1
|
Zhou Z, Gong P, Jiao X, Niu Y, Xu Z, Qin J, Yang Z. A generalized seizure type: Myoclonic-to-tonic seizure. Clin Neurophysiol 2024; 164:24-29. [PMID: 38823261 DOI: 10.1016/j.clinph.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/31/2024] [Accepted: 04/13/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND AND PURPOSE To test the hypothesis that myoclonic seizures can evolve to tonic seizures, we documented the electroclinical features of this under-recognized seizure type. METHODS We observed a distinct seizure pattern starting with myoclonus without returning to an interictal state, which subsequently evolved into generalized tonic seizures. The detailed symptomatic and electroencephalographic characteristics of this seizure were extracted, and the clinical manifestations, drug curative responses in patients with this seizure were reviewed and analyzed. RESULTS The onset of all seizures was characterized by a preceding period of myoclonus and bursts of generalized spike or poly-spike slow wave discharges with high amplitude. This was closely followed by the occurrence of tonic seizures, which were distinguished by bursts of generalized fast activity at 10 Hz or higher frequency. This under-recognized seizure type has been designated as myoclonic-to-tonic (MT) seizure. The number of patients identified with MT seizures in this study was 34. The prevalence rate of MT seizures was found to be higher in males. While MT seizures typically included a tonic component, it should be noted that some patients experiencing this seizure type never presented with isolated tonic seizures. Generalized Epilepsy not further defined (GE) accounted for approximately one-third of the diagnosed cases, followed by Lennox-Gastaut syndrome and Epilepsy with Myoclonic-Atonic seizures. In comparison to other types of epilepsy, GE with MT seizures demonstrated a more favorable prognosis. CONCLUSIONS The classification of myoclonic-to-tonic seizure represents a novel approach in comprehending the ictogenesis of generalized seizures and can provide valuable assistance to clinicians in epilepsy diagnosis.
Collapse
Affiliation(s)
- Zongpu Zhou
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Pan Gong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xianru Jiao
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Yue Niu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zhao Xu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
2
|
Sinha N, Joshi RB, Sandhu MRS, Netoff TI, Zaveri HP, Lehnertz K. Perspectives on Understanding Aberrant Brain Networks in Epilepsy. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:868092. [PMID: 36926081 PMCID: PMC10013006 DOI: 10.3389/fnetp.2022.868092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 01/21/2023]
Abstract
Epilepsy is a neurological disorder affecting approximately 70 million people worldwide. It is characterized by seizures that are complex aberrant dynamical events typically treated with drugs and surgery. Unfortunately, not all patients become seizure-free, and there is an opportunity for novel approaches to treat epilepsy using a network view of the brain. The traditional seizure focus theory presumed that seizures originated within a discrete cortical area with subsequent recruitment of adjacent cortices with seizure progression. However, a more recent view challenges this concept, suggesting that epilepsy is a network disease, and both focal and generalized seizures arise from aberrant activity in a distributed network. Changes in the anatomical configuration or widespread neural activities spanning lobes and hemispheres could make the brain more susceptible to seizures. In this perspective paper, we summarize the current state of knowledge, address several important challenges that could further improve our understanding of the human brain in epilepsy, and invite novel studies addressing these challenges.
Collapse
Affiliation(s)
- Nishant Sinha
- Department of Neurology, Penn Epilepsy Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Rasesh B. Joshi
- Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | | | - Theoden I. Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Hitten P. Zaveri
- Department of Neurology, Yale University, New Haven, CT, United States
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Different circuitry dysfunction in drug-naive patients with juvenile myoclonic epilepsy and juvenile absence epilepsy. Epilepsy Behav 2021; 125:108443. [PMID: 34837842 DOI: 10.1016/j.yebeh.2021.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
RATIONALE Juvenile myoclonic epilepsy (JME) and juvenile absence epilepsy (JAE) are generalized epileptic syndromes presenting in the same age range. To explore whether uneven network dysfunctions may underlie the two different phenotypes, we examined drug-naive patients with JME and JAE at the time of their earliest presentation. METHODS Patients were recruited based on typical JME (n = 23) or JAE (n = 18) presentation and compared with 16 age-matched healthy subjects (HS). We analyzed their awake EEG signals by Partial Directed Coherence and graph indexes. RESULTS Out-density and betweenness centrality values were different between groups. With respect to both JAE and HS, JME showed unbalanced out-density and out-strength in alpha and beta bands on central regions and reduced alpha out-strength from fronto-polar to occipital regions, correlating with photosensitivity. With respect to HS, JAE showed enhanced alpha out-density and out-strength on fronto-polar regions. In gamma band, JAE showed reduced Global/Local Efficiency and Clustering Coefficient with respect to HS, while JME showed more scattered values. CONCLUSIONS Our data suggest that regional network changes in alpha and beta bands underlie the different presentation distinguishing JME and JAE resulting in motor vs non-motor seizures characterizing these two syndromes. Conversely, impaired gamma-activity within the network seems to be a non-local marker of defective inhibition.
