1
|
Rodriguez-Sevilla JJ, Ganan-Gomez I, Kumar B, Thongon N, Ma F, Chien KS, Kim YJ, Yang H, Loghavi S, Tan R, Adema V, Li Z, Tanaka T, Uryu H, Kanagal-Shamanna R, Al-Atrash G, Bejar R, Banerjee PP, Lynn Cha S, Montalban-Bravo G, Dougherty M, Fernandez Laurita MC, Wheeler N, Jia B, Papapetrou EP, Izzo F, Dueñas DE, McAllen S, Gu Y, Todisco G, Ficara F, Della Porta MG, Jain A, Takahashi K, Clise-Dwyer K, Halene S, Bertilaccio MTS, Garcia-Manero G, Daher M, Colla S. Natural killer cells' functional impairment drives the immune escape of pre-malignant clones in early-stage myelodysplastic syndromes. Nat Commun 2025; 16:3450. [PMID: 40216768 PMCID: PMC11992119 DOI: 10.1038/s41467-025-58662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Dissecting the preneoplastic disease states' biological mechanisms that precede tumorigenesis can lead to interventions that can slow down disease progression and/or mitigate disease-related comorbidities. Myelodysplastic syndromes (MDS) cannot be cured by currently available pharmacological therapies, which fail to eradicate aberrant hematopoietic stem cells (HSCs), most of which are mutated by the time of diagnosis. Here, we sought to elucidate how MDS HSCs evade immune surveillance and expand in patients with clonal cytopenias of undetermined significance (CCUS), the pre-malignant stage of MDS. We used multi-omic single-cell approaches and functional in vitro studies to show that immune escape at disease initiation is mainly mediated by mutant, dysfunctional natural killer (NK) cells with impaired cytotoxic capability against cancer cells. Preclinical in vivo studies demonstrated that injecting NK cells from healthy donors efficiently depleted CCUS mutant cells while allowing normal cells to regenerate hematopoiesis. Our findings suggest that early intervention with adoptive cell therapy can prevent or delay the development of MDS.
Collapse
Affiliation(s)
| | - Irene Ganan-Gomez
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Bijender Kumar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natthakan Thongon
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Feiyang Ma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kelly S Chien
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Yi J Kim
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Yang
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roselyn Tan
- Moores Cancer Center, University of California San Diego, Moores Cancer Center, San Diego, CA, USA
| | - Vera Adema
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Zongrui Li
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Tomoyuki Tanaka
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Hidetaka Uryu
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rafael Bejar
- Moores Cancer Center, University of California San Diego, Moores Cancer Center, San Diego, CA, USA
| | - Pinaki Prosad Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sophia Lynn Cha
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Max Dougherty
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Claudina Fernandez Laurita
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Noelle Wheeler
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Baosen Jia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Franco Izzo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniela E Dueñas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Salome McAllen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiqian Gu
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Gabriele Todisco
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Francesca Ficara
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
- Istituto di Ricerca Genetica e Biomedica, National Research Council, 20090, Milan, Italy
| | - Matteo Giovanni Della Porta
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Abhinav Jain
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Simona Colla
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Chien KS, Braish JS, Li Z, Loghavi S, Bataller A, Montalban-Bravo G, Sasaki K, Kanagal-Shamanna R, Takahashi K, DiNardo CD, Swaminathan M, Kantarjian HM, Garcia-Manero G. Clinicopathologic characteristics and outcomes of patients with clonal hematopoiesis who progress to myeloid neoplasms. Leukemia 2025:10.1038/s41375-025-02564-z. [PMID: 40175627 DOI: 10.1038/s41375-025-02564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 04/04/2025]
Affiliation(s)
- Kelly S Chien
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Julie S Braish
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziyi Li
- Departments of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alex Bataller
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Koji Sasaki
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney D DiNardo
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mahesh Swaminathan
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guillermo Garcia-Manero
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Rodriguez-Sevilla JJ, Adema V, Chien KS, Loghavi S, Ma F, Yang H, Montalban-Bravo G, Huang X, Calvo X, Joseph J, Bodden K, Garcia-Manero G, Colla S. The IL-1β inhibitor canakinumab in previously treated lower-risk myelodysplastic syndromes: a phase 2 clinical trial. Nat Commun 2024; 15:9840. [PMID: 39537648 PMCID: PMC11561093 DOI: 10.1038/s41467-024-54290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
In myelodysplastic syndromes (MDS), the IL-1β pathway is upregulated, and previous studies using mouse models of founder MDS mutations demonstrated that it enhances hematopoietic stem and progenitor cells' (HSPCs') aberrant differentiation towards the myeloid lineage at the expense of erythropoiesis. To evaluate whether targeting the IL-1β signaling pathway can rescue ineffective erythropoiesis in patients with MDS, we designed a phase 2 non-randomized single-arm clinical trial (NCT04239157) to assess the safety profile and efficacy of the IL-1β inhibitor canakinumab in previously treated lower-risk MDS patients. We enrolled 25 patients with a median age of 74 years; 60% were male, 16% had lower-risk MDS, 84% had intermediate-1 risk MDS according to the International Prognostic Scoring System score, and 80% failed hypomethylating agent therapy. The study met the primary endpoint of defining the clinical activity of canakinumab, and the secondary objective of determining the safety profile, including the rate of transfusion independence, the duration of response, progression-free survival, leukemia-free survival, and overall survival. The overall response rate was 17.4%, with all responses including hematological improvement. Sequential post-hoc prospective single-cell RNA sequencing analyses of HSPCs and bone marrow mononuclear cells at different time points during therapy showed that canakinumab's on-target effects in hematopoietic populations expressing the IL-1β receptor decreased the TNF-mediated inflammatory signaling pathway but rescued ineffective erythropoiesis only in the context of lower genetic complexity. This study demonstrates that better stratification strategies could target lower-risk MDS patients more effectively.
Collapse
Affiliation(s)
| | - Vera Adema
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly S Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Hui Yang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Xuelin Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xavier Calvo
- Laboratori de Citologia Hematològica, Servei de Patologia, Grup de Recerca Translacional Neoplàsies Hematològiques (GRETNHE), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Joby Joseph
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristy Bodden
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Montalban-Bravo G, Thongon N, Rodriguez-Sevilla JJ, Ma F, Ganan-Gomez I, Yang H, Kim YJ, Adema V, Wildeman B, Tanaka T, Darbaniyan F, Al-Atrash G, Dwyer K, Loghavi S, Kanagal-Shamanna R, Song X, Zhang J, Takahashi K, Kantarjian H, Garcia-Manero G, Colla S. Targeting MCL1-driven anti-apoptotic pathways overcomes blast progression after hypomethylating agent failure in chronic myelomonocytic leukemia. Cell Rep Med 2024; 5:101585. [PMID: 38781960 PMCID: PMC11228590 DOI: 10.1016/j.xcrm.2024.101585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 11/27/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
RAS pathway mutations, which are present in 30% of patients with chronic myelomonocytic leukemia (CMML) at diagnosis, confer a high risk of resistance to and progression after hypomethylating agent (HMA) therapy, the current standard of care for the disease. Here, using single-cell, multi-omics technologies, we seek to dissect the biological mechanisms underlying the initiation and progression of RAS pathway-mutated CMML. We identify that RAS pathway mutations induce transcriptional reprogramming of hematopoietic stem and progenitor cells (HSPCs) and downstream monocytic populations in response to cell-intrinsic and -extrinsic inflammatory signaling that also impair the functions of immune cells. HSPCs expand at disease progression after therapy with HMA or the BCL2 inhibitor venetoclax and rely on the NF-κB pathway effector MCL1 to maintain survival. Our study has implications for the development of therapies to improve the survival of patients with RAS pathway-mutated CMML.
