms to HS-173 have not been investigated. In this study, we investigated the susceptibility of HS-173 to efflux mediated by the multidrug efflux transporters ABCB1 and ABCG2, which are two of the most well-known ATP-binding cassette (ABC) transporters associated with the development of cancer multidrug resistance (MDR). We found that the overexpression of ABCB1 or ABCG2 significantly reduced the efficacy of HS-173 in human cancer cells. Our data show that the intracellular accumulation of HS-173 was substantially reduced by ABCB1 and ABCG2, affecting G2/M arrest and apoptosis induced by HS-173. More importantly, the efficacy of HS-173 in multidrug-resistant cancer cells could be recovered by inhibiting the drug-efflux function of ABCB1 and ABCG2. Taken together, our study has demonstrated that HS-173 is a substrate for both ABCB1 and ABCG2, resulting in decreased intracellular concentration of this drug, which may have implications for its clinical use.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Cheng-Yu Hung
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ya-Ju Hsieh
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yang-Hui Huang
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Tsung-Yao Su
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Demir M, Cizmecioglu O. ZAP70 Activation Compensates for Loss of Class IA PI3K Isoforms Through Activation of the JAK-STAT3 Pathway. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:391-404. [PMID: 35530641 PMCID: PMC9066532 DOI: 10.21873/cdp.10122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM Tyrosine kinases have crucial functions in cell signaling and proliferation. The phosphatidylinositol 3-kinase (PI3K) pathway is frequently deregulated in human cancer and is an essential regulator of cellular proliferation. We aimed to determine which tyrosine kinases contribute to resistance elicited by PI3K silencing and inhibition. MATERIALS AND METHODS To mimic catalytic inactivation of p110α/β, specific p110α (BYL719) and p110β (KIN193) inhibitors were used in addition to genetic knock-out in in vitro assays. Cell viability was assessed using crystal violet staining, whereas cellular transformation ability was analyzed by soft-agar growth assays. RESULTS Activated zeta chain of T-cell receptor-associated protein kinase 70 (ZAP70) generated resistance to PI3K inhibition. This resistance was via activation of the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) axis. We demonstrated that activated ZAP70 has a high transforming capability associated with the formation of malignant phenotype in untransformed cells and has the potential to be a tumor-initiating factor in cancer cells. CONCLUSION ZAP70 may be a potent driver of proliferation and transformation in untransformed cells and is implicated in resistance to PI3K inhibitors in cancer cells.
Collapse
Affiliation(s)
- Melike Demir
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Onur Cizmecioglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| |
Collapse
|
6
|
Michmerhuizen NL, Ludwig ML, Birkeland AC, Nimmagadda S, Zhai J, Wang J, Jewell BM, Genouw D, Remer L, Kim D, Foltin SK, Bhangale A, Kulkarni A, Bradford CR, Swiecicki PL, Carey TE, Jiang H, Brenner JC. Small molecule profiling to define synergistic EGFR inhibitor combinations in head and neck squamous cell carcinoma. Head Neck 2022; 44:1192-1205. [PMID: 35224804 PMCID: PMC8986607 DOI: 10.1002/hed.27018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/18/2021] [Accepted: 02/17/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a debilitating disease with poor survival. Although epidermal growth factor receptor (EGFR)-targeting antibody cetuximab improves survival in some settings, responses are limited suggesting that alternative approaches are needed. METHODS We performed a high throughput drug screen to identify EGFR inhibitor-based synergistic combinations of clinically advanced inhibitors in models resistant to EGFR inhibitor monotherapies, and then performed downstream validation experiments on prioritized synergistic combinations. RESULTS From our screen, we re-discovered known synergistic EGFR inhibitor combinations with FGFR or IGF-1R inhibitors that were broadly effective and also discovered novel synergistic combinations with XIAP inhibitor and DNMT inhibitors that were effective in only a subset of models. CONCLUSIONS Conceptually, our data identify novel synergistic combinations that warrant evaluation in future studies, and suggest that some combinations, although highly synergistic, will require parallel companion diagnostic development to be effectively advanced in patients.
