1
|
Wang M, Liu K. Molecular dynamics simulations to explore the binding mode between the amyloid-β protein precursor (APP) and adaptor protein Mint2. Sci Rep 2024; 14:7975. [PMID: 38575686 PMCID: PMC10995209 DOI: 10.1038/s41598-024-58584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
Alzheimer's disease (AD) presents a significant challenge in neurodegenerative disease management, with limited therapeutic options available for its prevention and treatment. At the heart of AD pathogenesis is the amyloid-β (Aβ) protein precursor (APP), with the interaction between APP and the adaptor protein Mint2 being crucial. Despite previous explorations into the APP-Mint2 interaction, the dynamic regulatory mechanisms by which Mint2 modulates APP binding remain poorly understood. This study undertakes molecular dynamics simulations across four distinct systems-free Mint2, Mint2 bound to APP, a mutant form of Mint2, and the mutant form bound to APP-over an extensive 400 ns timeframe. Our findings reveal that the mutant Mint2 experiences significant secondary structural transformations, notably the formation of an α-helix in residues S55-K65 upon APP binding, within the 400 ns simulation period. Additionally, we observed a reduction in the active pocket size of the mutant Mint2 compared to its wild-type counterpart, enhancing its APP binding affinity. These insights hold promise for guiding the development of novel inhibitors targeting the Mints family, potentially paving the way for new therapeutic strategies in AD prevention and treatment.
Collapse
Affiliation(s)
- Min Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
2
|
Rathee S, Sen D, Pandey V, Jain SK. Advances in Understanding and Managing Alzheimer's Disease: From Pathophysiology to Innovative Therapeutic Strategies. Curr Drug Targets 2024; 25:752-774. [PMID: 39039673 DOI: 10.2174/0113894501320096240627071400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by the presence of amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles, leading to cognitive and physical decline. Representing the majority of dementia cases, AD poses a significant burden on healthcare systems globally, with onset typically occurring after the age of 65. While most cases are sporadic, about 10% exhibit autosomal forms associated with specific gene mutations. Neurofibrillary tangles and Aβ plaques formed by misfolded tau proteins and Aβ peptides contribute to neuronal damage and cognitive impairment. Currently, approved drugs, such as acetylcholinesterase inhibitors and N-methyl D-aspartate receptor agonists, offer only partial symptomatic relief without altering disease progression. A promising development is using lecanemab, a humanized IgG1 monoclonal antibody, as an immune therapeutic approach. Lecanemab demonstrates selectivity for polymorphic Aβ variants and binds to large soluble Aβ aggregates, providing a potential avenue for targeted treatment. This shift in understanding the role of the adaptive immune response in AD pathogenesis opens new possibilities for therapeutic interventions aiming to address the disease's intricate mechanisms. This review aims to summarize recent advancements in understanding Alzheimer's disease pathophysiology and innovative therapeutic approaches, providing valuable insights for both researchers and clinicians.
Collapse
Affiliation(s)
- Sunny Rathee
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Debasis Sen
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Vishal Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
3
|
Loeffler DA. Approaches for Increasing Cerebral Efflux of Amyloid-β in Experimental Systems. J Alzheimers Dis 2024; 100:379-411. [PMID: 38875041 PMCID: PMC11307100 DOI: 10.3233/jad-240212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Amyloid protein-β (Aβ) concentrations are increased in the brain in both early onset and late onset Alzheimer's disease (AD). In early onset AD, cerebral Aβ production is increased and its clearance is decreased, while increased Aβ burden in late onset AD is due to impaired clearance. Aβ has been the focus of AD therapeutics since development of the amyloid hypothesis, but efforts to slow AD progression by lowering brain Aβ failed until phase 3 trials with the monoclonal antibodies lecanemab and donanemab. In addition to promoting phagocytic clearance of Aβ, antibodies lower cerebral Aβ by efflux of Aβ-antibody complexes across the capillary endothelia, dissolving Aβ aggregates, and a "peripheral sink" mechanism. Although the blood-brain barrier is the main route by which soluble Aβ leaves the brain (facilitated by low-density lipoprotein receptor-related protein-1 and ATP-binding cassette sub-family B member 1), Aβ can also be removed via the blood-cerebrospinal fluid barrier, glymphatic drainage, and intramural periarterial drainage. This review discusses experimental approaches to increase cerebral Aβ efflux via these mechanisms, clinical applications of these approaches, and findings in clinical trials with these approaches in patients with AD or mild cognitive impairment. Based on negative findings in clinical trials with previous approaches targeting monomeric Aβ, increasing the cerebral efflux of soluble Aβ is unlikely to slow AD progression if used as monotherapy. But if used as an adjunct to treatment with lecanemab or donanemab, this approach might allow greater slowing of AD progression than treatment with either antibody alone.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
4
|
Babalola BA, Akinsuyi OS, Folajimi EO, Olujimi F, Otunba AA, Chikere B, Adewumagun IA, Adetobi TE. Exploring the future of SARS-CoV-2 treatment after the first two years of the pandemic: A comparative study of alternative therapeutics. Biomed Pharmacother 2023; 165:115099. [PMID: 37406505 DOI: 10.1016/j.biopha.2023.115099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