Collapse
MESH Headings
- Leukemia, Myelomonocytic, Chronic/drug therapy
- Leukemia, Myelomonocytic, Chronic/pathology
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
- Humans
- Apoptosis/drug effects
- Animals
- Mutation/genetics
- Mice
- Signal Transduction/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/drug effects
- Disease Progression
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- NF-kappa B/metabolism
- DNA Methylation/drug effects
- DNA Methylation/genetics
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Blast Crisis/pathology
- Blast Crisis/drug therapy
- Blast Crisis/genetics
- Blast Crisis/metabolism
Collapse
Affiliation(s)
| | - Natthakan Thongon
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Irene Ganan-Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Yang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi June Kim
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vera Adema
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bethany Wildeman
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tomoyuki Tanaka
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Faezeh Darbaniyan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen Dwyer
- Department of Stem Cell Transplantation and Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Rodriguez-Sevilla JJ, Ganan-Gomez I, Ma F, Chien K, Del Rey M, Loghavi S, Montalban-Bravo G, Adema V, Wildeman B, Kanagal-Shamanna R, Bazinet A, Chifotides HT, Thongon N, Calvo X, Hernández-Rivas JM, Díez-Campelo M, Garcia-Manero G, Colla S. Hematopoietic stem cells with granulo-monocytic differentiation state overcome venetoclax sensitivity in patients with myelodysplastic syndromes. Nat Commun 2024; 15:2428. [PMID: 38499526 PMCID: PMC10948794 DOI: 10.1038/s41467-024-46424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/09/2024] [Indexed: 03/20/2024] Open
Abstract
The molecular mechanisms of venetoclax-based therapy failure in patients with acute myeloid leukemia were recently clarified, but the mechanisms by which patients with myelodysplastic syndromes (MDS) acquire secondary resistance to venetoclax after an initial response remain to be elucidated. Here, we show an expansion of MDS hematopoietic stem cells (HSCs) with a granulo-monocytic-biased transcriptional differentiation state in MDS patients who initially responded to venetoclax but eventually relapsed. While MDS HSCs in an undifferentiated cellular state are sensitive to venetoclax treatment, differentiation towards a granulo-monocytic-biased transcriptional state, through the acquisition or expansion of clones with STAG2 or RUNX1 mutations, affects HSCs' survival dependence from BCL2-mediated anti-apoptotic pathways to TNFα-induced pro-survival NF-κB signaling and drives resistance to venetoclax-mediated cytotoxicity. Our findings reveal how hematopoietic stem and progenitor cell (HSPC) can eventually overcome therapy-induced depletion and underscore the importance of using close molecular monitoring to prevent HSPC hierarchical change in MDS patients enrolled in clinical trials of venetoclax.
Collapse
Affiliation(s)
| | - Irene Ganan-Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Kelly Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Monica Del Rey
- Hematology Department, University Hospital of Salamanca, IBSAL Cancer Center, Salamanca, Spain
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Vera Adema
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bethany Wildeman
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre Bazinet
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Helen T Chifotides
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natthakan Thongon
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xavier Calvo
- Laboratori de Citologia Hematològica, Servei de Patologia, Grup de Recerca Translacional en Neoplàsies Hematològiques (GRETNHE), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | | | - Maria Díez-Campelo
- Hematology Department, University Hospital of Salamanca, IBSAL Cancer Center, Salamanca, Spain
| | | | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Chien KS, Ong F, Kim K, Li Z, Kanagal‐Shamanna R, DiNardo CD, Takahashi K, Montalban‐Bravo G, Hammond D, Sasaki K, Pierce SA, Kantarjian HM, Garcia‐Manero G. Cancer patients with clonal hematopoiesis die from primary malignancy or comorbidities despite higher rates of transformation to myeloid neoplasms. Cancer Med 2024; 13:e7093. [PMID: 38497538 PMCID: PMC10945882 DOI: 10.1002/cam4.7093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/25/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND The occurrence of somatic mutations in patients with no evidence of hematological disorders is called clonal hematopoiesis (CH). CH, whose subtypes include CH of indeterminate potential and clonal cytopenia of undetermined significance, has been associated with both hematologic cancers and systemic comorbidities. However, CH's effect on patients, especially those with concomitant malignancies, is not fully understood. METHODS We performed a retrospective evaluation of all patients with CH at a tertiary cancer center. Patient characteristics, mutational data, and outcomes were collected and analyzed. RESULTS Of 78 individuals included, 59 (76%) had a history of cancer and 60 (77%) had moderate to severe comorbidity burdens. DNMT3A, TET2, TP53, and ASXL1 were the most common mutations. For the entire cohort, the 2-year overall survival rate was 79% (95% CI: 70, 90), while the median survival was not reached. Of 20 observed deaths, most were related to primary malignancies (n = 7, 35%), comorbidities (n = 4, 20%), or myeloid neoplasms (n = 4, 20%). Twelve patients (15%) experienced transformation to a myeloid neoplasm. According to the clonal hematopoiesis risk score, the 3-year transformation rate was 0% in low-risk, 15% in intermediate-risk (p = 0.098), and 28% in high-risk (p = 0.05) patients. By multivariate analysis, transformation was associated with variant allele frequency ≥0.2 and hemoglobin <10 g/dL. CONCLUSIONS In a population including mostly cancer patients, CH was associated with comorbidities and myeloid transformation in patients with higher mutational burdens and anemia. Nevertheless, such patients were less likely to die of their myeloid neoplasm than of primary malignancy or comorbidities.
Collapse
Affiliation(s)
- Kelly S. Chien
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Faustine Ong
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Kunhwa Kim
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ziyi Li
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Rashmi Kanagal‐Shamanna
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Courtney D. DiNardo
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Koichi Takahashi
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | | | - Danielle Hammond
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Koji Sasaki
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Sherry A. Pierce
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Hagop M. Kantarjian
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | | |
Collapse
|
7
|
Adema V, Ganan-Gomez I, Ma F, Rodriguez-Sevilla JJ, Chien K, Yang H, Thongon N, Kanagal-Shamanna R, Loghavi S, Montalban-Bravo G, Hammond D, Gu Y, Tan R, Tan L, Lorenzi P, Al-Atrash G, Clise-Dwyer K, Bejar R, Pellegrini M, Garcia-Manero G, Colla S. IL-1β-mediated inflammatory signaling drives ineffective erythropoiesis in early-stage myelodysplastic syndromes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560018. [PMID: 37808770 PMCID: PMC10557725 DOI: 10.1101/2023.09.28.560018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Myelodysplastic syndromes (MDS) are a group of incurable hematopoietic stem cell (HSC) neoplasms characterized by peripheral blood cytopenias and a high risk of progression to acute myeloid leukemia. MDS represent the final stage in a continuum of HSCs' genetic and functional alterations and are preceded by a premalignant phase, clonal cytopenia of undetermined significance (CCUS). Dissecting the mechanisms of CCUS maintenance may uncover therapeutic targets to delay or prevent malignant transformation. Here, we demonstrate that DNMT3A and TET2 mutations, the most frequent mutations in CCUS, induce aberrant HSCs' differentiation towards the myeloid lineage at the expense of erythropoiesis by upregulating IL-1β-mediated inflammatory signaling and that canakinumab rescues red blood cell transfusion dependence in early-stage MDS patients with driver mutations in DNMT3A and TET2 . This study illuminates the biological landscape of CCUS and offers an unprecedented opportunity for MDS intervention during its initial phase, when expected survival is prolonged.
Collapse
|
8
|
Montalban-Bravo G, Ma F, Thongon N, Yang H, Gomez IG, Rodriguez-Sevilla JJ, Adema V, Wildeman B, Lockyer P, Kim YJ, Tanaka T, Darbaniyan F, Pancholy S, Zhang G, Al-Atrash G, Dwyer K, Takahashi K, Garcia-Manero G, Kantarjian H, Colla S. Targeting MCL1-driven anti-apoptotic pathways to overcome hypomethylating agent resistance in RAS -mutated chronic myelomonocytic leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.535928. [PMID: 37066354 PMCID: PMC10104149 DOI: 10.1101/2023.04.07.535928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
RAS pathway mutations, which are present in 30% of patients with chronic myelomonocytic leukemia (CMML) at diagnosis, confer a high risk of resistance to and progression after hypomethylating agent (HMA) therapy, the current standard of care for the disease. Using single-cell, multi-omics technologies, we sought to dissect the biological mechanisms underlying the initiation and progression of RAS pathway-mutated CMML. We found that RAS pathway mutations induced the transcriptional reprogramming of hematopoietic stem and progenitor cells (HSPCs), which underwent proliferation and monocytic differentiation in response to cell-intrinsic and -extrinsic inflammatory signaling that also impaired immune cells' functions. HSPCs expanded at disease progression and relied on the NF- K B pathway effector MCL1 to maintain their survival, which explains why patients with RAS pathway- mutated CMML do not benefit from BCL2 inhibitors such as venetoclax. Our study has implications for developing therapies to improve the survival of patients with RAS pathway- mutated CMML.