Collapse
Affiliation(s)
- Nicole L. Michmerhuizen
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Megan L. Ludwig
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Program in Cellular and Molecular BiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Andrew C. Birkeland
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Sai Nimmagadda
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Jingyi Zhai
- Department of BiostatisticsUniversity of Michigan School of Public HealthAnn ArborMichiganUSA
| | - Jiayu Wang
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Brittany M. Jewell
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Dylan Genouw
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Lindsay Remer
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Daniel Kim
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Susan K. Foltin
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Apurva Bhangale
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Aditi Kulkarni
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Carol R. Bradford
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Paul L. Swiecicki
- Department of Hematology and OncologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Thomas E. Carey
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Hui Jiang
- Department of BiostatisticsUniversity of Michigan School of Public HealthAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - J. Chad Brenner
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Program in Cellular and Molecular BiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
7
|
PIK3CA Gene Mutations in HNSCC: Systematic Review and Correlations with HPV Status and Patient Survival. Cancers (Basel) 2022; 14:cancers14051286. [PMID: 35267596 PMCID: PMC8909011 DOI: 10.3390/cancers14051286] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/24/2022] Open
Abstract
PIK3CA mutations are believed to contribute to the pathogenesis of human papillomavirus (HPV)-associated head and neck squamous cell carcinomas (HNSCC). This study aims to establish the frequency of PIK3CA mutations in a Portuguese HNSCC cohort and to determine their association with the HPV status and patient survival. A meta-analysis of scientific literature also revealed widely different mutation rates in cohorts from different world regions and a trend towards improved prognosis among patients with PIK3CA mutations. DNA samples were available from 95 patients diagnosed with HNSCC at the Portuguese Institute of Oncology in Lisbon between 2010 and 2019. HPV status was established based on viral DNA detected using real-time PCR. The evaluation of PIK3CA gene mutations was performed by real-time PCR for four mutations (H1047L; E542K, E545K, and E545D). Thirty-seven cases were found to harbour PIK3CA mutations (39%), with the E545D mutation (73%) more frequently detected. There were no significant associations between the mutational status and HPV status (74% WT and 68% MUT were HPV (+); p = 0.489) or overall survival (OS) (3-year OS: WT 54% and MUT 65%; p = 0.090). HPV status was the only factor significantly associated with both OS and disease-free survival (DFS), with HPV (+) patients having consistently better outcomes (3-year OS: HPV (+) 65% and HPV (-) 36%; p = 0.007; DFS HPV (+) 83% and HPV (-) 43%; p = 0.001). There was a statistically significant interaction effect between HPV status and PIK3CA mutation regarding DFS (Interaction test: p = 0.026). In HPV (+) patients, PIK3CA wild-type is associated with a significant 4.64 times increase in the hazard of recurrence or death (HR = 4.64; 95% CI 1.02-20.99; p = 0.047). Overall, PIK3CA gene mutations are present in a large number of patients and may help define patient subsets who can benefit from therapies targeting the PI3K pathway. The systematic assessment of PIK3CA gene mutations in HNSCC patients will require further methodological standardisation.
Collapse
|
8
|
Kleszcz R, Skalski M, Krajka-Kuźniak V, Paluszczak J. The inhibitors of KDM4 and KDM6 histone lysine demethylases enhance the anti-growth effects of erlotinib and HS-173 in head and neck cancer cells. Eur J Pharm Sci 2021; 166:105961. [PMID: 34363938 DOI: 10.1016/j.ejps.2021.105961] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/05/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022]
Abstract
Novel therapeutics are required to improve treatment outcomes in head and neck squamous cell carcinoma (HNSCC) patients. Histone lysine demethylases (KDM) have emerged recently as new potential drug targets for HNSCC therapy. They might also potentiate the action of the inhibitors of EGFR and PI3K signaling pathways. This study aimed at evaluating the anti-cancer effects of KDM4 (ML324) and KDM6 (GSK-J4) inhibitors and their combinations with EGFR (erlotinib) and PI3K (HS-173) inhibitors in HNSCC cells. The effect of the inhibitors on the viability of CAL27 and FaDu cells was evaluated using resazurin assay. The effect of the chemicals on cell cycle and apoptosis was assessed using propidium iodide and Annexin V staining, respectively. The effect of the compounds on gene expression was determined using qPCR and Western blot. The changes in cell cycle distribution upon treatment with the compounds were small to moderate, with the exception of erlotinib, which induced G1 arrest. However, all the compounds and their combinations induced apoptosis in both cell lines. These effects were associated with changes in the level of expression of CDKN1A, CCND1 and BIRC5. The inhibition of KDM4 and KDM6 using ML324 and GSK-J4, respectively, can be regarded as a novel therapeutic strategy in HNSCC.