Collapse
|
4
|
Hotz AL, Jamali A, Rieser NN, Niklaus S, Aydin E, Myren‐Svelstad S, Lalla L, Jurisch‐Yaksi N, Yaksi E, Neuhauss SCF. Loss of glutamate transporter eaat2a leads to aberrant neuronal excitability, recurrent epileptic seizures, and basal hypoactivity. Glia 2021; 70:196-214. [PMID: 34716961 PMCID: PMC9297858 DOI: 10.1002/glia.24106] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022]
Abstract
Astroglial excitatory amino acid transporter 2 (EAAT2, GLT‐1, and SLC1A2) regulates the duration and extent of neuronal excitation by removing glutamate from the synaptic cleft. Hence, an impairment in EAAT2 function could lead to an imbalanced brain network excitability. Here, we investigated the functional alterations of neuronal and astroglial networks associated with the loss of function in the astroglia predominant eaat2a gene in zebrafish. We observed that eaat2a−/− mutant zebrafish larvae display recurrent spontaneous and light‐induced seizures in neurons and astroglia, which coincide with an abrupt increase in extracellular glutamate levels. In stark contrast to this hyperexcitability, basal neuronal and astroglial activity was surprisingly reduced in eaat2a−/− mutant animals, which manifested in decreased overall locomotion. Our results reveal an essential and mechanistic contribution of EAAT2a in balancing brain excitability, and its direct link to epileptic seizures.
Collapse
Affiliation(s)
- Adriana L. Hotz
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Life Science Zürich Graduate School ‐ NeuroscienceUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Ahmed Jamali
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | - Nicolas N. Rieser
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Life Science Zürich Graduate School ‐ NeuroscienceUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Stephanie Niklaus
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Present address:
EraCal TherapeuticsSchlierenSwitzerland
| | - Ecem Aydin
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | - Sverre Myren‐Svelstad
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Neurology and Clinical NeurophysiologySt. Olav's University HospitalTrondheimNorway
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Laetitia Lalla
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | - Nathalie Jurisch‐Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Neurology and Clinical NeurophysiologySt. Olav's University HospitalTrondheimNorway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | | |
Collapse
|
5
|
Fortini S, Espeche A, Galicchio S, Cersósimo R, Chacon S, Gallo A, Gamboni B, Adi J, Fasulo L, Semprino M, Cachia P, Caraballo RH. More than one self-limited epilepsy of childhood in the same patient: A multicenter study. Epilepsy Res 2021; 177:106768. [PMID: 34547632 DOI: 10.1016/j.eplepsyres.2021.106768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE We describe the evolution of the electroclinical picture of patients with different types of self-limited epilepsy of childhood (SLEC) occurring at the same or at different times with or without atypical evolutions as well as patients with SLEC associated with childhood absence epilepsy (CAE). MATERIAL AND METHODS A multicenter, retrospective, descriptive study was conducted evaluating patients with SLEC who had focal seizures of different types of SLEC including atypical evolutions as well as SLEC associated with absence epilepsy seen at eight Argentinian centers between April 2000 and April 2019. Of 7705 patients with SLEC, aged between 2 and 14 years (mean, 7.5 years), of whom 2013 were female and 5692 male (ratio, 1:2.8), 5068 patients had SLECTS, 2260 patients had self-limited childhood occipital epilepsy Panayiotopoulos type (SLE-P), 356 had self-limited childhood occipital epilepsy Gastaut type (SLE-G), and 21 had self-limited epilepsy with affective seizures (SLEAS). Electroclinical features typical of more than one SLEC syndrome were recognized in 998 (13 %) children. RESULTS We recognized three well-defined groups of patients. The most frequent association was SLE-P and SLECTS, the paradigmatic type, but associations of SLE-P and SLE-G, SLECTS and SLE-G, and SLEAS and SLE-P or SLECTS were also recognized. The second-most-common association was SLEC and an atypical evolution. In this group, the most frequent combination was SLECTS with its atypical evolution, opercular status epilepticus, epileptic encephalopathy with continuous spike-and-waves during slow sleep, or Landau-Kleffner syndrome. SLE-P and SLE-G associated with an atypical evolution were also identified. The third, less-frequent group had SLECTS, SLE-P, or SLE-G associated with CAE. These cases support the concept that the different types of SLEC are part of a self-limited childhood seizure susceptibility syndrome. CONCLUSION Our study demonstrated that 13 % of our patients with SLEC have with different types of SLEC occurring at the same or at different times with or without atypical evolutions - i.e. CSWSS - as well as patients with SLEC associated with CAE, supporting the concept of the self-limited childhood seizure susceptibility syndrome.
