1
|
Wang B, Wang Z, Li Y, Shang Z, Liu Z, Fan H, Zhan R, Xin T. TRIM56: a promising prognostic immune biomarker for glioma revealed by pan-cancer and single-cell analysis. Front Immunol 2024; 15:1327898. [PMID: 38348047 PMCID: PMC10859405 DOI: 10.3389/fimmu.2024.1327898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Tripartite-motif 56 (TRIM56) is a member of the TRIM family, and was shown to be an interferon-inducible E3 ubiquitin ligase that can be overexpressed upon stimulation with double-stranded DNA to regulate stimulator of interferon genes (STING) to produce type I interferon and thus mediate innate immune responses. Its role in tumors remains unclear. In this study, we investigated the relationship between the expression of the TRIM56 gene and its prognostic value in pan-cancer, identifying TRIM56 expression as an adverse prognostic factor in glioma patients. Therefore, glioma was selected as the primary focus of our investigation. We explored the differential expression of TRIM56 in various glioma subtypes and verified its role as an independent prognostic factor in gliomas. Our research revealed that TRIM56 is associated with malignant biological behaviors in gliomas, such as proliferation, migration, and invasion. Additionally, it can mediate M2 polarization of macrophages in gliomas. The results were validated in vitro and in vivo. Furthermore, we utilized single-cell analysis to investigate the impact of TRIM56 expression on cell communication between glioma cells and non-tumor cells. We constructed a multi-gene signature based on cell markers of tumor cells with high TRIM56 expression to enhance the prediction of cancer patient prognosis. In conclusion, our study demonstrates that TRIM56 serves as a reliable immune-related prognostic biomarker in glioma.
Collapse
Affiliation(s)
- Bingcheng Wang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zhihai Wang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yuchen Li
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zehan Shang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Hao Fan
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Rucai Zhan
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, China
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
2
|
Masliantsev K, Mordrel M, Banor T, Desette A, Godet J, Milin S, Wager M, Karayan-Tapon L, Guichet PO. Yes-Associated Protein Nuclear Translocation Is Regulated by Epidermal Growth Factor Receptor Activation Through Phosphatase and Tensin Homolog/AKT Axis in Glioblastomas. J Transl Med 2023; 103:100053. [PMID: 36801645 DOI: 10.1016/j.labinv.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Gliomas are the most common and lethal primary brain tumors in adults. Glioblastomas, the most frequent and aggressive form of gliomas, represent a therapeutic challenge as no curative treatment exists to date, and the prognosis remains extremely poor. Recently, the transcriptional cofactors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) belonging to the Hippo pathway have emerged as a major determinant of malignancy in solid tumors, including gliomas. However, the mechanisms involved in its regulation, particularly in brain tumors, remain ill-defined. In glioblastomas, EGFR represents one of the most altered oncogenes affected by chromosomal rearrangements, mutations, amplifications, and overexpression. In this study, we investigated the potential link between epidermal growth factor receptor (EGFR) and the transcriptional cofactors YAP and TAZ by in situ and in vitro approaches. We first studied their activation on tissue microarray, including 137 patients from different glioma molecular subtypes. We observed that YAP and TAZ nuclear location was highly associated with isocitrate dehydrogenase 1/2 (IDH1/2) wild-type glioblastomas and poor patient outcomes. Interestingly, we found an association between EGFR activation and YAP nuclear location in glioblastoma clinical samples, suggesting a link between these 2 markers contrary to its ortholog TAZ. We tested this hypothesis in patient-derived glioblastoma cultures by pharmacologic inhibition of EGFR using gefinitib. We showed an increase of S397-YAP phosphorylation associated with decreased AKT phosphorylation after EGFR inhibition in phosphatase and tensin homolog (PTEN) wild-type cultures, unlike PTEN-mutated cell lines. Finally, we used bpV(HOpic), a potent PTEN inhibitor, to mimic the effect of PTEN mutations. We found that the inhibition of PTEN was sufficient to revert back the effect induced by Gefitinib in PTEN-wild-type cultures. Altogether, to our knowledge, these results show for the first time the regulation of pS397-YAP by the EGFR-AKT axis in a PTEN-dependent manner.