Collapse
|
9
|
Adema V, Ma F, Kanagal-Shamanna R, Thongon N, Montalban-Bravo G, Yang H, Peslak SA, Wang F, Acha P, Sole F, Lockyer P, Cassari M, Maciejewski JP, Visconte V, Gañán-Gómez I, Song Y, Bueso-Ramos C, Pellegrini M, Tan TM, Bejar R, Carew JS, Halene S, Santini V, Al-Atrash G, Clise-Dwyer K, Garcia-Manero G, Blobel GA, Colla S. Targeting the EIF2AK1 Signaling Pathway Rescues Red Blood Cell Production in SF3B1-Mutant Myelodysplastic Syndromes With Ringed Sideroblasts. Blood Cancer Discov 2022; 3:554-567. [PMID: 35926182 PMCID: PMC9894566 DOI: 10.1158/2643-3230.bcd-21-0220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/26/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
SF3B1 mutations, which occur in 20% of patients with myelodysplastic syndromes (MDS), are the hallmarks of a specific MDS subtype, MDS with ringed sideroblasts (MDS-RS), which is characterized by the accumulation of erythroid precursors in the bone marrow and primarily affects the elderly population. Here, using single-cell technologies and functional validation studies of primary SF3B1-mutant MDS-RS samples, we show that SF3B1 mutations lead to the activation of the EIF2AK1 pathway in response to heme deficiency and that targeting this pathway rescues aberrant erythroid differentiation and enables the red blood cell maturation of MDS-RS erythroblasts. These data support the development of EIF2AK1 inhibitors to overcome transfusion dependency in patients with SF3B1-mutant MDS-RS with impaired red blood cell production. SIGNIFICANCE MDS-RS are characterized by significant anemia. Patients with MDS-RS die from a shortage of red blood cells and the side effects of iron overload due to their constant need for transfusions. Our study has implications for the development of therapies to achieve long-lasting hematologic responses. This article is highlighted in the In This Issue feature, p. 476.
Collapse
Affiliation(s)
- Vera Adema
- Department of Leukemia, The University of Texas MD Anderson Cancer Center,
Houston, Texas
| | - Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, Michigan
Medicine, University of Michigan, Ann Arbor, Michigan
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer
Center, Houston, Texas
| | - Natthakan Thongon
- Department of Leukemia, The University of Texas MD Anderson Cancer Center,
Houston, Texas
| | | | - Hui Yang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center,
Houston, Texas
| | - Scott A. Peslak
- Division of Hematology/Oncology, Department of Medicine, Hospital of the
University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Feng Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer
Center, Houston, Texas
| | - Pamela Acha
- MDS Research Group, Josep Carreras Leukaemia Research Institute, Universitat
Autonoma de Barcelona, Badalona, Spain
| | - Francesc Sole
- MDS Research Group, Josep Carreras Leukaemia Research Institute, Universitat
Autonoma de Barcelona, Badalona, Spain
| | - Pamela Lockyer
- Department of Leukemia, The University of Texas MD Anderson Cancer Center,
Houston, Texas
| | - Margherita Cassari
- MDS Unit, Azienda Ospedaliero Universitaria Careggi, University of Florence,
Florence, Italy
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer
Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer
Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Irene Gañán-Gómez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center,
Houston, Texas
| | - Yuanbin Song
- Department of Hematologic Oncology, State Key Laboratory of Oncology in
South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University
Cancer Center, Guangzhou, P.R. China
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer
Center, Houston, Texas
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of
California, Los Angeles, California
| | - Tuyet M. Tan
- Moores Cancer Center, Univerity of California San Diego, San Diego,
California
| | - Rafael Bejar
- Moores Cancer Center, Univerity of California San Diego, San Diego,
California
| | | | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale
Comprehensive Cancer Center, Yale University School of Medicine, New Haven,
Connecticut
| | - Valeria Santini
- MDS Unit, Azienda Ospedaliero Universitaria Careggi, University of Florence,
Florence, Italy
| | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Hematopoietic Biology and
Malignancy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Hematopoietic Biology and
Malignancy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Gerd A. Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center,
Houston, Texas
| |
Collapse
|
10
|
Yang H, Garcia-Manero G, Sasaki K, Montalban-Bravo G, Tang Z, Wei Y, Kadia T, Chien K, Rush D, Nguyen H, Kalia A, Nimmakayalu M, Bueso-Ramos C, Kantarjian H, Medeiros LJ, Luthra R, Kanagal-Shamanna R. High-resolution structural variant profiling of myelodysplastic syndromes by optical genome mapping uncovers cryptic aberrations of prognostic and therapeutic significance. Leukemia 2022; 36:2306-2316. [PMID: 35915143 PMCID: PMC9417987 DOI: 10.1038/s41375-022-01652-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/17/2022]
Abstract
Chromosome banding analysis (CBA) remains the standard-of-care for structural variant (SV) assessment in MDS. Optical genome mapping (OGM) is a novel, non-sequencing-based technique for high-resolution genome-wide SV profiling (SVP). We explored the clinical value of SVP by OGM in 101 consecutive, newly diagnosed MDS patients from a single-center, who underwent standard-of-care cytogenetic and targeted NGS studies. OGM detected 383 clinically significant, recurrent and novel SVs. Of these, 224 (51%) SVs, seen across 34% of patients, were cryptic by CBA (included rearrangements involving MECOM, NUP98::PRRX2, KMT2A partial tandem duplications among others). SVP decreased the proportion of normal karyotype by 16%, identified complex genomes (17%), chromothripsis (6%) and generated informative results in both patients with insufficient metaphases. Precise gene/exon-level mapping allowed assessment of clinically relevant biomarkers (TP53 allele status, KMT2A-PTD) without additional testing. SV data was complementary to NGS. When applied in retrospect, OGM results changed the comprehensive cytogenetic scoring system (CCSS) and R-IPSS risk-groups in 21% and 17% patients respectively with an improved prediction of prognosis. By multivariate analysis, CCSS by OGM only (not CBA), TP53 mutation and BM blasts independently predicted survival. This is the first and largest study reporting the value of combined SVP and NGS for MDS prognostication.
Collapse
Affiliation(s)
- Hui Yang
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Koji Sasaki
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | - Zhenya Tang
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Yue Wei
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Tapan Kadia
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kelly Chien
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Diana Rush
- School of Health Professions, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Ha Nguyen
- School of Health Professions, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Awdesh Kalia
- School of Health Professions, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Manjunath Nimmakayalu
- School of Health Professions, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Rajyalakshmi Luthra
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
11
|
Immunohistochemical loss of enhancer of Zeste Homolog 2 (EZH2) protein expression correlates with EZH2 alterations and portends a worse outcome in myelodysplastic syndromes. Mod Pathol 2022; 35:1212-1219. [PMID: 35504958 DOI: 10.1038/s41379-022-01074-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2022]
Abstract
EZH2 coding mutation (EZH2MUT), resulting in loss-of-function, is an independent predictor of overall survival in MDS. EZH2 function can be altered by other mechanisms including copy number changes, and mutations in other genes and non-coding regions of EZH2. Assessment of EZH2 protein can identify alterations of EZH2 function missed by mutation assessment alone. Precise evaluation of EZH2 function and gene-protein correlation in clinical MDS cohorts is important in the context of upcoming targeted therapies aimed to restore EZH2 function. In this study, we evaluated the clinicopathologic characteristics of newly diagnosed MDS patients with EZH2MUT and correlated the findings with protein expression using immunohistochemistry. There were 40 (~6%) EZH2MUT MDS [33 men, seven women; median age 74 years (range, 55-90)]. EZH2 mutations spanned the entire coding region. Majority had dominant EZH2 clone [median VAF, 30% (1-92)], frequently co-occurring with co-dominant TET2 (38%) and sub-clonal ASXL1 (55%) and RUNX1 (43%) mutations. EZH2MUT MDS showed frequent loss-of-expression compared to EZH2WT (69% vs. 27%, p = 0.001). Interestingly, NINE (23%) EZH2WT MDS also showed loss-of-expression. EZH2MUT and loss-of-expression significantly associated with male predominance and chr(7) loss. Further, only EZH2 loss-of-expression patients showed significantly lower platelet counts, a trend for higher BM blast% and R-IPSS scores. Over a 14-month median follow-up, both EZH2MUT (p = 0.027) and loss-of-expression (p = 0.0063) correlated with poor survival, independent of R-IPSS, age and gender. When analyzed together, loss-of-expression showed a stronger correlation than mutation (p = 0.061 vs. p = 0.43). In conclusion, immunohistochemical assessment of EZH2 protein, alongside mutation, is important for prognostic workup of MDS.