Collapse
Affiliation(s)
- Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland
| | - Marcin Skalski
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland.
| |
Collapse
|
9
|
Badarni M, Prasad M, Golden A, Bhattacharya B, Levin L, Yegodayev KM, Dimitstein O, Joshua BZ, Cohen L, Khrameeva E, Kong D, Porgador A, Braiman A, Grandis JR, Rotblat B, Elkabets M. IGF2 Mediates Resistance to Isoform-Selective-Inhibitors of the PI3K in HPV Positive Head and Neck Cancer. Cancers (Basel) 2021; 13:cancers13092250. [PMID: 34067117 PMCID: PMC8125641 DOI: 10.3390/cancers13092250] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary In the current study, we delineate the molecular mechanisms of acquisition of resistance to two isoform-selective inhibitors of PI3K (isiPI3K), alpelisib and taselisib, in human papillomavirus positive head and neck cell lines. By comparing RNA sequencing of isiPI3K-sensitive tumor cells and their corresponding isiPI3K-acquired-resistant tumor cells, we found that overexpression of insulin growth factor 2 (IGF2) is associated with the resistance phenotype. We further demonstrated by gain and loss of function studies that IGF2 plays a causative role in limiting the sensitivity of human papillomavirus-positive head and neck cell lines. Moreover, we show that blocking IGF2 stimulation activity, using an inhibitor of the IGF1 receptor (IGF1R), enhances isiPI3K efficacy and displays a synergistic anti-tumor effect in vitro and superior anti-tumor activity ex vivo and in vivo. Abstract Over 50% of human papilloma positive head-and-neck cancer (HNCHPV+) patients harbor genomic-alterations in PIK3CA, leading to hyperactivation of the phosphatidylinositol-4, 5-bisphosphate 3-kinase (PI3K) pathway. Nevertheless, despite PI3K pathway activation in HNCHPV+ tumors, the anti-tumor activities of PI3K pathway inhibitors are moderate, mostly due to the emergence of resistance. Thus, for potent and long-term tumor management, drugs blocking resistance mechanisms should be combined with PI3K inhibitors. Here, we delineate the molecular mechanisms of the acquisition of resistance to two isoform-selective inhibitors of PI3K (isiPI3K), alpelisib (BYL719) and taselisib (GDC0032), in HNCHPV+ cell lines. By comparing the transcriptional landscape of isiPI3K-sensitive tumor cells with that of their corresponding isiPI3K-acquired-resistant tumor cells, we found upregulation of insulin growth factor 2 (IGF2) in the resistant cells. Mechanistically, we show that upon isiPI3K treatment, isiPI3K-sensitive tumor cells upregulate the expression of IGF2 to induce cell proliferation via the activation of the IGF1 receptor (IGF1R). Stimulating tumor cells with recombinant IGF2 limited isiPI3K efficacy and released treated cells from S phase arrest. Knocking-down IGF2 with siRNA, or blocking IGF1R with AEW541, resulted in superior anti-tumor activity of isiPI3K in vitro and ex vivo. In vivo, the combination of isiPI3K and IGF1R inhibitor induced stable disease in mice bearing either tumors generated by the HNCHPV+ UM-SCC47 cell line or HPV+ patient-derived xenografts. These findings indicate that IGF2 and the IGF2/IGF1R pathway may constitute new targets for combination therapies to enhance the efficacy of PI3K inhibitors for the treatment of HNCHPV+.