Collapse
Affiliation(s)
- Konstantin Masliantsev
- Université de Poitiers, CHU de Poitiers, ProDiCeT, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Margaux Mordrel
- Université de Poitiers, CHU de Poitiers, ProDiCeT, Poitiers, France; Service d'Oncologie Médicale CHU de Poitiers, Poitiers, France
| | - Tania Banor
- Service de Neurochirurgie, CHU de Poitiers, Poitiers, France
| | - Amandine Desette
- Université de Poitiers, CHU de Poitiers, ProDiCeT, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Julie Godet
- Service d'Anatomo-Cytopathologie, CHU de Poitiers, Poitiers, France
| | - Serge Milin
- Université de Poitiers, CHU de Poitiers, ProDiCeT, Poitiers, France; Service d'Anatomo-Cytopathologie, CHU de Poitiers, Poitiers, France
| | - Michel Wager
- Université de Poitiers, CHU de Poitiers, ProDiCeT, Poitiers, France; Service de Neurochirurgie, CHU de Poitiers, Poitiers, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, CHU de Poitiers, ProDiCeT, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Pierre-Olivier Guichet
- Université de Poitiers, CHU de Poitiers, ProDiCeT, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France.
| |
Collapse
|
3
|
Yang Y, Hui L, Yuqin C, Jie L, Shuai H, Tiezhu Z, Wei W. Effect of saw palmetto extract on PI3K cell signaling transduction in human glioma. Exp Ther Med 2014; 8:563-566. [PMID: 25009620 PMCID: PMC4079418 DOI: 10.3892/etm.2014.1756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/29/2014] [Indexed: 11/06/2022] Open
Abstract
Saw palmetto extract can induce the apoptosis of prostate cancer cells. The aim of the present study was to investigate the effect of saw palmetto extract on the phosphatidylinositol 3-kinase (PI3K)/Akt signaling transduction pathway in human glioma U87 and U251 cell lines. Suspensions of U87 and U251 cells in a logarithmic growth phase were seeded into six-well plates at a density of 104 cells/well. In the experimental group, 1 μl/ml saw palmetto extract was added, while the control group was cultured without a drug for 24 h. The expression levels of PI3K, B-cell lymphoma-extra large (Bcl-xL) and p53 were evaluated through western blot analysis. In the experimental group, the U87 and U251 cells exhibited a lower expression level of PI3K protein as compared with the control group (t=6.849; P<0.001). In addition, the two cell lines had a higher expression level of p53 protein in the experimental group as compared with the control group (t=40.810; P<0.001). Protein expression levels of Bcl-xL decreased significantly in the experimental group as compared with the control group (t=19.640; P=0.000). Therefore, saw palmetto extract induces glioma cell growth arrest and apoptosis via decreasing PI3K/Akt signal transduction.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Lv Hui
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Che Yuqin
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Li Jie
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Hou Shuai
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Zhou Tiezhu
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Wang Wei
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
4
|
Liu S, Yin F, Fan W, Wang S, Guo XR, Zhang JN, Tian ZM, Fan M. Over-expression of BMPR-IB reduces the malignancy of glioblastoma cells by upregulation of p21 and p27Kip1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:52. [PMID: 22650359 PMCID: PMC3408360 DOI: 10.1186/1756-9966-31-52] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/31/2012] [Indexed: 11/23/2022]
Abstract
Background In our previous study, we detected decreased expression of phospho-Smad1/5/8 and its upstream signaling molecule, bone morphogenetic protein receptor IB subunit (BMPR-IB), in certain glioblastoma tissues, unlike normal brain tissues. In order to clarify the functional roles and mechanism of BMPR-IB in the development of glioblastoma, we studied the effects of BMPR-IB overexpression on glioblastoma cell lines in vitro and in vivo. Methods We selected glioblastoma cell lines U251, U87, SF763, which have different expression of BMPR-IB to be the research subjects. Colony formation analysis and FACS were used to detect the effects of BMPR-IB on the growth and proliferation of glioblastoma cells in vivo. Immunofluresence was used to detect the differentiation changes after BMPR-IB overexpression or knocking-down. Then we used subcutaneous and