One of the most pressing challenges associated with SARS-CoV-2 treatment is the emergence of new variants that may be more transmissible, cause more severe disease, or be resistant to current treatments and vaccines. The emergence of SARS-CoV-2 has led to a global pandemic, resulting in millions of deaths worldwide. Various strategies have been employed to combat the virus, including neutralizing monoclonal antibodies (mAbs), CRISPR/Cas13, and antisense oligonucleotides (ASOs). While vaccines and small molecules have proven to be an effective means of preventing severe COVID-19 and reducing transmission rates, the emergence of new virus variants poses a challenge to their effectiveness. Monoclonal antibodies have shown promise in treating early-stage COVID-19, but their effectiveness is limited in severe cases and the emergence of new variants may reduce their binding affinity. CRISPR/Cas13 has shown potential in targeting essential viral genes, but its efficiency, specificity, and delivery to the site of infection are major limitations. ASOs have also been shown to be effective in targeting viral RNA, but they face similar challenges to CRISPR/Cas13 in terms of delivery and potential off-target effects. In conclusion, a combination of these strategies may provide a more effective means of combating SARS-CoV-2, and future research should focus on improving their efficiency, specificity, and delivery to the site of infection. It is evident that the continued research and development of these alternative therapies will be essential in the ongoing fight against SARS-CoV-2 and its potential future variants.
Collapse
Affiliation(s)
| | | | | | - Folakemi Olujimi
- Department of Biochemistry, Mountain Top University, Prayer-City, Ogun State, Nigeria
| | | | - Bruno Chikere
- Department of Biochemistry, Covenant University, Ogun State, Nigeria
| | | | | |
Collapse
|
5
|
Loeffler DA. Antibody-Mediated Clearance of Brain Amyloid-β: Mechanisms of Action, Effects of Natural and Monoclonal Anti-Aβ Antibodies, and Downstream Effects. J Alzheimers Dis Rep 2023; 7:873-899. [PMID: 37662616 PMCID: PMC10473157 DOI: 10.3233/adr-230025] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023] Open
Abstract
Immunotherapeutic efforts to slow the clinical progression of Alzheimer's disease (AD) by lowering brain amyloid-β (Aβ) have included Aβ vaccination, intravenous immunoglobulin (IVIG) products, and anti-Aβ monoclonal antibodies. Neither Aβ vaccination nor IVIG slowed disease progression. Despite conflicting phase III results, the monoclonal antibody Aducanumab received Food and Drug Administration (FDA) approval for treatment of AD in June 2021. The only treatments unequivocally demonstrated to slow AD progression to date are the monoclonal antibodies Lecanemab and Donanemab. Lecanemab received FDA approval in January 2023 based on phase II results showing lowering of PET-detectable Aβ; phase III results released at that time indicated slowing of disease progression. Topline results released in May 2023 for Donanemab's phase III trial revealed that primary and secondary end points had been met. Antibody binding to Aβ facilitates its clearance from the brain via multiple mechanisms including promoting its microglial phagocytosis, activating complement, dissolving fibrillar Aβ, and binding of antibody-Aβ complexes to blood-brain barrier receptors. Antibody binding to Aβ in peripheral blood may also promote cerebral efflux of Aβ by a peripheral sink mechanism. According to the amyloid hypothesis, for Aβ targeting to slow AD progression, it must decrease downstream neuropathological processes including tau aggregation and phosphorylation and (possibly) inflammation and oxidative stress. This review discusses antibody-mediated mechanisms of Aβ clearance, findings in AD trials involving Aβ vaccination, IVIG, and anti-Aβ monoclonal antibodies, downstream effects reported in those trials, and approaches which might improve the Aβ-clearing ability of monoclonal antibodies.
Collapse
Affiliation(s)
- David A. Loeffler
- Beaumont Research Institute, Department of Neurology, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
6
|
Qiao H, Zhao W, Guo M, Zhu L, Chen T, Wang J, Xu X, Zhang Z, Wu Y, Chen P. Cerebral Organoids for Modeling of HSV-1-Induced-Amyloid β Associated Neuropathology and Phenotypic Rescue. Int J Mol Sci 2022; 23:ijms23115981. [PMID: 35682661 PMCID: PMC9181143 DOI: 10.3390/ijms23115981] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Herpes simplex virus type I (HSV-1) infection is a potential risk factor involved in the Amyloid β (Aβ) associated neuropathology. However, further understanding of the neuropathological effects of the HSV-1 infection is hampered by the limitations of existing infection models due to the distinct differences between human brains and other mammalians’ brains. Here we generated cerebral organoid models derived from pluripotent stem cells to investigate the HSV-induced Aβ associated neuropathology and the role of antiviral drugs in the phenotypic rescue. Our results identified that the HSV-1-infected cerebral organoids recapitulated Aβ associated neuropathology including the multicellular Aβ deposition, dysregulated endogenous AD mediators, reactive gliosis, neuroinflammation, and neural loss, indicating that cerebral organoids offer an opportunity for modeling the interaction of HSV-1 with the complex phenotypes across the genetic, cellular, and tissue levels of the human Alzheimer’s disease (AD). Furthermore, we identified that two antiviral drugs, namely Ribavirin (RBV) and Valacyclovir (VCV), inhibited HSV-1 replication and rescued the neuropathological phenotypes associated with AD in the HSV-1-infected cerebral organoids, implying their therapeutic potential to slow down the progression of AD. Our study provides a high-fidelity human-relevant in-vitro HSV-1 infection model to reconstitute the multiscale neuropathological features associated with AD and discover therapeutic drug candidates relevant to the AD viral hypothesis.