Collapse
Affiliation(s)
- Mai Badarni
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Manu Prasad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Artemiy Golden
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.G.); (E.K.)
| | - Baisali Bhattacharya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Liron Levin
- Bioinformatics Core Facility, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ksenia M. Yegodayev
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Orr Dimitstein
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
- Department of Otolaryngology—Head and Neck Surgery, Soroka University Medical Center, Beer-Sheva 84105, Israel
| | - Ben-Zion Joshua
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
- Department of Otorhinolaryngology and Head & Neck Surgery, Barzilay Medical Center, Ashkelon 7830604, Israel
| | - Limor Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Ekaterina Khrameeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.G.); (E.K.)
| | - Dexin Kong
- School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin 300070, China;
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Jennifer R. Grandis
- Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Barak Rotblat
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Life Sciences, Faculty of Life Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Correspondence: (B.R.); (M.E.); Tel.: +972-(0)8-6428806 (B.R.); +972-86428846 (M.E.)
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
- Correspondence: (B.R.); (M.E.); Tel.: +972-(0)8-6428806 (B.R.); +972-86428846 (M.E.)
| |
Collapse
|
10
|
Yu Y, Xie Z, Zhao M, Lian X. Identification of PIK3CA multigene mutation patterns associated with superior prognosis in stomach cancer. BMC Cancer 2021; 21:368. [PMID: 33827485 PMCID: PMC8028071 DOI: 10.1186/s12885-021-08115-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
Background PIK3CA is the second most frequently mutated gene in cancers and is extensively studied for its role in promoting cancer cell resistance to chemotherapy or targeted therapy. However, PIK3CA functions have mostly been investigated at a lower-order genetic level, and therapeutic strategies targeting PIK3CA mutations have limited effects. Here, we explore crucial factors interacting with PIK3CA mutations to facilitate a significant marginal survival effect at the higher-order level and identify therapeutic strategies based on these marginal factors. Methods Mutations in stomach adenocarcinoma (STAD), breast adenocarcinoma (BRCA), and colon adenocarcinoma (COAD) samples from The Cancer Genome Atlas (TCGA) database were top-selected and combined for Cox proportional-hazards model analysis to calculate hazard ratios of mutation combinations according to overall survival data and define criteria to acquire mutation combinations with considerable marginal effects. We next analyzed the PIK3CA + HMCN1 + LRP1B mutation combination with marginal effects in STAD patients by Kaplan-Meier, transcriptomic differential, and KEGG integrated pathway enrichment analyses. Lastly, we adopted a connectivity map (CMap) to find potentially useful drugs specifically targeting LRP1B mutation in STAD patients. Results Factors interacting with PIK3CA mutations in a higher-order manner significantly influenced patient cohort survival curves (hazard ratio (HR) = 2.93, p-value = 2.63 × 10− 6). Moreover, PIK3CA mutations interacting with higher-order combination elements distinctly differentiated survival curves, with or without a marginal factor (HR = 0.26, p-value = 6.18 × 10− 8). Approximately 3238 PIK3CA-specific higher-order mutational combinations producing marginal survival effects were obtained. In STAD patients, PIK3CA + HMCN1 mutation yielded a substantial beneficial survival effect by interacting with LRP1B (HR = 3.78 × 10− 8, p-value = 0.0361) and AHNAK2 (HR = 3.86 × 10− 8, p-value = 0.0493) mutations. We next identified 208 differentially expressed genes (DEGs) induced by PIK3CA + HMCN1 compared with LRP1B mutation and mapped them to specific KEGG modules. Finally, small-molecule drugs such as geldanamycin (connectivity score = − 0.4011) and vemurafenib (connectivity score = − 0.4488) were selected as optimal therapeutic agents for targeting the STAD subtype with LRP1B mutation. Conclusions Overall, PIK3CA-induced marginal survival effects need to be analyzed. We established a framework to systematically identify crucial factors responsible for marginal survival effects, analyzed mechanisms underlying marginal effects, and identified related drugs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08115-w.