intracranial tumor models to study the effect of BMPR-IB on the growth and differentiation of glioblastoma cells in vivo. The genetic alterations involved in this process were examined by real-time PCR and western blot analysis.ed. Results and conclusion Forced BMPR-IB expression in malignant human glioma cells, which exhibit lower expression of BMPR-IB, induced the phosphorylation and nuclear localization of smad1/5/8 and arrested the cell cycle in G1. Additionally, BMPR-IB overexpression could suppress anchorage-independent growth and promote differentiation of theses glioblastoma cells. Furthermore, overexpression of BMPR-IB inhibited the growth of subcutaneous and intracranial tumor xenografts and prolonged the survival of mice injected intracranially with BMPR-IB-overexpressing glioblastoma cells. Conversely, inhibition of BMPR-IB caused SF763 malignant glioma cells, a line known to exhibit high BMPR-IB expression that does not form tumors when used for xenografts, to show increased growth and regain tumorigenicity in a nude mouse model system, ultimately shortening the survival of these mice. We also observed significant accumulation of p21 and p27kip1 proteins in response to BMPR-IB overexpression. Our study suggests that overexpression of BMPR-IB may arrest and induce the differentiation of glioblastoma cells due to upregulation of p21 and p27kip1 in vitro and that in vivo and decreased expression of BMPR-IB in human glioblastoma cells contributes to glioma tumorigenicity. BMPR-IB could represent a new potential therapeutic target for malignant human gliomas.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Neurosurgery, Navy General Hospital, 100048 Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Cheng Y, Zhang Y, Zhang L, Ren X, Huber-Keener KJ, Liu X, Zhou L, Liao J, Keihack H, Yan L, Rubin E, Yang JM. MK-2206, a novel allosteric inhibitor of Akt, synergizes with gefitinib against malignant glioma via modulating both autophagy and apoptosis. Mol Cancer Ther 2011; 11:154-64. [PMID: 22057914 DOI: 10.1158/1535-7163.mct-11-0606] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Gefitinib, a small molecule inhibitor of the epidermal growth factor receptor tyrosine kinase, has been shown to induce autophagy as well as apoptosis in tumor cells. Yet, how to use autophagy and apoptosis to improve therapeutic efficacy of this drug against cancer remains to be explored. We reported here that MK-2206, a potent allosteric Akt inhibitor currently in phase I trials in patients with solid tumors, could reinforce the cytocidal effect of gefitinib against glioma. We found that cotreatment with gefitinib and MK-2206 increased the cytotoxicity of this growth factor receptor inhibitor in the glioma cells, and the CompuSyn synergism/antagonism analysis showed that MK-2206 acted synergistically with gefitinib. The benefit of the combinatorial treatment was also shown in an intracranial glioma mouse model. In the presence of MK-2206, there was a significant increase in apoptosis in glioma cells treated with gefitinib. MK-2206 also augmented the autophagy-inducing effect of gefitinib, as evidenced by increased levels of the autophagy marker, LC3-II. Inhibition of autophagy by silencing of the key autophagy gene, beclin 1 or 3-MA, further increased the cytotoxicity of this combinatorial treatment, suggesting that autophagy induced by these agents plays a cytoprotective role. Notably, at 48 hours following the combinatorial treatment, the level of LC3-II began to decrease but Bim was significantly elevated, suggesting a switch from autophagy to apoptosis. On the basis of the synergistic effect of MK-2206 on gefitinib observed in this study, the combination of these two drugs may be utilized as a new therapeutic regimen for malignant glioma.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Pharmacology and The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey 17033, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Li C, Zhou C, Wang S, Feng Y, Lin W, Lin S, Wang Y, Huang H, Liu P, Mu YG, Shen X. Sensitization of glioma cells to tamoxifen-induced apoptosis by Pl3-kinase inhibitor through the GSK-3β/β-catenin signaling pathway. PLoS One 2011; 6:e27053. [PMID: 22046442 PMCID: PMC3203172 DOI: 10.1371/journal.pone.0027053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 10/10/2011] [Indexed: 11/18/2022] Open
Abstract