Collapse
Affiliation(s)
| | | | | | - Ricardo Cersósimo
- Centro Integral de Neurociencias (CINEU), Lomas de Zamora, Provincia de Buenos Aires, Argentina
| | - Santiago Chacon
- Centro de Neurología Infantil (CENI) de Gualeguaychu, Entre Ríos, Argentina
| | - Adolfo Gallo
- Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | | | - Javier Adi
- Hospital Pediátrico Humberto H Notti de Mendoza, Argentina
| | | | | | - Pedro Cachia
- Hospital de Niños Victor J Vilela de Rosario, Santa Fé, Argentina
| | | |
Collapse
|
6
|
Pegg EJ, Taylor JR, Laiou P, Richardson M, Mohanraj R. Interictal electroencephalographic functional network topology in drug-resistant and well-controlled idiopathic generalized epilepsy. Epilepsia 2021; 62:492-503. [PMID: 33501642 DOI: 10.1111/epi.16811] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The study aim was to compare interictal encephalographic (EEG) functional network topology between people with well-controlled idiopathic generalized epilepsy (WC-IGE) and drug-resistant IGE (DR-IGE). METHODS Nineteen participants with WC-IGE, 18 with DR-IGE, and 20 controls underwent a resting state, 64-channel EEG. An artifact-free epoch was bandpass filtered into the frequency range of high and low extended alpha. Weighted functional connectivity matrices were calculated. Mean degree, degree distribution variance, characteristic path length (L), clustering coefficient, small world index (SWI), and betweenness centrality were measured. A Kruskal-Wallis H-test assessed effects across groups. Where significant differences were found, Bonferroni-corrected Mann-Whitney pairwise comparisons were calculated. RESULTS In the low alpha band (6-9 Hz), there was a significant difference in L at the three-group level (p < .0001). This was lower in controls than both WC-IGE and DR-IGE (p < .0001 for both), with no difference in L between WC-IGE and DR-IGE. Mean degree (p = .031), degree distribution variance (p = .032), and SWI (p = .023) differed across the three groups in the high alpha band (10-12 Hz). Mean degree and degree distribution variance were lower in WC-IGE than controls (p = .029 for both), and SWI was higher in WC-IGE compared with controls (p = .038), with no differences in other pairwise comparisons. SIGNIFICANCE IGE network topology is more regular in the low alpha frequency band, potentially reflecting a more vulnerable structure. WC-IGE network topology is different from controls in the high alpha band. This may reflect drug-induced network changes that have stabilized the WC-IGE network by rendering it less likely to synchronize. These results are of potential importance in advancing the understanding of mechanisms of epilepsy drug resistance and as a possible basis for a biomarker of DR-IGE.
Collapse
Affiliation(s)
- Emily J Pegg
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Jason R Taylor
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, UK.,Manchester Academic Health Sciences Centre, Manchester, UK
| | - Petroula Laiou
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Mark Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Rajiv Mohanraj
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Gerster M, Berner R, Sawicki J, Zakharova A, Škoch A, Hlinka J, Lehnertz K, Schöll E. FitzHugh-Nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena. CHAOS (WOODBURY, N.Y.) 2020; 30:123130. [PMID: 33380049 DOI: 10.1063/5.0021420] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
We study patterns of partial synchronization in a network of FitzHugh-Nagumo oscillators with empirical structural connectivity measured in human subjects. We report the spontaneous occurrence of synchronization phenomena that closely resemble the ones seen during epileptic seizures in humans. In order to obtain deeper insights into the interplay between dynamics and network topology, we perform long-term simulations of oscillatory dynamics on different paradigmatic network structures: random networks, regular nonlocally coupled ring networks, ring networks with fractal connectivities, and small-world networks with various rewiring probability. Among these networks, a small-world network with intermediate rewiring probability best mimics the findings achieved with the simulations using the empirical structural connectivity. For the other network topologies, either no spontaneously occurring epileptic-seizure-related synchronization phenomena can be observed in the simulated dynamics, or the overall degree of synchronization remains high throughout the simulation. This indicates that a topology with some balance between regularity and randomness favors the self-initiation and self-termination of episodes of seizure-like strong synchronization.
Collapse
Affiliation(s)
- Moritz Gerster
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Rico Berner
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Jakub Sawicki
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Anna Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Antonín Škoch
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Jaroslav Hlinka
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn, Germany
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
8
|
Pegg EJ, Taylor JR, Mohanraj R. Spectral power of interictal EEG in the diagnosis and prognosis of idiopathic generalized epilepsies. Epilepsy Behav 2020; 112:107427. [PMID: 32949965 DOI: 10.1016/j.yebeh.2020.107427] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Idiopathic generalized epilepsies (IGE) are characterized by generalized interictal epileptiform discharges (IEDs) on a normal background electroencephalography (EEG). However, the yield of IEDs can be low. Approximately 20% of patients with IGE fail to achieve seizure control with antiepileptic drug (AED) treatment. Currently, there are no reliable prognostic markers for early identification of drug-resistant epilepsy (DRE). We examined spectral power of the interictal EEG in patients with IGE and healthy controls, to identify potential diagnostic and prognostic biomarkers of IGE. METHODS A 64-channel EEG was recorded under standard conditions in patients with well-controlled IGE (WC-IGE, n = 19), drug-resistant IGE (DR-IGE, n = 18), and age-matched controls (n = 20). After preprocessing, fast Fourier transform was performed to obtain 1D frequency spectra for each EEG channel. The 1D spectra (averaged over channels) and 2D topographic maps (averaged over canonical frequency bands) were computed for each participant. Power spectra in the 3 cohorts were compared using one-way analysis of variance (ANOVA), and power spectra images were compared using T-contrast tests. A post hoc analysis compared peak alpha power between the groups. RESULTS Compared with controls, participants with IGE had higher interictal EEG spectral power in the delta band in the midline central region, in the theta band in the midline, in the beta band over the left hemisphere, and in the gamma band over right hemisphere and left central regions. There were no differences in spectral power between cohorts with WC-IGE and DR-IGE. Peak alpha power was lower in WC-IGE and DR-IGE than controls. CONCLUSIONS Electroencephalography spectral power analysis could form part of a clinically useful diagnostic biomarker for IGE; however, it did not correlate with response to AED in this study.