Collapse
|
12
|
Stem cell architecture drives myelodysplastic syndrome progression and predicts response to venetoclax-based therapy. Nat Med 2022; 28:557-567. [PMID: 35241842 PMCID: PMC8938266 DOI: 10.1038/s41591-022-01696-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Myelodysplastic syndromes (MDS) are heterogeneous neoplastic disorders of hematopoietic stem cells (HSCs). The current standard of care for patients with MDS is hypomethylating agent (HMA)-based therapy; however, almost 50% of MDS patients fail HMA therapy and progress to acute myeloid leukemia, facing a dismal prognosis due to lack of approved second-line treatment options. As cancer stem cells are the seeds of disease progression, we investigated the biological properties of the MDS HSCs that drive disease evolution, seeking to uncover vulnerabilities that could be therapeutically exploited. Through integrative molecular profiling of HSCs and progenitor cells in large patient cohorts, we found that MDS HSCs in two distinct differentiation states are maintained throughout the clinical course of the disease, and expand at progression, depending on recurrent activation of the anti-apoptotic regulator BCL-2 or nuclear factor-kappa B-mediated survival pathways. Pharmacologically inhibiting these pathways depleted MDS HSCs and reduced tumor burden in experimental systems. Further, patients with MDS who progressed after failure to frontline HMA therapy and whose HSCs upregulated BCL-2 achieved improved clinical responses to venetoclax-based therapy in the clinical setting. Overall, our study uncovers that HSC architectures in MDS are potential predictive biomarkers to guide second-line treatments after HMA failure. These findings warrant further investigation of HSC-specific survival pathways to identify new therapeutic targets of clinical potential in MDS.
Collapse
|
13
|
Ferrone CK, Wong H, Semenuk L, Werunga B, Snetsinger B, Zhang X, Zhang G, Lui J, Richard-Carpentier G, Crocker S, Good D, Hay AE, Quest G, Carson N, Feilotter HE, Rauh MJ. Validation, Implementation, and Clinical Impact of the Oncomine Myeloid Targeted-Amplicon DNA and RNA Ion Semiconductor Sequencing Assay. J Mol Diagn 2021; 23:1292-1305. [PMID: 34365012 DOI: 10.1016/j.jmoldx.2021.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/04/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022] Open
Abstract
The identification of clinically significant genes recurrently mutated in myeloid malignancies necessitates expanding diagnostic testing with higher throughput, such as targeted next-generation sequencing. We present validation of the Thermo Fisher Oncomine Myeloid Next-Generation Sequencing Panel (OMP), targeting 40 genes and 29 fusion drivers recurrently mutated in myeloid malignancies. The study includes data from a sample exchange between two Canadian hospitals demonstrating high concordance for detection of DNA and RNA aberrations. Clinical validation demonstrates high accuracy, sensitivity, and specificity of the OMP, with a lower limit of detection of 5% for single-nucleotide variants and 10% for insertions/deletions. Prospective sequencing was performed for 187 samples from 168 unique patients presenting with suspected or confirmed myeloid malignancy and other hematological conditions to assess clinical impact of identifying variants. Of detected variants, 48% facilitated or clarified diagnoses, 29% affected prognoses, and 25% had the potential to influence clinical management. Of note, OMP was essential to identifying patients with premalignant clonal states likely contributing to cytopenias. We also found that the detection of even a single variant by the OMP assay, versus 0 variants, was predictive of overall survival, independent of age, sex, or diagnosis (P = 0.03). This study demonstrates that molecular profiling of myeloid malignancies with the OMP represents a promising strategy to advance molecular diagnostics.
Collapse
Affiliation(s)
- Christina K Ferrone
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Henry Wong
- Molecular Genetics Laboratory, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Laura Semenuk
- Molecular Genetics Laboratory, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Barnaba Werunga
- Division of Genetics, Department of Lab Medicine and Pathology, Saint John Regional Hospital, Saint John, New Brunswick, Canada
| | - Brooke Snetsinger
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Xiao Zhang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Grace Zhang
- Division of Hematology, Department of Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Janet Lui
- Division of Hematology, Department of Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | | | - Susan Crocker
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada; Cytogenetics Laboratory, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - David Good
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Annette E Hay
- Division of Hematology, Department of Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Graeme Quest
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Nancy Carson
- Division of Genetics, Department of Lab Medicine and Pathology, Saint John Regional Hospital, Saint John, New Brunswick, Canada
| | - Harriet E Feilotter
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada; Molecular Genetics Laboratory, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
14
|
Quesada AE, Luthra R, Jabbour E, Patel KP, Khoury JD, Tang Z, Alvarez H, Mallampati S, Garcia-Manero G, Montalban-Bravo G, Medeiros LJ, Kanagal-Shamanna R. Incidental identification of inv(16)(p13.1q22)/ CBFB- MYH11 variant transcript in a patient with therapy-related acute myeloid leukemia by routine leukemia translocation panel screen: implications for diagnosis and therapy. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006084. [PMID: 34117074 PMCID: PMC8208042 DOI: 10.1101/mcs.a006084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 11/25/2022] Open
Abstract
A 52-yr-old woman presented with therapy-related acute myeloid leukemia. A bone marrow biopsy showed 21% blasts with a myeloid phenotype and no other notable features such as abnormal eosinophils. Routine nanofluidics-based reverse transcriptase polymerase chain reaction (PCR) leukemia translocation panel designed to screen for recurrent genetic abnormalities in acute leukemia detected an inversion 16 transcript variant E. This prompted rereview of karyotype and fluorescence in situ hybridization studies, which confirmed inv(16), leading to appropriate prognostication and modification of treatment. This case underscores the utility of a powerful molecular screening method for the routine detection of recurrent genetic abnormalities of acute myeloid leukemia. It was especially useful in this case because of the lack of characteristic morphologic findings seen in inversion 16 and the difficulty in its detection by conventional karyotype analysis.
Collapse
Affiliation(s)
- Andrés E Quesada
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Rajyalakshmi Luthra
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hector Alvarez
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Saradhi Mallampati
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Guillermo Montalban-Bravo
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
15
|
Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes. Blood Adv 2021; 4:482-495. [PMID: 32027746 DOI: 10.1182/bloodadvances.2019001101] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022] Open
Abstract
TP53 mutations are associated with adverse outcomes and shorter response to hypomethylating agents (HMAs) in myelodysplastic syndrome (MDS). Limited data have evaluated the impact of the type, number, and patterns of TP53 mutations in response outcomes and prognosis of MDS. We evaluated the clinicopathologic characteristics, outcomes, and response to therapy of 261 patients with MDS and TP53 mutations. Median age was 68 years (range, 18-80 years). A total of 217 patients (83%) had a complex karyotype. TP53 mutations were detected at a median variant allele frequency (VAF) of 0.39 (range, 0.01-0.94). TP53 deletion was associated with lower overall response rate (ORR) (odds ratio, 0.3; P = .021), and lower TP53 VAF correlated with higher ORR to HMAs. Increase in TP53 VAF at the time of transformation was observed in 13 patients (61%), and previously undetectable mutations were observed in 15 patients (65%). TP53 VAF was associated with worse prognosis (hazard ratio, 1.02 per 1% VAF increase; 95% confidence interval, 1.01-1.03; P < .001). Integration of TP53 VAF and karyotypic complexity identified prognostic subgroups within TP53-mutant MDS. We developed a multivariable model for overall survival that included the revised International Prognostic Scoring System (IPSS-R) categories and TP53 VAF. Total score for each patient was calculated as follows: VAF TP53 + 13 × IPSS-R blast score + 16 × IPSS-R cytogenetic score + 28 × IPSS-R hemoglobin score + 46 × IPSS-R platelet score. Use of this model identified 4 prognostic subgroups with median survival times of not reached, 42.2, 21.9, and 9.2 months. These data suggest that outcomes of patients with TP53-mutated MDS are heterogeneous and that transformation may be driven not only by TP53 but also by other factors.