Malignant gliomas represent one of the most aggressive types of cancers and their recurrence is closely linked to acquired therapeutic resistance. A combination of chemotherapy is considered a promising therapeutic model in overcoming therapeutic resistance and enhancing treatment efficacy. Herein, we show by colony formation, Hochest 33342 and TUNEL staining, as well as by flow cytometric analysis, that LY294002, a specific phosphatidylinositide-3-kinase (PI3K) inhibitor, enhanced significantly the sensitization of a traditional cytotoxic chemotherapeutic agent, tamoxifen-induced apoptosis in C6 glioma cells. Activation of PI3K signaling pathway by IGF-1 protected U251 cells from apoptosis induced by combination treatment of LY294002 and tamoxifen. Interference of PI3K signaling pathway by PI3K subunit P85 siRNA enhanced the sensitization of U251 glioma cells to tamoxifen -induced apoptosis. By Western blotting, we found that combination treatment showed lower levels of phosphorylated AktSer473 and GSK-3βSer9 than a single treatment of LY294002. Further, we showed a significant decrease of nuclear β-catenin by combination treatment. In response to the inhibition of β-catenin signaling, mRNA and protein levels of Survivin and the other three antiapoptotic genes Bcl-2, Bcl-xL, and Mcl-1 were significantly decreased by combination treatment. Our results indicated that the synergistic cytotoxic effect of LY294002 and tamoxifen is achieved by the inhibition of GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Cuixian Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chun Zhou
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaogui Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Feng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Lin
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sisi Lin
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong-Gao Mu
- Department of Neurosurgery/Neuro-oncology, Cancer Center, Sun Yat-sen University, Guangzhou, China
- * E-mail: (YGM); (XS)
| | - Xiaoyan Shen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- * E-mail: (YGM); (XS)
| |
Collapse
|
7
|
Pitter KL, Galbán CJ, Galbán S, Saeed-Tehrani O, Li F, Charles N, Bradbury MS, Becher OJ, Chenevert TL, Rehemtulla A, Ross BD, Holland EC, Hambardzumyan D. Perifosine and CCI 779 co-operate to induce cell death and decrease proliferation in PTEN-intact and PTEN-deficient PDGF-driven murine glioblastoma. PLoS One 2011; 6:e14545. [PMID: 21267448 PMCID: PMC3022633 DOI: 10.1371/journal.pone.0014545] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 11/27/2010] [Indexed: 01/05/2023] Open
Abstract
Background Platelet derived growth factor receptor (PDGFR) activity is deregulated in human GBM due to amplification and rearrangement of the PDGFR-alpha gene locus or overexpression of the PDGF ligand, resulting in the activation of downstream kinases such as phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR). Aberrant PDGFR signaling is observed in approximately 25-30% of human GBMs, which are frequently molecularly classified as the proneural subclass. It would be valuable to understand how PDGFR driven GBMs respond to Akt and mTOR inhibition. Methodology/Principal Findings Using genetically engineered PTEN-intact and PTEN-deficient PDGF-driven mouse models of GBM that closely mimic the histology and genetics of the human PDGF subgroup, we investigated the effect of inhibiting Akt and mTOR alone or in combination in vitro and in vivo. We used perifosine and CCI-779 to inhibit Akt and mTOR, respectively. Here, we show in vitro data demonstrating that the most effective inhibition of Akt and mTOR activity in both PTEN-intact and PTEN-null primary glioma cell cultures is obtained when using both inhibitors in combination. We next investigated if the effects we observed in culture could be duplicated in vivo by treating mice with gliomas for 5 days. The in vivo treatments with the combination of CCI-779 and perifosine resulted in decreased Akt and mTOR signaling, which correlated to decreased proliferation and increased cell death independent of PTEN status, as monitored by immunoblot analysis, histology and MRI. Conclusions/Significance These findings underline the importance of simultaneously targeting Akt and mTOR to achieve significant down-regulation of the PI3K pathway and support the rationale for testing the perifosine and CCI-779 combination in the human PDGF-subgroup of GBM.