Collapse
Affiliation(s)
- Yu Yu
- Department of Cell Biology, Basic Medical School, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
| | - Zhuoming Xie
- Beijing Syngentech Co., Ltd, Zhongguancun Life Science Park, Changping District, Beijing, 102206, People's Republic of China
| | - Mingxin Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, People's Republic of China
| | - Xiaohua Lian
- Department of Cell Biology, Basic Medical School, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
11
|
Akbari Dilmaghani N, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/Akt/mTORC signaling axis in head and neck squamous cell carcinoma: Possibilities for therapeutic interventions either as single agents or in combination with conventional therapies. IUBMB Life 2021; 73:618-642. [PMID: 33476088 DOI: 10.1002/iub.2446] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023]
Abstract
The latest advances in the sequencing methods in head and neck squamous cell carcinoma (HNSCC) tissues have revolutionized our understanding of the disease by taking off the veil from the most frequent genetic alterations in the components of the oncogenic pathways. Among all the identified alterations, aberrancies in the genes attributed to the phosphoinositide 3-kinases (PI3K) axis have attracted special attention as they were altered in more than 90% of the tissues isolated from HNSCC patients. In fact, the association between these aberrancies and the increased risk of cancer metastasis suggested this axis as an "Achilles Heel" of HNSCC, which may be therapeutically targeted. The results of the clinical trials investigating the therapeutic potential of the inhibitors targeting the components of the PI3K axis in the treatment of HNSCC patients, either alone or in a combined-modal strategy, opened a new chapter in the treatment strategy of this malignancy. The present study aimed to review the importance of the PI3K axis in the pathogenesis of HNSCC and also provide a piece of information about the breakthroughs and challenges of PI3K inhibitors in the therapeutic strategies of the disease.
Collapse
Affiliation(s)
- Nader Akbari Dilmaghani
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Otolaryngology, Head and Neck Surgery, Loghman Hakim Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Wilson GD, Wilson TG, Hanna A, Dabjan M, Buelow K, Torma J, Marples B, Galoforo S. Dacomitinib and gedatolisib in combination with fractionated radiation in head and neck cancer. Clin Transl Radiat Oncol 2020; 26:15-23. [PMID: 33251343 PMCID: PMC7677653 DOI: 10.1016/j.ctro.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/05/2023] Open
Abstract
We evaluated radiation with dual EGFR and PI3K targeting in head and neck cancer. Dacomitinib, showed an inverse correlation between growth inhibition and EGFR expression. Gedatolisib was effective in each cell line. Neither drug caused radiosensitization in vitro. Gedatolisib was relatively ineffective in vivo in combination with dacomitinib and/or radiation. Dacomitinib was highly effective alone and in combination with radiation and/or gedatolisib. Immunoblotting studies in vivo mirrored the effects seen with growth delay.
Background and purpose There has been little success targeting individual genes in combination with radiation in head and neck cancer. In this study we investigated whether targeting two key pathways simultaneously might be more effective. Materials and methods We studied the effect of combining dacomitinib (pan-HER, irreversible inhibitor) and gedatolisib (dual PI3K/MTOR inhibitor) with radiation in well characterized, low passage xenograft models of HNSCC in vitro and in vivo. Results Dacomitinib showed differential growth inhibition in vitro that correlated to EGFR expression whilst gedatolisib was effective in both cell lines. Neither agent radiosensitized the cell lines in vitro. In vivo studies demonstrated that dacomitinib was an effective agent alone and in combination with radiation whilst the addition of gedatolisib did not enhance the effect of these two modalities despite inhibiting phosphorylation of key genes in the PI3K/MTOR pathway. Conclusions Our results showed that combining two drugs with radiation provided no added benefit compared to the single most active drug. Dacomitinib deserves more investigation as a radiation sensitizing agent in HNSCC.