Collapse
|
16
|
Bandara WMMS, Rathnayake AJIS, Neththikumara NF, Goonasekera HWW, Dissanayake VHW. Comparative Analysis of the Genetic Variants in Haematopoietic Stem/Progenitor and Mesenchymal Stem Cell Compartments in de novo Myelodysplastic Syndromes. Blood Cells Mol Dis 2021; 88:102535. [PMID: 33461003 DOI: 10.1016/j.bcmd.2021.102535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/17/2022]
Abstract
Myelodysplastic Syndromes (MDS) are hematological clonal disorders. Bone marrow (BM) mesenchymal stem cells (MSCs) interact with the haematopoietic stem and progenitor cells (HSPCs) to regulate haematopoiesis. We studied the genetic variation profiles of BM derived CD34+ HSPCs and MSCs of same patient in a South Asian de novo MDS cohort with 20 patients. A total of 42 genes (variants 471) and 38 genes (variants 232) were mutated in HSPCs and MSCs respectively and majority (97%) were distinct variants. Variants included both known and novel, with variants predicted as pathogenic. In both cell types, most frequently mutated genes were TET2, KDM6A, BCOR, EZH2 and ASXL. DNA methylation and chromatin remodeling were shown to be affected in both cell types with a high frequency. RNA splicing was affected more in HSPCs. Gene variants in the cohesion complex and epigenetic mechanisms were shown to co-exist. We report variant profile of MSCs and CD34+ HSPCs from a South Asian cohort, with novel variants with potential for further study as biomarkers in MDS. Distinct variants confined to each cellular compartment indicate that the genetic variations occur following lineage commitment.
Collapse
Affiliation(s)
- W M Manoj S Bandara
- Department of Pre-Clinical Sciences, Faculty of Medicine, General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka.
| | - A J Iresha S Rathnayake
- Department of Pre-Clinical Sciences, Faculty of Medicine, General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka.
| | | | | | | |
Collapse
|
17
|
Zhang BM, Keegan A, Li P, Lindeman NI, Nagarajan R, Routbort MJ, Vasalos P, Kim AS, Merker JD. An Overview of Characteristics of Clinical Next-Generation Sequencing-Based Testing for Hematologic Malignancies. Arch Pathol Lab Med 2021; 145:1110-1116. [PMID: 33450747 DOI: 10.5858/arpa.2019-0661-cp] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— With the increasing integration of molecular alterations into the evaluation of hematologic malignancies (HM), somatic mutation profiling by next-generation sequencing (NGS) has become a common clinical testing strategy. Limited data are available about the characteristics of these assays. OBJECTIVE.— To describe assay characteristics, specimen requirements, and reporting practices for NGS-based HM testing using College of American Pathologists proficiency testing survey data. DESIGN.— The College of American Pathologists NGS Hematologic Malignancies Survey (NGSHM) results from 78 laboratories were used to determine laboratory practices in NGS-based HM testing. RESULTS.— The majority of laboratories performed tumor-only (88.5% [69 of 78]), targeted sequencing of cancer genes or mutation hotspots (98.7% [77 of 78]); greater than 90% performed testing on fresh bone marrow and peripheral blood. The majority of laboratories reported a 5% lower limit of detection for single-nucleotide variants (73.1% [57 of 78]) and small insertions and deletions (50.6% [39 of 77]). A majority of laboratories used benchtop sequencers and custom enrichment approaches. CONCLUSIONS.— This manuscript summarizes the characteristics of clinical NGS-based testing for the detection of somatic variants in HM. These data may be broadly useful to inform laboratory practice and quality management systems, regulation, and oversight of NGS testing, and precision medicine efforts using a data-driven approach.
Collapse
Affiliation(s)
- Bing M Zhang
- From the Department of Pathology, Stanford University School of Medicine, Stanford, California (Zhang)
| | - Alissa Keegan
- the Department of Pathology, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts (Keegan, Lindeman, Kim).,Current or past members of the College of American Pathologists, Molecular Oncology Committee are Keegan, Kim, Lindeman, Merker, Nagarajan, Routbort, Vasalos (staff). Merker and Kim contributed equally and are co-senior authors of this work
| | - Peng Li
- ARUP Laboratories, Department of Pathology, University of Utah, Salt Lake City, Utah (Li)
| | - Neal I Lindeman
- the Department of Pathology, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts (Keegan, Lindeman, Kim).,Current or past members of the College of American Pathologists, Molecular Oncology Committee are Keegan, Kim, Lindeman, Merker, Nagarajan, Routbort, Vasalos (staff). Merker and Kim contributed equally and are co-senior authors of this work
| | - Rakesh Nagarajan
- PierianDx, St Louis, Missouri (Nagarajan).,Current or past members of the College of American Pathologists, Molecular Oncology Committee are Keegan, Kim, Lindeman, Merker, Nagarajan, Routbort, Vasalos (staff). Merker and Kim contributed equally and are co-senior authors of this work
| | - Mark J Routbort
- the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Routbort).,Current or past members of the College of American Pathologists, Molecular Oncology Committee are Keegan, Kim, Lindeman, Merker, Nagarajan, Routbort, Vasalos (staff). Merker and Kim contributed equally and are co-senior authors of this work
| | - Patricia Vasalos
- Proficiency Testing, College of American Pathologists, Northfield, Illinois (Vasalos).,Current or past members of the College of American Pathologists, Molecular Oncology Committee are Keegan, Kim, Lindeman, Merker, Nagarajan, Routbort, Vasalos (staff). Merker and Kim contributed equally and are co-senior authors of this work
| | - Annette S Kim
- the Department of Pathology, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts (Keegan, Lindeman, Kim).,Current or past members of the College of American Pathologists, Molecular Oncology Committee are Keegan, Kim, Lindeman, Merker, Nagarajan, Routbort, Vasalos (staff). Merker and Kim contributed equally and are co-senior authors of this work
| | - Jason D Merker
- the Departments of Pathology and Laboratory Medicine & Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill (Merker).,Current or past members of the College of American Pathologists, Molecular Oncology Committee are Keegan, Kim, Lindeman, Merker, Nagarajan, Routbort, Vasalos (staff). Merker and Kim contributed equally and are co-senior authors of this work
| |
Collapse
|
18
|
Clinico-pathologic characteristics and outcomes of the World Health Organization (WHO) provisional entity de novo acute myeloid leukemia with mutated RUNX1. Mod Pathol 2020; 33:1678-1689. [PMID: 32238878 DOI: 10.1038/s41379-020-0531-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 02/03/2023]
Abstract
We studied the characteristics of the provisional category de novo acute myeloid leukemia (AML) with mutated RUNX1 (AML-RUNX1mut) proposed by the World Health Organization (WHO). Until now, most published studies have combined de novo and secondary AML-RUNX1mut. We compared the clinicopathologic characteristics and outcomes of WHO-defined de novo AML-RUNX1mut with de novo AML without RUNX1 alterations (AML-RUNX1wt). We performed sequential NGS to assess RUNX1 mutation stability over disease course. We identified 46 de novo AML-RUNX1mut patients [32 (70%) men, 14 (30%) women; median age, 66.5 years] with 54 RUNX1 mutations [median VAF, 32% (2-97%)]. Point mutations clustered within the runt-homology-domain and frame-shift mutations within the transactivation domain. Compared with AML-RUNX1wt, AML-RUNX1mut showed male predominance (p = 0.02), higher frequency of SRSF2 (p = 0.02), and ASXL1 (p = 0.0004) mutations and normal karyotype (p = 0.01), and absent NPM1 mutations (p = 0.0002). De novo AML-RUNX1mut showed no significant difference in overall survival (OS) compared with AML-RUNX1wt (median: 26 vs. 32 months) (p = 0.71). AML-RUNX1mut with clonal RUNX1 mutation (≥20% VAF) had shorter OS than subclonal <20% VAF (23 months vs. undefined; p = 0.04). However, the difference was not significant when compared with AML-RUNX1wt (23 vs. 32 months; p = 0.23). No significant OS difference was noted between de novo AML-RUNX1mut and AML-NOS-RUNX1wt. By sequential multigene mutation profiling, RUNX1 mutation disappeared at relapse in one of ten patients. Overall, the findings support separate categorization of this entity. However, there is no significant outcome difference compared with AML-RUNX1wt.