Collapse
Affiliation(s)
- Emily J Pegg
- Department of Neurology, Manchester Centre for Clinical Neurosciences, United Kingdom; Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Jason R Taylor
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom; Manchester Academic Health Sciences Centre, United Kingdom
| | - Rajiv Mohanraj
- Department of Neurology, Manchester Centre for Clinical Neurosciences, United Kingdom; Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom.
| |
Collapse
|
9
|
Is Covid-19 lockdown related to an increase of accesses for seizures in the emergency department? An observational analysis of a paediatric cohort in the Southern Italy. Neurol Sci 2020; 41:3475-3483. [PMID: 33095368 PMCID: PMC7582024 DOI: 10.1007/s10072-020-04824-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/10/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The World Health Organization (WHO) declared a global pandemic of Covid-19 on 11 March 2020. The lockdown caused a lifestyle changes: an increase in the use of mobile media devices (MMDs), sleep and psychiatric disorders, incorrect habits regarding food and physical activities. We investigate prevalence of admission for seizures at our emergency department (ED), during Italian lockdown, comparing with that of the same period of the previous year (2019), and the relationship with some lifestyle changes. METHODS In this observational study, patients (4-14 years) with seizures that accessed at our ED, during Italian lockdown, were eligible. Non-epileptic events and febrile seizures were excluded. We describe two groups: patients with new-onset seizures and not. Moreover, a questionnaire concerning use of MMDs and sleep habits was administered. RESULTS Fifty-seven patients were included; median age 8.03 years. Considering only paediatric medical emergencies, the prevalence of accesses for seizures was 2.6% (CI 95% 0.020-0.034), while the incidence was 0.94% (CI 95% 0.006-0.0149). There was a statistically significant difference with prevalence of previous years, χ2 102.21 (p = 0.0001). We also reported a difference in daily screen time (DST) (p = 0.001) and total sleep time (TST) (p = 0.045), in all population, between period pre- and during lockdown. A negative correlation between DST and seizures latency (Spearman's ρ -0.426, p = 0.038) was found. In the two groups, the results were partially overlapping. CONCLUSIONS During lockdown period, we assisted to an increase of accesses for seizures. It is conceivable that a sleep time change and/or higher MMD use could act as triggers for seizures.
Collapse
|
10
|
Pegg EJ, Taylor JR, Keller SS, Mohanraj R. Interictal structural and functional connectivity in idiopathic generalized epilepsy: A systematic review of graph theoretical studies. Epilepsy Behav 2020; 106:107013. [PMID: 32193094 DOI: 10.1016/j.yebeh.2020.107013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022]
Abstract
The evaluation of the role of anomalous neuronal networks in epilepsy using a graph theoretical approach is of growing research interest. There is currently no consensus on optimal methods for performing network analysis, and it is possible that variations in study methodology account for diverging findings. This review focuses on global functional and structural interictal network characteristics in people with idiopathic generalized epilepsy (IGE) with the aim of appraising the methodological approaches used and assessing for meaningful consensus. Thirteen studies were included in the review. Data were heterogenous and not suitable for meta-analysis. Overall, there is a suggestion that the cerebral neuronal networks of people with IGE have different global structural and functional characteristics to people without epilepsy. However, the nature of the aberrations is inconsistent with some studies demonstrating a more regular network configuration in IGE, and some, a more random topology. There is greater consistency when different data modalities and connectivity subtypes are compared separately, with a tendency towards increased small-worldness of networks in functional electroencephalography/magnetoencephalography (EEG/MEG) studies and decreased small-worldness of networks in structural studies. Prominent variation in study design at all stages is likely to have contributed to differences in study outcomes. Despite increasing literature surrounding neuronal network analysis, systematic methodological studies are lacking. Absence of consensus in this area significantly limits comparison of results from different studies, and the ability to draw firm conclusions about network characteristics in IGE.
Collapse
Affiliation(s)
- Emily J Pegg
- Department of Neurology, Manchester Centre for Clinical Neurosciences, United Kingdom; Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom.
| | - Jason R Taylor
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom; Manchester Academic Health Sciences Centre, United Kingdom
| | - Simon S Keller
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Rajiv Mohanraj
- Department of Neurology, Manchester Centre for Clinical Neurosciences, United Kingdom; Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| |
Collapse
|
11
|
Routley B, Shaw A, Muthukumaraswamy SD, Singh KD, Hamandi K. Juvenile myoclonic epilepsy shows increased posterior theta, and reduced sensorimotor beta resting connectivity. Epilepsy Res 2020; 163:106324. [PMID: 32335503 PMCID: PMC7684644 DOI: 10.1016/j.eplepsyres.2020.106324] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/06/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022]
Abstract
We investigated whole brain source space connectivity in JME using across standard MEG frequency bands. Connectivity was increased in posterior theta and alpha bands in JME, and decreased in sensorimotor beta band. Our findings highlight altered interactions between posterior networks of arousal and attention and the motor system in JME.