Collapse
Affiliation(s)
- George D Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Thomas G Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Alaa Hanna
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Mohamad Dabjan
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Katie Buelow
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - John Torma
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester, Rochester, NY, United States
| | - Sandra Galoforo
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| |
Collapse
|
13
|
Glorieux M, Dok R, Nuyts S. The influence of PI3K inhibition on the radiotherapy response of head and neck cancer cells. Sci Rep 2020; 10:16208. [PMID: 33004905 PMCID: PMC7529775 DOI: 10.1038/s41598-020-73249-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/07/2020] [Indexed: 01/18/2023] Open
Abstract
Radiotherapy has a central role in the treatment of head and neck squamous cell carcinoma (HNSCC). Activation of the PI3K/AKT/mTOR pathway can decrease the efficiency of radiotherapy via the promotion of cell survival and DNA repair. Here, the influence of PI3K pathway inhibition on radiotherapy response was investigated. Two PI3K inhibitors were investigated and both BKM120 and GDC0980 effectively inhibited cellular and clonogenic growth in 6 HNSCC cells, both HPV-positive as well as HPV-negative. Despite targeted inhibition of the pathway and slight increase in DNA damage, PI3K inhibition did not show significant radiosensitization. Currently only one clinical trial is assessing the effectiveness of combining BKM120 with RT in HNSCC (NCT02113878) of which the results are eagerly awaited.
Collapse
Affiliation(s)
- Mary Glorieux
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000, Leuven, Belgium
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000, Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000, Leuven, Belgium.
- Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
14
|
Foki E, Stanisz I, Kadletz L, Kotowski U, Seemann R, Schmid R, Heiduschka G. HS-173, a selective PI3K inhibitor, induces cell death in head and neck squamous cell carcinoma cell lines. Wien Klin Wochenschr 2020; 133:26-31. [PMID: 32876741 DOI: 10.1007/s00508-020-01729-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/03/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND The selective PI3K (Phosphatidylinositol 3-kinase) inhibitor HS-173 has anticancer activity in non-small cell lung cancer and pancreatic cancer cells. Of all head and neck squamous cell carcinomas (HNSCC) 20% harbor specific mutations in the genome. The aim of this study was to investigate the effect of HS-173 on HNSCC cell lines. METHODS The cell lines SCC25, CAL27 and FaDu were incubated with HS-173. Its antiproliferative effect was determined using the CCK‑8 cell proliferation assay. Combined incubation with cisplatin was performed and combination index analysis was conducted. To investigate its effect on radiotherapy, cells were irradiated with 2, 4, 6 and 8 Gy, respectively. Synergistic effects of radiation and HS-173 were measured by proliferation assays and clonogenic survival. RESULTS The use of HS-173 induced significant reduction of cell proliferation across all cell lines. Most interestingly, it showed a synergistic effect with cisplatin treatment. Clonogenic survival revealed a radiosensitizing effect in CAL27 and FaDu cells. The HS-173 caused significant induction of apoptosis in SCC25 and FaDu cells. CONCLUSION The selective PI3K inhibitor HS-173 is a potent chemosensitizing and also radiosensitizing drug in treatment of HNSCC cell lines and could be an effective treatment in PI3K-mutated HNSCC.