Collapse
|
19
|
Montalban-Bravo G, Kanagal-Shamanna R, Class CA, Sasaki K, Ravandi F, Cortes JE, Daver N, Takahashi K, Short NJ, DiNardo CD, Jabbour E, Borthakur G, Naqvi K, Issa GC, Konopleva M, Khoury JD, Routbort M, Pierce S, Do KA, Bueso-Ramos C, Patel K, Kantarjian H, Garcia-Manero G, Kadia TM. Outcomes of acute myeloid leukemia with myelodysplasia related changes depend on diagnostic criteria and therapy. Am J Hematol 2020; 95:612-622. [PMID: 32112433 DOI: 10.1002/ajh.25769] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 02/03/2023]
Abstract
Acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) is a heterogeneous disorder defined by multilineage dysplasia, myelodysplastic syndrome (MDS)-related karyotype, or history of prior MDS. We evaluated 415 patients with AML-MRC treated from 2013 to 2018 and analyzed their clinical outcomes based on the diagnostic criteria of AML-MRC, therapy type and mutation profile. Criteria for AML-MRC included: cytogenetic abnormalities (AML-MRC-C) in 243 (59%), prior history of MDS in 75 (18%) including 47 (11%) with previously untreated MDS (AML-MRC-H) and 28 (7%) with previously treated MDS (AML-MRC-TS), and 97 (23%) with multilineage dysplasia (AML-MRC-M). Median age was 70 years (range 18-94). Among 95 evaluable patients, a total of 37 (39%) had secondary-type (ASXL1, BCOR, EZH2, SF3B1, SRSF2, STAG2, U2AF1, ZRSR2) mutations. Mutations in ASXL1, BCOR, SF3B1, SRSF2, and U2AF1 tended to appear in dominant clones. By multivariate analysis, AML-MRC subtype, age and serum LDH levels were independent predictors of outcome, with patients with AML-MRC-M (HR 0.56, CI 0.38-0.84, P = .004) and AML-MRC-H having better OS. Compared to a cohort of 468 patients with AML without MRC, patients with AML-MRC-M/AML-MRC-H had similar outcomes to those with intermediate risk AML by European LeukemiaNet criteria. Intensive therapy was associated with improved OS in patients with AML-MRC-M (HR 0.42, CI 0.19-0.94, P = .036) and with improved EFS in AML-MRC-M and AML-MRC-H (HR 0.26, CI 0.10-0.63, P = .003). This data suggests that not all diagnostic criteria for AML-MRC define high-risk patients and that specific subgroups may benefit from different therapeutic interventions.
Collapse
Affiliation(s)
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Caleb A Class
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jorge E Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kiran Naqvi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joseph D Khoury
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark Routbort
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keyur Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
20
|
NPM1 mutations define a specific subgroup of MDS and MDS/MPN patients with favorable outcomes with intensive chemotherapy. Blood Adv 2020; 3:922-933. [PMID: 30902805 DOI: 10.1182/bloodadvances.2018026989] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/09/2019] [Indexed: 11/20/2022] Open
Abstract
Nucleophosmin (NPM1) mutations are common in acute myeloid leukemia and are associated with high remission rates and prolonged survival with intensive chemotherapy. NPM1 mutations are rare in myelodysplastic syndromes (MDS) or myelodysplastic/myeloproliferative neoplasm (MDS/MPN), and the clinical outcomes of these patients, when treated with intensive chemotherapy, are unknown. We retrospectively evaluated the clinicopathologic characteristics and the impact of therapy in 31 patients with MDS or MDS/MPN and NPM1 mutations. Next-generation sequencing was performed at diagnosis in 22 patients. Median age was 62 years (range, 19-86). Twenty-four patients (77%) had normal karyotype, and all had multilineage dysplasia. Most patients could be classified as MDS with excess blasts (19/31, 61%). NPM1 mutations were detected at a median allele frequency of 0.38 (range, 0.09-0.49). Mutation burden did not correlate with bone marrow blast frequency, and its clearance seemed to be associated with decreased morphologic dysplasia. Ten of the 31 patients (32%) received cytotoxic chemotherapy, 20 (65%) hypomethylating agents, and 1 (4%) lenalidomide. Sequential sequencing was available in 16 (52%) patients, and mutation burden correlated with disease status and response to therapy. Patients treated with chemotherapy had higher complete response rates (90% vs 28%, P = .004), longer median progression-free survival (not reached vs 7.5 months, P = .023), and overall survival (not reached vs 16 months, P = .047). Intensive chemotherapy and allogeneic stem cell transplantation (SCT) may be associated with improved clinical outcomes in patients with NPM1-mutated MDS or MDS/MPN who are candidates for this form of therapy.
Collapse
|
21
|
Kim H, Yun JW, Lee ST, Kim HJ, Kim SH, Kim JW. Korean Society for Genetic Diagnostics Guidelines for Validation of Next-Generation Sequencing-Based Somatic Variant Detection in Hematologic Malignancies. Ann Lab Med 2019; 39:515-523. [PMID: 31240878 PMCID: PMC6660343 DOI: 10.3343/alm.2019.39.6.515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/31/2019] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
Next-generation sequencing (NGS) is currently used in the clinical setting for targeted therapies and diagnosis of hematologic malignancies. Accurate detection of somatic variants is challenging because of tumor purity, heterogeneity, and the complexity of genetic alterations, with various issues ranging from high detection design to test implementation. This article presents guidelines developed through consensus among a panel of experts from the Korean Society for Genetic Diagnostics. They are based on experiences with the validation processes of NGS-based somatic panels for hematologic malignancies, with reference to previous international recommendations. These guidelines describe basic parameters with emphasis on the design of a validation protocol for NGS-based somatic panels to be used in practice. In addition, they suggest thresholds of key metrics, including minimum coverage, mean coverage with uniformity index, and minimum variant allele frequency, for the initial diagnosis of hematologic malignancies.
Collapse
Affiliation(s)
- Heyjin Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Jae Won Yun
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hee Jin Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Hee Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Won Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | | |
Collapse
|
22
|
Berry NK, Scott RJ, Rowlings P, Enjeti AK. Clinical use of SNP-microarrays for the detection of genome-wide changes in haematological malignancies. Crit Rev Oncol Hematol 2019; 142:58-67. [PMID: 31377433 DOI: 10.1016/j.critrevonc.2019.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
Single nucleotide polymorphism (SNP) microarrays are commonly used for the clinical investigation of constitutional genomic disorders; however, their adoption for investigating somatic changes is being recognised. With increasing importance being placed on defining the cancer genome, a shift in technology is imperative at a clinical level. Microarray platforms have the potential to become frontline testing, replacing or complementing standard investigations such as FISH or karyotype. This 'molecular karyotype approach' exemplified by SNP-microarrays has distinct advantages in the investigation of several haematological malignancies. A growing body of literature, including guidelines, has shown support for the use of SNP-microarrays in the clinical laboratory to aid in a more accurate definition of the cancer genome. Understanding the benefits of this technology along with discussing the barriers to its implementation is necessary for the development and incorporation of SNP-microarrays in a clinical laboratory for the investigation of haematological malignancies.
Collapse
Affiliation(s)
- Nadine K Berry
- Department of Haematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia; Department of Molecular Medicine, NSW Health Pathology, Newcastle, New South Wales, Australia.