Background Widespread structural and functional brain network changes have been shown in Juvenile Myoclonic Epilepsy (JME) despite normal clinical neuroimaging. We sought to better define these changes using magnetoencephalography (MEG) and source space connectivity analysis for optimal neurophysiological and anatomical localisation. Methods We consecutively recruited 26 patients with JME who underwent resting state MEG recording, along with 26 age-and-sex matched controls. Whole brain connectivity was determined through correlation of Automated Anatomical Labelling (AAL) atlas source space MEG timeseries in conventional frequency bands of interest delta (1−4 Hz), theta (4−8 Hz), alpha (8−13 Hz), beta (13−30 Hz) and gamma (40−60 Hz). We used a Linearly Constrained Minimum Variance (LCMV) beamformer to extract voxel wise time series of ‘virtual sensors’ for the desired frequency bands, followed by connectivity analysis using correlation between frequency- and node-specific power fluctuations, for the voxel maxima in each AAL atlas label, correcting for noise, potentially spurious connections and multiple comparisons. Results We found increased connectivity in the theta band in posterior brain regions, surviving statistical correction for multiple comparisons (corrected p < 0.05), and decreased connectivity in the beta band in sensorimotor cortex, between right pre- and post- central gyrus (p < 0.05) in JME compared to controls. Conclusions Altered resting-state MEG connectivity in JME comprised increased connectivity in posterior theta – the frequency band associated with long range connections affecting attention and arousal - and decreased beta-band sensorimotor connectivity. These findings likely relate to altered regulation of the sensorimotor network and seizure prone states in JME.
Collapse
Affiliation(s)
- Bethany Routley
- Cardiff University Brain Research Imaging, School of Psychology, Cardiff University, United Kingdom
| | - Alexander Shaw
- Cardiff University Brain Research Imaging, School of Psychology, Cardiff University, United Kingdom
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Krish D Singh
- Cardiff University Brain Research Imaging, School of Psychology, Cardiff University, United Kingdom
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging, School of Psychology, Cardiff University, United Kingdom; The Wales Epilepsy Unit, Department of Neurology, University Hospital of Wales, Cardiff, United Kingdom.
| |
Collapse
|
12
|
Krzemiński D, Masuda N, Hamandi K, Singh KD, Routley B, Zhang J. Energy landscape of resting magnetoencephalography reveals fronto-parietal network impairments in epilepsy. Netw Neurosci 2020; 4:374-396. [PMID: 32537532 PMCID: PMC7286306 DOI: 10.1162/netn_a_00125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
Juvenile myoclonic epilepsy (JME) is a form of idiopathic generalized epilepsy. It is yet unclear to what extent JME leads to abnormal network activation patterns. Here, we characterized statistical regularities in magnetoencephalograph (MEG) resting-state networks and their differences between JME patients and controls by combining a pairwise maximum entropy model (pMEM) and novel energy landscape analyses for MEG. First, we fitted the pMEM to the MEG oscillatory power in the front-oparietal network (FPN) and other resting-state networks, which provided a good estimation of the occurrence probability of network states. Then, we used energy values derived from the pMEM to depict an energy landscape, with a higher energy state corresponding to a lower occurrence probability. JME patients showed fewer local energy minima than controls and had elevated energy values for the FPN within the theta, beta, and gamma bands. Furthermore, simulations of the fitted pMEM showed that the proportion of time the FPN was occupied within the basins of energy minima was shortened in JME patients. These network alterations were highlighted by significant classification of individual participants employing energy values as multivariate features. Our findings suggested that JME patients had altered multistability in selective functional networks and frequency bands in the fronto-parietal cortices.
Collapse
Affiliation(s)
- Dominik Krzemiński
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, United Kingdom
| | - Naoki Masuda
- Department of Engineering Mathematics, University of Bristol, United Kingdom
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, United Kingdom
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, United Kingdom
| | - Bethany Routley
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, United Kingdom
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, United Kingdom
| |
Collapse
|
13
|
Gauvin DV, Zimmermann ZJ, Yoder J, Harter M, Holdsworth D, Kilgus Q, May J, Dalton J, Baird TJ. A predictive index of biomarkers for ictogenesis from tier I safety pharmacology testing that may warrant tier II EEG studies. J Pharmacol Toxicol Methods 2018; 94:50-63. [PMID: 29751085 DOI: 10.1016/j.vascn.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022]
Abstract
Three significant contributions to the field of safety pharmacology were recently published detailing the use of electroencephalography (EEG) by telemetry in a critical role in the successful evaluation of a compound during drug development (1] Authier, Delatte, Kallman, Stevens & Markgraf; JPTM 2016; 81:274-285; 2] Accardi, Pugsley, Forster, Troncy, Huang & Authier; JPTM; 81: 47-59; 3] Bassett, Troncy, Pouliot, Paquette, Ascaha, & Authier; JPTM 2016; 70: 230-240). These authors present a convincing case for monitoring neocortical biopotential waveforms (EEG, ECoG, etc) during preclinical toxicology studies as an opportunity for early identification of a central nervous system (CNS) risk during Investigational New Drug (IND) Enabling Studies. This review is about "ictogenesis" not "epileptogenesis". It is intended to characterize overt behavioral and physiological changes suggestive of drug-induced neurotoxicity/ictogenesis in experimental animals during Tier 1 safety pharmacology testing, prior to first dose administration in man. It is the presence of these predictive or comorbid biomarkers expressed during the requisite conduct of daily clinical or cage side observations, and in early ICH S7A Tier I CNS, pulmonary and cardiovascular safety study designs that should initiate an early conversation regarding Tier II inclusion of EEG monitoring. We conclude that there is no single definitive clinical marker for seizure liability but plasma exposures might add to set proper safety margins when clinical convulsions are observed. Even the observation of a study-related full tonic-clonic convulsion does not establish solid ground to require the financial and temporal investment of a full EEG study under the current regulatory standards. PREFATORY NOTE For purposes of this review, we have adopted the FDA term "sponsor" as it refers to any person who takes the responsibility for and initiates a nonclinical investigations of new molecular entities; FDA uses the term "sponsor" primarily in relation to investigational new drug application submissions.