Collapse
Affiliation(s)
- Elisabeth Foki
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Isabella Stanisz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Lorenz Kadletz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ulana Kotowski
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Rudolf Seemann
- Department of Oral and Maxillofacial surgery, Medical University of Vienna, Vienna, Austria
| | - Rainer Schmid
- Department of Radiotherapy, Medical University of Vienna, Vienna, Austria
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
15
|
Michmerhuizen NL, Leonard E, Matovina C, Harris M, Herbst G, Kulkarni A, Zhai J, Jiang H, Carey TE, Brenner JC. Rationale for Using Irreversible Epidermal Growth Factor Receptor Inhibitors in Combination with Phosphatidylinositol 3-Kinase Inhibitors for Advanced Head and Neck Squamous Cell Carcinoma. Mol Pharmacol 2019; 95:528-536. [PMID: 30858165 PMCID: PMC6442321 DOI: 10.1124/mol.118.115162] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/21/2019] [Indexed: 12/15/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common and debilitating form of cancer characterized by poor patient outcomes and low survival rates. In HNSCC, genetic aberrations in phosphatidylinositol 3-kinase (PI3K) and epidermal growth factor receptor (EGFR) pathway genes are common, and small molecules targeting these pathways have shown modest effects as monotherapies in patients. Whereas emerging preclinical data support the combined use of PI3K and EGFR inhibitors in HNSCC, in-human studies have displayed limited clinical success so far. Here, we examined the responses of a large panel of patient-derived HNSCC cell lines to various combinations of PI3K and EGFR inhibitors, including EGFR agents with varying specificity and mechanistic characteristics. We confirmed the efficacy of PI3K and EGFR combination therapies, observing synergy with α isoform-selective PI3K inhibitor HS-173 and irreversible EGFR/ERBB2 dual inhibitor afatinib in most models tested. Surprisingly, however, our results demonstrated only modest improvement in response to HS-173 with reversible EGFR inhibitor gefitinib. This difference in efficacy was not explained by differences in ERBB target selectivity between afatinib and gefitinib; despite effectively disrupting ERBB2 phosphorylation, the addition of ERBB2 inhibitor CP-724714 failed to enhance the effect of HS-173 gefitinib dual therapy. Accordingly, although irreversible ERBB inhibitors showed strong synergistic activity with HS-173 in our models, none of the reversible ERBB inhibitors were synergistic in our study. Therefore, our results suggest that the ERBB inhibitor mechanism of action may be critical for enhanced synergy with PI3K inhibitors in HNSCC patients and motivate further preclinical studies for ERBB and PI3K combination therapies.
Collapse
Affiliation(s)
- Nicole L Michmerhuizen
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Elizabeth Leonard
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Chloe Matovina
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Micah Harris
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Gabrielle Herbst
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Aditi Kulkarni
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Jingyi Zhai
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Hui Jiang
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Thomas E Carey
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - J Chad Brenner
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| |
Collapse
|
16
|
Ludwig ML, Kulkarni A, Birkeland AC, Michmerhuizen NL, Foltin SK, Mann JE, Hoesli RC, Devenport SN, Jewell BM, Shuman AG, Spector ME, Carey TE, Jiang H, Brenner JC. The genomic landscape of UM-SCC oral cavity squamous cell carcinoma cell lines. Oral Oncol 2018; 87:144-151. [PMID: 30527230 DOI: 10.1016/j.oraloncology.2018.10.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES We sought to describe the genetic complexity of 14 UM-SCC oral cavity cancer cell lines that have remained uncharacterized despite being used as model systems for decades. MATERIALS AND METHODS We performed exome sequencing on 14 oral cavity UM-SCC cell lines and denote the mutational profile of each line. We used a SNP array to profile the multiple copy number variations of each cell line and use immunoblotting to compare alterations to protein expression of commonly amplified genes (EGFR, PIK3CA, etc.). RNA sequencing was performed to characterize the expression of genes with copy number alterations. RESULTS The cell lines displayed a highly complex network of genetic aberrations that was consistent with alterations identified in the HNSCC TCGA project including PIK3CA amplification, CDKN2A deletion, as well as TP53 and CASP8 mutations, enabling genetic stratification of each cell line in the panel. Copy number FISH and spectral karyotyping analysis demonstrate that cell lines retain chromosomal heterogeneity. CONCLUSIONS Collectively, we developed an important resource for future oral cavity HNSCC cell line studies and highlight the complexity of genomic aberrations in cell lines.