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia; Department of Molecular Medicine, NSW Health Pathology, Newcastle, New South Wales, Australia
| | - Philip Rowlings
- Department of Haematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Medicine and Public Health, University Newcastle, New South Wales, Australia
| | - Anoop K Enjeti
- Department of Haematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Medicine and Public Health, University Newcastle, New South Wales, Australia
| |
Collapse
|
23
|
Thierauf J, Ramamurthy N, Jo VY, Robinson H, Frazier RP, Gonzalez J, Pacula M, Dominguez Meneses E, Nose V, Nardi V, Dias-Santagata D, Le LP, Lin DT, Faquin WC, Wirth LJ, Hess J, Iafrate AJ, Lennerz JK. Clinically Integrated Molecular Diagnostics in Adenoid Cystic Carcinoma. Oncologist 2019; 24:1356-1367. [PMID: 30926674 PMCID: PMC6795155 DOI: 10.1634/theoncologist.2018-0515] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/27/2019] [Indexed: 01/29/2023] Open
Abstract
Adenoid cystic carcinoma is a rare but aggressive type of salivary gland malignancy. This article addresses the need for more effective, biomarker‐informed therapies in rare cancers, focusing on clinical utility and financial sustainability of integrated next‐generation sequencing in routine practice. Background. Adenoid cystic carcinoma (ACC) is an aggressive salivary gland malignancy without effective systemic therapies. Delineation of molecular profiles in ACC has led to an increased number of biomarker‐stratified clinical trials; however, the clinical utility and U.S.‐centric financial sustainability of integrated next‐generation sequencing (NGS) in routine practice has, to our knowledge, not been assessed. Materials and Methods. In our practice, NGS genotyping was implemented at the discretion of the primary clinician. We combined NGS‐based mutation and fusion detection, with MYB break‐apart fluorescent in situ hybridization (FISH) and MYB immunohistochemistry. Utility was defined as the fraction of patients with tumors harboring alterations that are potentially amenable to targeted therapies. Financial sustainability was assessed using the fraction of global reimbursement. Results. Among 181 consecutive ACC cases (2011–2018), prospective genotyping was performed in 11% (n = 20/181; n = 8 nonresectable). Testing identified 5/20 (25%) NOTCH1 aberrations, 6/20 (30%) MYB‐NFIB fusions (all confirmed by FISH), and 2/20 (10%) MYBL1‐NFIB fusions. Overall, these three alterations (MYB/MYBL1/NOTCH1) made up 65% of patients, and this subset had a more aggressive course with significantly shorter progression‐free survival. In 75% (n = 6/8) of nonresectable patients, we detected potentially actionable alterations. Financial analysis of the global charges, including NGS codes, indicated 63% reimbursement, which is in line with national (U.S.‐based) and international levels of reimbursement. Conclusion. Prospective routine clinical genotyping in ACC can identify clinically relevant subsets of patients and is approaching financial sustainability. Demonstrating clinical utility and financial sustainability in an orphan disease (ACC) requires a multiyear and multidimensional program. Implications for Practice. Delineation of molecular profiles in adenoid cystic carcinoma (ACC) has been accomplished in the research setting; however, the ability to identify relevant patient subsets in clinical practice has not been assessed. This work presents an approach to perform integrated molecular genotyping of patients with ACC with nonresectable, recurrent, or systemic disease. It was determined that 75% of nonresectable patients harbor potentially actionable alterations and that 63% of charges are reimbursed. This report outlines that orphan diseases such as ACC require a multiyear, multidimensional program to demonstrate utility in clinical practice.
Collapse
Affiliation(s)
- Julia Thierauf
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Nisha Ramamurthy
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Vickie Y Jo
- Department of Pathology, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Hayley Robinson
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ryan P Frazier
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Gonzalez
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Maciej Pacula
- Department of Pathology, Computational Pathology, Boston, Massachusetts, USA
| | | | - Vania Nose
- Department of Pathology, Head and Neck Pathology, Boston, Massachusetts, USA
- Department of Pathology, Surgical Pathology, Boston, Massachusetts, USA
| | - Valentina Nardi
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Dora Dias-Santagata
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Long P Le
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Computational Pathology, Boston, Massachusetts, USA
| | - Derrick T Lin
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - William C Faquin
- Department of Pathology, Surgical Pathology, Boston, Massachusetts, USA
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Lori J Wirth
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A John Iafrate
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Kanagal-Shamanna R, Jain P, Patel KP, Routbort M, Bueso-Ramos C, Alhalouli T, Khoury JD, Luthra R, Ferrajoli A, Keating M, Jain N, Burger J, Estrov Z, Wierda W, Kantarjian HM, Medeiros LJ. Targeted multigene deep sequencing of Bruton tyrosine kinase inhibitor-resistant chronic lymphocytic leukemia with disease progression and Richter transformation. Cancer 2019; 125:559-574. [PMID: 30508305 DOI: 10.1002/cncr.31831] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/21/2018] [Accepted: 09/17/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND In a proportion of patients with chronic lymphocytic leukemia (CLL), resistance to Bruton tyrosine kinase (BTK) inhibitors (BTKi) is attributed to acquired BTK/phospholipase C gamma 2 (PLCG2) mutations. However, knowledge regarding additional genetic lesions associated with BTK/PLCG2 mutations, and gene mutations in patients lacking BTK/PLCG2 mutations, is limited. METHODS Using targeted deep sequencing, mutations in 29 genes associated with CLL and/or the BCR signaling pathway were assessed in patients with CLL who developed resistance to BTK inhibition with ibrutinib/acalabrutinib at a single institution. RESULTS The study group included 29 patients with BTKi-resistant CLL, 23 patients with disease progression, and 6 patients with Richter transformation (RT). The median times to disease progression and RT were 33.3 months and 13.3 months, respectively. In 11 patients, sequencing was possible at both baseline (prior to treatment with BTKi) and at time of disease progression/RT. Of these patients, 4 demonstrated BTK mutations at the time of disease progression/RT; patients without BTK mutations frequently acquired mutations associated with disease progression/RT in TP53, SF3B1, and CARD11, whereas additional mutations were rare in patients with BTK-mutated CLL. Sequencing of all 29 patients at the time of disease progression/RT identified BTK mutations at a frequency of 66%, including a novel V537I mutation. Among patients with disease progression, BTK mutations were observed in 16 patients (70%). The median time to disease progression was shorter in patients without BTK mutations compared with those with BTK-mutated CLL. Among patients with RT, SF3B1 mutations were more frequent than BTK mutations (67% vs 50%). Following BTKi discontinuation, we sequential mutation analysis was performed in 2 patients with RT and 3 patients with disease progression in the setting of persistent disease. Both patients with RT demonstrated disappearance of BTK and expansion of TP53 mutations. All 3 patients with disease progression received venetoclax and demonstrated suppression of BTK mutations. CONCLUSIONS Longitudinal, targeted, multigene deep sequencing is informative for the clinical monitoring of mutational evolution in patients with CLL who are receiving BTKi.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adult
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Benzamides/administration & dosage
- Biomarkers, Tumor/genetics
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cohort Studies
- DNA Mutational Analysis
- Disease Progression
- Drug Resistance, Neoplasm/genetics
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic/drug effects
- High-Throughput Nucleotide Sequencing/methods
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Longitudinal Studies
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Mutation
- Piperidines
- Prognosis
- Pyrazines/administration & dosage
- Pyrazoles/administration & dosage
- Pyrimidines/administration & dosage
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Preetesh Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark Routbort
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tahani Alhalouli
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajyalakshmi Luthra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jan Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - William Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
25
|
Montalban-Bravo G, Takahashi K, Patel K, Wang F, Xingzhi S, Nogueras GM, Huang X, Pierola AA, Jabbour E, Colla S, Gañan-Gomez I, Borthakur G, Daver N, Estrov Z, Kadia T, Pemmaraju N, Ravandi F, Bueso-Ramos C, Chamseddine A, Konopleva M, Zhang J, Kantarjian H, Futreal A, Garcia-Manero G. Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms. Oncotarget 2018. [PMID: 29515765 PMCID: PMC5839396 DOI: 10.18632/oncotarget.23882] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The prognostic and predictive value of sequencing analysis in myelodysplastic syndromes (MDS) has not been fully integrated into clinical practice. We performed whole exome sequencing (WES) of bone marrow samples from 83 patients with MDS and 31 with MDS/MPN identifying 218 driver mutations in 31 genes in 98 (86%) patients. A total of 65 (57%) patients received therapy with hypomethylating agents. By univariate analysis, mutations in BCOR, STAG2, TP53 and SF3B1 significantly influenced survival. Increased number of mutations (≥ 3), but not clonal heterogeneity, predicted for shorter survival and LFS. Presence of 3 or more mutations also predicted for lower likelihood of response (26 vs 50%, p = 0.055), and shorter response duration (3.6 vs 26.5 months, p = 0.022). By multivariate analysis, TP53 mutations (HR 3.1, CI 1.3–7.5, p = 0.011) and number of mutations (≥ 3) (HR 2.5, CI 1.3–4.8, p = 0.005) predicted for shorter survival. A novel prognostic model integrating this mutation data with IPSS-R separated patients into three categories with median survival of not reached, 29 months and 12 months respectively (p < 0.001) and increased stratification potential, compared to IPSS-R, in patients with high/very-high IPSS-R. This model was validated in a separate cohort of 413 patients with untreated MDS. Although the use of WES did not provide significant more information than that obtained with targeted sequencing, our findings indicate that increased number of mutations is an independent prognostic factor in MDS and that mutation data can add value to clinical prognostic models.