Collapse
Affiliation(s)
- David V Gauvin
- Neurobehavioral Science and MPI Research (A Charles Rivers Company), Mattawan, MI, United States.
| | - Zachary J Zimmermann
- Neurobehavioral Science and MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Joshua Yoder
- Neurobehavioral Science and MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Marci Harter
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - David Holdsworth
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Quinn Kilgus
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Jonelle May
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Jill Dalton
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Theodore J Baird
- Drug Safety Assessment, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| |
Collapse
|
14
|
Presurgical thalamocortical connectivity is associated with response to vagus nerve stimulation in children with intractable epilepsy. NEUROIMAGE-CLINICAL 2017; 16:634-642. [PMID: 28971013 PMCID: PMC5619991 DOI: 10.1016/j.nicl.2017.09.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/16/2017] [Accepted: 09/21/2017] [Indexed: 11/20/2022]
Abstract
Although chronic vagus nerve stimulation (VNS) is an established treatment for medically-intractable childhood epilepsy, there is considerable heterogeneity in seizure response and little data are available to pre-operatively identify patients who may benefit from treatment. Since the therapeutic effect of VNS may be mediated by afferent projections to the thalamus, we tested the hypothesis that intrinsic thalamocortical connectivity is associated with seizure response following chronic VNS in children with epilepsy. Twenty-one children (ages 5-21 years) with medically-intractable epilepsy underwent resting-state fMRI prior to implantation of VNS. Ten received sedation, while 11 did not. Whole brain connectivity to thalamic regions of interest was performed. Multivariate generalized linear models were used to correlate resting-state data with seizure outcomes, while adjusting for age and sedation status. A supervised support vector machine (SVM) algorithm was used to classify response to chronic VNS on the basis of intrinsic connectivity. Of the 21 subjects, 11 (52%) had 50% or greater improvement in seizure control after VNS. Enhanced connectivity of the thalami to the anterior cingulate cortex (ACC) and left insula was associated with greater VNS efficacy. Within our test cohort, SVM correctly classified response to chronic VNS with 86% accuracy. In an external cohort of 8 children, the predictive model correctly classified the seizure response with 88% accuracy. We find that enhanced intrinsic connectivity within thalamocortical circuitry is associated with seizure response following VNS. These results encourage the study of intrinsic connectivity to inform neural network-based, personalized treatment decisions for children with intractable epilepsy.
Collapse
|
15
|
Lee C, Im CH, Koo YS, Lim JA, Kim TJ, Byun JI, Sunwoo JS, Moon J, Kim DW, Lee ST, Jung KH, Chu K, Lee SK, Jung KY. Altered Network Characteristics of Spike-Wave Discharges in Juvenile Myoclonic Epilepsy. Clin EEG Neurosci 2017; 48:111-117. [PMID: 26697882 DOI: 10.1177/1550059415621831] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Epilepsy is a disease marked by hypersynchronous bursts of neuronal activity; therefore, identifying the network characteristics of the epileptic brain is important. Juvenile myoclonic epilepsy (JME) represents a common, idiopathic generalized epileptic syndrome, characterized by spike-and-wave discharge (SWD) electroencephalographic (EEG) waveforms. We compare herein the network properties of periods of SWD and baseline activity using graph theory. EEG data were obtained from 11 patients with JME. Functional cortical networks during SWD and baseline periods were estimated by calculating the coherence between all possible electrode pairs in the delta, theta, alpha, beta and gamma bands. Graph theoretical measures, including nodal degree, characteristic path length, clustering coefficient, and small-world index were then used to evaluate the characteristics of epileptic networks in JME. We also assessed short- and long-range connections between SWD and baseline networks. Compared to baseline, increased coherence was observed during SWD in all frequency bands. The nodal degree of the SWD network, particularly in the frontal region, was significantly higher compared to the baseline network. The clustering coefficient and small-world index were significantly lower in the theta and beta bands of the SWD versus baseline network, but the characteristic path length did not differ among networks. Long-range connections were increased during SWD, particularly between frontal and posterior brain regions. Our study suggests that SWD in JME is associated with increased local (particularly in frontal region) connectivity. Furthermore, the SWD network was associated with increased long-range connections, and reduced small-worldness, which may impair information processing during SWD.