Collapse
Affiliation(s)
- Kenneth L. Pitter
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Craig J. Galbán
- Departments of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Stefanie Galbán
- Radiation Oncology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Omid Saeed-Tehrani
- Departments of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Fei Li
- Departments of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Nikki Charles
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Michelle S. Bradbury
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Oren J. Becher
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Thomas L. Chenevert
- Departments of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Alnawaz Rehemtulla
- Radiation Oncology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Brian D. Ross
- Departments of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (ECH); (DH); (BDR)
| | - Eric C. Holland
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Departments of Neurosurgery, Neurology and Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail: (ECH); (DH); (BDR)
| | - Dolores Hambardzumyan
- Department of Stem Cell Biology and Regenerative Medicine in Lerner Research Institute at Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail: (ECH); (DH); (BDR)
| |
Collapse
|
8
|
Bao R, Lai CJ, Qu H, Wang D, Yin L, Zifcak B, Atoyan R, Wang J, Samson M, Forrester J, DellaRocca S, Xu GX, Tao X, Zhai HX, Cai X, Qian C. CUDC-305, a Novel Synthetic HSP90 Inhibitor with Unique Pharmacologic Properties for Cancer Therapy. Clin Cancer Res 2009; 15:4046-57. [DOI: 10.1158/1078-0432.ccr-09-0152] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Improving the prognosis for patients with glioblastoma: the rationale for targeting Src. J Neurooncol 2009; 95:151-163. [PMID: 19436954 DOI: 10.1007/s11060-009-9916-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 04/30/2009] [Indexed: 01/08/2023]
Abstract
Glioblastoma is the most common and aggressive form of primary brain tumor. The prognosis for patients diagnosed with glioblastoma is poor, with a median survival of 12-14 months and a 5-year survival rate of <5%. The upfront standard treatment for patients with newly diagnosed glioblastoma, consisting of surgery followed by chemotherapy combined with radiotherapy, provides only short-term survival benefits. Recurrent glioblastoma is an extremely challenging therapeutic setting because of the aggressive and resistant nature of the tumor. A set of key molecular targets in oncology is the Src family of non-receptor protein kinases. Dysregulated signaling via the Src kinases has been shown to underlie glioma-related proliferation, angiogenesis, migration, and survival. Here we review the biologic role of Src in malignant glioma and discuss key preclinical studies demonstrating the potential utility of inhibiting Src in glioma. Proof of clinical benefit is forthcoming from the first clinical studies involving the newest generation of small molecule Src inhibitors currently in clinical trials for recurrent glioblastoma. Blocking Src alone will likely not translate into a significant clinical benefit; thus, strategies for combining Src inhibitors with potential synergistic therapeutic modalities will be discussed. This review will focus on dasatinib, the most advanced Src inhibitor being tested in glioblastoma, which is currently in phase I/II trials in this setting.
Collapse
|
10
|
Djedid R, Kiss R, Lefranc F. Targeted therapy of glioblastomas: a 5-year view. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/thy.09.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Dent P, Curiel DT, Fisher PB, Grant S. Synergistic combinations of signaling pathway inhibitors: mechanisms for improved cancer therapy. Drug Resist Updat 2009; 12:65-73. [PMID: 19395305 DOI: 10.1016/j.drup.2009.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 03/12/2009] [Accepted: 03/13/2009] [Indexed: 10/20/2022]
Abstract
Cancer cells contain multiple signal transduction pathways whose activities are frequently elevated due to their transformation, and that are often activated following exposure to established cytotoxic therapies including ionizing radiation and chemical DNA damaging agents. Many pathways activated in response to transformation or toxic stresses promote cell growth and invasion and counteract the processes of cell death. As a result of these findings many drugs, predominantly protein and lipid kinase inhibitors, of varying specificities, have been developed to block signaling by cell survival pathways in the hope of killing tumor cells and sensitizing them to toxic therapies. Unfortunately, due to the plasticity of signaling processes within a tumor cell, inhibition of any one growth factor receptor or signaling pathway frequently has only modest long-term effects on cancer cell viability, tumor growth, and patient survival. As a result of this realization, a greater emphasis has begun to be placed on rational combinations of drugs that simultaneously inhibit multiple inter-linked signal transduction/survival pathways. This, it is hoped, will limit the ability of tumor cells to adapt and survive because the activity within multiple parallel survival signaling pathways has been reduced. This review will discuss some of the approaches that have been taken to combine signal transduction modulatory agents to achieve enhanced tumor cell killing.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, 401 College St., Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|