Collapse
Affiliation(s)
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keyur Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Feng Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Song Xingzhi
- Applied Cancer Science Institute, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Graciela M Nogueras
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xuelin Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ana Alfonso Pierola
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Irene Gañan-Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautham Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ali Chamseddine
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianhua Zhang
- Applied Cancer Science Institute, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
26
|
Kanagal-Shamanna R, Loghavi S, DiNardo CD, Medeiros LJ, Garcia-Manero G, Jabbour E, Routbort MJ, Luthra R, Bueso-Ramos CE, Khoury JD. Bone marrow pathologic abnormalities in familial platelet disorder with propensity for myeloid malignancy and germline RUNX1 mutation. Haematologica 2017; 102:1661-1670. [PMID: 28659335 PMCID: PMC5622850 DOI: 10.3324/haematol.2017.167726] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/20/2017] [Indexed: 01/20/2023] Open
Abstract
A subset of patients with familial platelet disorder with propensity to myeloid malignancy and germline RUNX1 mutation develops hematological malignancies, often myelodysplastic syndrome/acute myeloid leukemia, currently recognized in the 2016 WHO classification. Patients who develop hematologic malignancies are typically young, respond poorly to conventional therapy, and need allogeneic stem cell transplant from non-familial donors. Understanding the spectrum of bone marrow morphologic and genetic findings in these patients is critical to ensure diagnostic accuracy and develop criteria to recognize the onset of hematologic malignancies, particularly myelodysplastic syndrome. However, bone marrow features remain poorly characterized. To address this knowledge gap, we analyzed the clinicopathologic and genetic findings of 11 patients from 7 pedigrees. Of these, 6 patients did not develop hematologic malignancies over a 22-month follow-up period; 5 patients developed hematologic malignancies (3 acute myeloid leukemia; 2 myelodysplastic syndrome). All patients had thrombocytopenia at initial presentation. All 6 patients who did not develop hematologic malignancies showed baseline bone marrow abnormalities: low-for-age cellularity (n=4), dysmegakaryopoiesis (n=5), megakaryocytic hypoplasia/hyperplasia (n=5), and eosinophilia (n=4). Two patients had multiple immunophenotypic alterations in CD34-positive myeloblasts; 1 patient had clonal hematopoiesis. In contrast, patients who developed hematologic malignancies had additional cytopenia(s) (n=4), abnormal platelet granulation (n=5), bone marrow hypercellularity (n=4), dysplasia in ≥2 lineages including megakaryocytes (n=3) and acquired clonal genetic aberrations (n=5). In conclusion, our study demonstrated that specific bone marrow abnormalities and acquired genetic alterations may be harbingers of progression to hematological malignancies in patients with familial platelet disorder with germline RUNX1 mutation.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Mark J Routbort
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Rajyalakshmi Luthra
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Carlos E Bueso-Ramos
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood 2017; 130:410-423. [PMID: 28600336 DOI: 10.1182/blood-2017-02-734541] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
Genomic analysis has greatly influenced the diagnosis and clinical management of patients affected by diverse forms of hematologic malignancies. Here, we review how genetic alterations define subclasses of patients with acute leukemias, myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPNs), non-Hodgkin lymphomas, and classical Hodgkin lymphoma. These include new subtypes of acute myeloid leukemia defined by mutations in RUNX1 or BCR-ABL1 translocations as well as a constellation of somatic structural DNA alterations in acute lymphoblastic leukemia. Among patients with MDS, detection of mutations in SF3B1 define a subgroup of patients with the ring sideroblast form of MDS and a favorable prognosis. For patients with MPNs, detection of the BCR-ABL1 fusion delineates chronic myeloid leukemia from classic BCR-ABL1- MPNs, which are largely defined by mutations in JAK2, CALR, or MPL In the B-cell lymphomas, detection of characteristic rearrangements involving MYC in Burkitt lymphoma, BCL2 in follicular lymphoma, and MYC/BCL2/BCL6 in high-grade B-cell lymphomas are essential for diagnosis. In T-cell lymphomas, anaplastic large-cell lymphoma is defined by mutually exclusive rearrangements of ALK, DUSP22/IRF4, and TP63 Genetic alterations affecting TP53 and the mutational status of the immunoglobulin heavy-chain variable region are important in clinical management of chronic lymphocytic leukemia. Additionally, detection of BRAFV600E mutations is helpful in the diagnosis of classical hairy cell leukemia and a number of histiocytic neoplasms. Numerous additional examples provided here demonstrate how clinical evaluation of genomic alterations have refined classification of myeloid neoplasms and major forms of lymphomas arising from B, T, or natural killer cells.
Collapse
|
28
|
Montalban-Bravo G, Benton CB, Wang SA, Ravandi F, Kadia T, Cortes J, Daver N, Takahashi K, DiNardo C, Jabbour E, Borthakur G, Konopleva M, Pierce S, Bueso-Ramos C, Patel K, Kornblau S, Kantarjian H, Young KH, Garcia-Manero G, Andreeff M. More than 1 TP53 abnormality is a dominant characteristic of pure erythroid leukemia. Blood 2017; 129:2584-2587. [PMID: 28246192 PMCID: PMC5418636 DOI: 10.1182/blood-2016-11-749903] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
| | | | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | | | | | | | | | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Keyur Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | |
Collapse
|
29
|
Thomas M, Sukhai MA, Zhang T, Dolatshahi R, Harbi D, Garg S, Misyura M, Pugh T, Stockley TL, Kamel-Reid S. Integration of Technical, Bioinformatic, and Variant Assessment Approaches in the Validation of a Targeted Next-Generation Sequencing Panel for Myeloid Malignancies. Arch Pathol Lab Med 2017; 141:759-775. [PMID: 28557600 DOI: 10.5858/arpa.2016-0547-ra] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT - Detection of variants in hematologic malignancies is increasingly important because of a growing number of variants impacting diagnosis, prognosis, and treatment response, and as potential therapeutic targets. The use of next-generation sequencing technologies to detect variants in hematologic malignancies in a clinical diagnostic laboratory setting allows for efficient identification of routinely tested markers in multiple genes simultaneously, as well as the identification of novel and rare variants in other clinically relevant genes. OBJECTIVE - To apply a systematic approach to evaluate and validate a commercially available next-generation sequencing panel (TruSight Myeloid Sequencing Panel, Illumina, San Diego, California) targeting 54 genes. In this manuscript, we focused on the parameters that were used to evaluate assay performance characteristics. DATA SOURCES - Analytical validation was performed using samples containing known variants that had been identified previously. Cases were selected from different disease types, with variants in a range of genes. Panel performance characteristics were assessed and genomic regions requiring additional analysis or wet-bench approaches identified. CONCLUSIONS - We validated the performance characteristics of a myeloid next-generation sequencing panel for detection of variants. The TruSight Myeloid Sequencing Panel covers more than 95% of target regions with depth greater than 500×. However, because of unique variant types such as large insertions or deletions or genomic regions of high GC content, variants in CEBPA, FLT3, and CALR required supplementation with non-next-generation sequencing assays or with informatics approaches to address deficiencies in performance. The use of multiple bioinformatics approaches (2 variant callers and informatics scripts) allows for maximizing calling of true positives, while identifying limitations in using either method alone.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Suzanne Kamel-Reid
- From the Laboratory Medicine Program, Advanced Molecular Diagnostics Laboratory, Departments of Pathology and Genetics (Drs Thomas, Sukhai, Garg, Misyura, Stockley, and Kamel-Reid), the Princess Margaret Cancer Centre (Drs Thomas, Sukhai, Garg, Misyura, Pugh, Stockley, and Kamel-Reid and Ms Zhang), and High Performance Computing and Bioinformatics Services, Princess Margaret Genomics Centre (Dr Harbi and Mr Dolatshahi), University Health Network, Toronto, Ontario, Canada; and the Departments of Medical Biophysics (Drs Pugh and Kamel-Reid) and Laboratory Medicine and Pathobiology (Drs Stockley and Kamel-Reid), The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Next-Generation Sequencing in Cancer Diagnostics. J Mol Diagn 2016; 18:813-816. [PMID: 27664753 DOI: 10.1016/j.jmoldx.2016.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/23/2016] [Indexed: 12/14/2022] Open
Abstract
This commentary highlights the article by Misyura et al that underscores the use of next-generation sequencing platforms for detection and verification of somatic variants.
Collapse
|