Collapse
Affiliation(s)
- Chany Lee
- 1 Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Chang-Hwan Im
- 1 Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Yong Seo Koo
- 2 Department of Neurology, Korea University Medical Center, Korea University College of Medicine, Seoul, Korea
| | - Jung-Ah Lim
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Tae-Joon Kim
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jung-Ick Byun
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jun-Sang Sunwoo
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jangsup Moon
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Dong Wook Kim
- 4 Department of Neurology, Konkuk University School of Medicine, Seoul, Korea
| | - Soon-Tae Lee
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Keun-Hwa Jung
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Kon Chu
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Sang-Kun Lee
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Ki-Young Jung
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,5 Department of Neurology, Seoul National University Hospital, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Won D, Kim W, Chaovalitwongse WA, Tsai JJ. Altered visual contrast gain control is sensitive for idiopathic generalized epilepsies. Clin Neurophysiol 2016; 128:340-348. [PMID: 28056389 DOI: 10.1016/j.clinph.2016.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Visual hyperexcitability in the form of abnormal contrast gain control has been shown in photosensitive epilepsy and idiopathic generalized epilepsies. We assessed the accuracy and reliability of measures of visual contrast gain control in discerning individuals with idiopathic generalized epilepsies from healthy controls. METHODS Twenty-four adult patients with idiopathic generalized epilepsy and 32 neurotypical control subjects from two study sites participated in a prospective, cross-sectional study. We recorded steady-state visual evoked potentials to a wide range of contrasts of a flickering grating stimulus. The resultant response magnitude vs. contrast curves were fitted to a standard model of contrast response function, and the model parameters were used as input features to a linear classifier to separate patients from controls. Additionally we compared the relative contribution of model parameters towards the classification using a sparse feature-selection approach. RESULTS Classification accuracy was 80% or better. Sensitivity and specificity both were 80-85%. Cross validation confirmed robust classifier performance generalizable across the data from the two samples. Patients' relative lack of gain control at high contrasts was the most important information distinguishing patients from controls. CONCLUSIONS Individuals with idiopathic generalized epilepsy were distinguishable from the neurotypical with a high degree of accuracy and reliability by a reduction in gain control at high contrasts. SIGNIFICANCE Gain control is an essential neural operation that regulates neuronal sensitivity to stimuli and may represent a novel biomarker of hyperexcitability.
Collapse
Affiliation(s)
- Daehan Won
- Department of Industrial and Systems Engineering, University of Washington, Seattle, WA, USA
| | - Wonsuk Kim
- Department of Radiology, University of California-Davis, Sacramento, CA, USA
| | - W Art Chaovalitwongse
- Department of Industrial and Systems Engineering, University of Washington, Seattle, WA, USA; Department of Radiology, University of Washington, Seattle, WA, USA
| | - Jeffrey J Tsai
- Department of Neurology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
17
|
Lunardi MS, Lin K, Mameniškienė R, Beniczky S, Bogacz A, Braga P, Guaranha MSB, Yacubian EMT, Samaitienė R, Baykan B, Hummel T, Wolf P. Olfactory stimulation induces delayed responses in epilepsy. Epilepsy Behav 2016; 61:90-96. [PMID: 27344500 DOI: 10.1016/j.yebeh.2016.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/21/2016] [Accepted: 05/22/2016] [Indexed: 11/28/2022]
Abstract
Precipitation and inhibition of seizures and epileptic discharges by sensory stimuli are receiving increasing attention because they provide insight into natural seizure generation in human epilepsies and can identify potential nonpharmacological therapies. We aimed to investigate modulation (provocation or inhibition) of epileptiform discharges (EDs) in mesial temporal lobe epilepsy (MTLE) versus idiopathic generalized epilepsy (IGE) by olfactory stimulation (OS) compared with standard provocation methods. The underlying hypothesis was that any response would be more likely to occur in MTLE, considering the anatomical connections of the temporal lobe to the olfactory system. This multicenter, international study recruited patients with either MTLE or IGE who were systematically compared for responses to OS using an EEG/video-EEG protocol including a 30-min baseline, twice 3-min olfactory stimulation with ylang-ylang, hyperventilation, and intermittent photic stimulation. The 95% confidence interval (CI) for the baseline EDs in each patient was calculated, and modulation was assumed when the number of EDs during any 3-min test period was outside this CI. A total of 134 subjects (55 with MTLE, 53 with IGE, and 26 healthy controls) were included. Epileptiform discharges were inhibited during OS in about half the patients with both MTLE and IGE, whereas following OS, provocation was seen in 29.1% of patients with MTLE and inhibition in 28.3% of patients with IGE. Olfactory stimulation was less provocative than standard activation methods. The frequent subclinical modulation of epileptic activity in both MTLE and IGE is in striking contrast with the rarity of reports of olfactory seizure precipitation and arrest. Inhibition during OS can be explained by nonspecific arousal. The delayed responses seem to be related to processing of olfactory stimuli in the temporal lobe, thalamus, and frontal cortex.
Collapse
Affiliation(s)
- Mariana S Lunardi
- Centro de Epilepsia de Santa Catarina (CEPESC), Hospital Governador Celso Ramos (HGCR), Florianópolis, SC, Brazil
| | - Katia Lin
- Centro de Epilepsia de Santa Catarina (CEPESC), Hospital Governador Celso Ramos (HGCR), Florianópolis, SC, Brazil; Serviço de Neurologia, Departamento de Clínica Médica, Hospital Universitário, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil; Centro de Neurociências Aplicadas (CeNAp), Hospital Universitário, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Rūta Mameniškienė
- Epilepsy Centre, Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania; Clinic of Neurology and Neurosurgery, Medical Faculty, Vilnius University, Vilnius, Lithuania
| | - Sandor Beniczky
- Danish Epilepsy Centre, Dianalund, Denmark; Aarhus University, Aarhus, Denmark
| | - Alicia Bogacz
- Instituto de Neurología, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Patricia Braga
- Instituto de Neurología, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | | | - Elza M T Yacubian
- Hospital São Paulo, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rūta Samaitienė
- Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania; Clinic of Children's Diseases, Medical Faculty, Vilnius University, Vilnius, Lithuania
| | - Betül Baykan
- Department of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Thomas Hummel
- Smell & Taste Clinic, Department of ORL, TU Dresden, Germany
| | - Peter Wolf
- Serviço de Neurologia, Departamento de Clínica Médica, Hospital Universitário, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil; Danish Epilepsy Centre, Dianalund, Denmark
| |
Collapse
|
18
|
Lin K, Guaranha M, Wolf P. Reflex epileptic mechanisms in ictogenesis and therapeutic consequences. Expert Rev Neurother 2016; 16:573-585. [PMID: 26999567 DOI: 10.1586/14737175.2016.1169174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent studies of reflex epileptic mechanisms in human epilepsy using advanced methods of neurophysiology and functional neuroimaging have contributed much to elucidate pathophysiological processes of seizure generation. Whereas in lesional focal epilepsies reflex mechanisms usually relate directly to the anatomical focus, in system epilepsies they have helped to define which functional anatomical systems serving physiological function are recruited by the ictogenic mechanisms. Reflex epileptic seizures can often be prevented by avoidance or modification of triggers or by prophylactic benzodiazepine administration. Surgical options apply to focal cases. According to restricted experiences with pharmacotherapy, without controlled studies and little information on new AEDs, reflex seizures in system epilepsies appear to respond best to valproic acid and in focal epilepsies, to carbamazepine.