Collapse
Affiliation(s)
- Megan L Ludwig
- Department of Otolaryngology - Head and Neck Surgery, United States; Program in Cellular and Molecular Biology, United States
| | - Aditi Kulkarni
- Department of Otolaryngology - Head and Neck Surgery, United States
| | | | - Nicole L Michmerhuizen
- Department of Otolaryngology - Head and Neck Surgery, United States; Department of Pharmacology, United States
| | - Susan K Foltin
- Department of Otolaryngology - Head and Neck Surgery, United States
| | - Jacqueline E Mann
- Department of Otolaryngology - Head and Neck Surgery, United States; Department of Pathology, United States
| | - Rebecca C Hoesli
- Department of Otolaryngology - Head and Neck Surgery, United States
| | - Samantha N Devenport
- Department of Otolaryngology - Head and Neck Surgery, United States; Program in Cellular and Molecular Biology, United States
| | | | - Andrew G Shuman
- Department of Otolaryngology - Head and Neck Surgery, United States; Center for Bioethics and Social Sciences in Medicine, United States; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI, United States
| | - Matthew E Spector
- Department of Otolaryngology - Head and Neck Surgery, United States; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI, United States
| | - Thomas E Carey
- Department of Otolaryngology - Head and Neck Surgery, United States; Department of Pharmacology, United States; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI, United States
| | - Hui Jiang
- Department of Biostatistics, United States; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI, United States
| | - J Chad Brenner
- Department of Otolaryngology - Head and Neck Surgery, United States; Department of Pharmacology, United States; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
17
|
Kemmer JD, Johnson DE, Grandis JR. Leveraging Genomics for Head and Neck Cancer Treatment. J Dent Res 2018; 97:603-613. [PMID: 29420101 DOI: 10.1177/0022034518756352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The genomic landscape of head and neck squamous cell carcinoma (HNSCC) has been recently elucidated. Key epigenetic and genetic characteristics of this cancer have been reported and substantiated in multiple data sets, including those distinctive to the growing subset of human papilloma virus (HPV)-associated tumors. This increased understanding of the molecular underpinnings of HNSCC has not resulted in new approaches to treatment. Three Food and Drug Administration-approved molecular targeting agents are currently available to treat recurrent/metastatic disease, but these have exhibited efficacy only in subsets of HNSCC patients, and thus surgery, chemotherapy, and/or radiation remain as standard approaches. The lack of predictive biomarkers to any therapy represents an obstacle to achieving the promise of precision medicine. This review aims to familiarize the reader with current insights into the HNSCC genomic landscape, discuss the currently approved and promising molecular targeting agents under exploration in laboratories and clinics, and consider precision medicine approaches to HNSCC.
Collapse
Affiliation(s)
- J D Kemmer
- 1 Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - D E Johnson
- 1 Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - J R Grandis
- 1 Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
18
|
Glorieux M, Dok R, Nuyts S. Novel DNA targeted therapies for head and neck cancers: clinical potential and biomarkers. Oncotarget 2017; 8:81662-81678. [PMID: 29113422 PMCID: PMC5655317 DOI: 10.18632/oncotarget.20953] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/27/2017] [Indexed: 01/24/2023] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer worldwide and despite advances in treatment over the last years, there is still a relapse rate of 50%. New therapeutic agents are awaited to increase the survival of patients. DNA repair targeted agents in combination with standard DNA damaging therapies are a recent evolution in cancer treatment. These agents focus on the DNA damage repair pathways in cancer cells, which are often involved in therapeutic resistance. Interesting targets to overcome these cancer defense mechanisms are: PARP, DNA-PK, PI3K, ATM, ATR, CHK1/2, and WEE1 inhibitors. The application of DNA targeted agents in head and neck squamous cell cancer showed promising preclinical results which are translated to multiple ongoing clinical trials, although no FDA approval has emerged yet. Biomarkers are necessary to select the patients that can benefit the most from this treatment, although adequate biomarkers are limited and validation is needed to predict therapeutic response.
Collapse
Affiliation(s)
- Mary Glorieux
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
| | - Rüveyda Dok
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
| | - Sandra Nuyts
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
- Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000 Leuven, Belgium
| |
Collapse
|
19
|
Yun MR, Choi HM, Kang HN, Lee Y, Joo HS, Kim DH, Kim HR, Hong MH, Yoon SO, Cho BC. ERK-dependent IL-6 autocrine signaling mediates adaptive resistance to pan-PI3K inhibitor BKM120 in head and neck squamous cell carcinoma. Oncogene 2017; 37:377-388. [DOI: 10.1038/onc.2017.339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 02/07/2023]
|