Collapse
Affiliation(s)
- Katia Lin
- a Serviço de Neurologia, Departamento de Clínica Médica , Hospital Universitário, Universidade Federal de Santa Catarina (UFSC) , Florianópolis , SC , Brazil
| | - Mirian Guaranha
- b Hospital São Paulo , Universidade Federal de São Paulo , São Paulo , Brazil
| | - Peter Wolf
- a Serviço de Neurologia, Departamento de Clínica Médica , Hospital Universitário, Universidade Federal de Santa Catarina (UFSC) , Florianópolis , SC , Brazil
- c Danish Epilepsy Centre , Dianalund , Denmark
| |
Collapse
|
19
|
Koepp MJ, Caciagli L, Pressler RM, Lehnertz K, Beniczky S. Reflex seizures, traits, and epilepsies: from physiology to pathology. Lancet Neurol 2015; 15:92-105. [PMID: 26627365 DOI: 10.1016/s1474-4422(15)00219-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 10/22/2022]
Abstract
Epileptic seizures are generally unpredictable and arise spontaneously. Patients often report non-specific triggers such as stress or sleep deprivation, but only rarely do seizures occur as a reflex event, in which they are objectively and consistently modulated, precipitated, or inhibited by external sensory stimuli or specific cognitive processes. The seizures triggered by such stimuli and processes in susceptible individuals can have different latencies. Once seizure-suppressing mechanisms fail and a critical mass (the so-called tipping point) of cortical activation is reached, reflex seizures stereotypically manifest with common motor features independent of the physiological network involved. The complexity of stimuli increases from simple sensory to complex cognitive-emotional with increasing age of onset. The topography of physiological networks involved follows the posterior-to-anterior trajectory of brain development, reflecting age-related changes in brain excitability. Reflex seizures and traits probably represent the extremes of a continuum, and understanding of their underlying mechanisms might help to elucidate the transition of normal physiological function to paroxysmal epileptic activity.
Collapse
Affiliation(s)
- Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Institute of Neurology, London, UK; National Hospital for Neurology and Neurosurgery, Queen Square, UK.
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Institute of Neurology, London, UK; National Hospital for Neurology and Neurosurgery, Queen Square, UK
| | - Ronit M Pressler
- Department of Clinical Neurophysiology, Great Ormond Street Hospital, London, UK; Clinical Neuroscience, UCL Institute of Child Health, London, UK
| | - Klaus Lehnertz
- Department of Epileptology, University Hospital of Bonn, Bonn, Germany
| | - Sándor Beniczky
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark; Department of Clinical Neurophysiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
20
|
Quantitative peri-ictal electrocorticography and long-term seizure outcomes in temporal lobe epilepsy. Epilepsy Res 2015; 109:169-82. [DOI: 10.1016/j.eplepsyres.2014.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 09/27/2014] [Accepted: 10/18/2014] [Indexed: 01/31/2023]
|
21
|
Irmen F, Wehner T, Lemieux L. Do reflex seizures and spontaneous seizures form a continuum? - triggering factors and possible common mechanisms. Seizure 2014; 25:72-9. [PMID: 25645641 DOI: 10.1016/j.seizure.2014.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/06/2014] [Accepted: 12/14/2014] [Indexed: 11/26/2022] Open
Abstract
Recent changes in the understanding and classification of reflex seizures have fuelled a debate on triggering mechanisms of seizures and their conceptual organization. Previous studies and patient reports have listed extrinsic and intrinsic triggers, albeit their multifactorial and dynamic nature is poorly understood. This paper aims to review literature on extrinsic and intrinsic seizure triggers and to discuss common mechanisms among them. Among self-reported seizure triggers, emotional stress is most frequently named. Reflex seizures are typically associated with extrinsic sensory triggers; however, intrinsic cognitive or proprioceptive triggers have also been assessed. The identification of a trigger underlying a seizure may be more difficult if it is intrinsic and complex, and if triggering mechanisms are multifactorial. Therefore, since observability of triggers varies and triggers are also found in non-reflex seizures, the present concept of reflex seizures may be questioned. We suggest the possibility of a conceptual continuum between reflex and spontaneous seizures rather than a dichotomy and discuss evidence to the notion that to some extent most seizures might be triggered.
Collapse
Affiliation(s)
- Friederike Irmen
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Tim Wehner
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Louis Lemieux
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, United Kingdom.
| |
Collapse
|