Collapse
Affiliation(s)
- Haowen Qiao
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China; (H.Q.); (W.Z.); (L.Z.); (T.C.); (J.W.); (X.X.)
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China;
- State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China
| | - Wen Zhao
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China; (H.Q.); (W.Z.); (L.Z.); (T.C.); (J.W.); (X.X.)
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China;
| | - Moujian Guo
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China;
- State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China
- Institute of Medical Virology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Lili Zhu
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China; (H.Q.); (W.Z.); (L.Z.); (T.C.); (J.W.); (X.X.)
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China;
| | - Tao Chen
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China; (H.Q.); (W.Z.); (L.Z.); (T.C.); (J.W.); (X.X.)
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China;
| | - Jibo Wang
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China; (H.Q.); (W.Z.); (L.Z.); (T.C.); (J.W.); (X.X.)
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China;
| | - Xiaodong Xu
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China; (H.Q.); (W.Z.); (L.Z.); (T.C.); (J.W.); (X.X.)
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China;
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430050, China;
| | - Ying Wu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China;
- State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China
- Institute of Medical Virology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
- Correspondence: (Y.W.); (P.C.)
| | - Pu Chen
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China; (H.Q.); (W.Z.); (L.Z.); (T.C.); (J.W.); (X.X.)
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China;
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430050, China;
- Correspondence: (Y.W.); (P.C.)
| |
Collapse
|
7
|
Jeremic D, Jiménez-Díaz L, Navarro-López JD. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer's disease: a systematic review. Ageing Res Rev 2021; 72:101496. [PMID: 34687956 DOI: 10.1016/j.arr.2021.101496] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in ageing, affecting around 46 million people worldwide but few treatments are currently available. The etiology of AD is still puzzling, and new drugs development and clinical trials have high failure rates. Urgent outline of an integral (multi-target) and effective treatment of AD is needed. Accumulation of amyloid-β (Aβ) peptides is considered one of the fundamental neuropathological pillars of the disease, and its dyshomeostasis has shown a crucial role in AD onset. Therefore, many amyloid-targeted therapies have been investigated. Here, we will systematically review recent (from 2014) investigational, follow-up and review studies focused on anti-amyloid strategies to summarize and analyze their current clinical potential. Combination of anti-Aβ therapies with new developing early detection biomarkers and other therapeutic agents acting on early functional AD changes will be highlighted in this review. Near-term approval seems likely for several drugs acting against Aβ, with recent FDA approval of a monoclonal anti-Aβ oligomers antibody -aducanumab- raising hopes and controversies. We conclude that, development of oligomer-epitope specific Aβ treatment and implementation of multiple improved biomarkers and risk prediction methods allowing early detection, together with therapies acting on other factors such as hyperexcitability in early AD, could be the key to slowing this global pandemic.
Collapse
|
8
|
Cummings JL. Translational Scoring of Candidate Treatments for Alzheimer's Disease: A Systematic Approach. Dement Geriatr Cogn Disord 2021; 49:22-37. [PMID: 32512572 DOI: 10.1159/000507569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There are many failures in treatment development for Alzheimer's disease (AD). Some of these failures are the result of development programs that lacked critical information about candidate drugs as these were advanced from one phase of development to the next. Translational scoring (TS) has been proposed as a means of increasing the rigor with which treatment development programs are executed. Previously, these approaches were not specific to AD or to the phase of drug development. Detailed information on the characteristics needed to advance a candidate agent from one phase to the next is the basis for success in subsequent phases. SUMMARY The TS approach is presented with a score range of 0-25 for agents entering phases 1, 2, and 3 of development and those that have completed phase 3 and are being considered for regulatory review. Each phase has 5 essential categories scored from 0-5 indicating the completeness of the data available when the agent is being considered for promotion to the next phase. Lower scores suggest that the development program should be reexamined for missing information while higher scores increase the confidence that the agent has the potential to succeed in the next phase. Scoring guidelines are provided and examples of scores for drugs in recent development programs are provided to illustrate the principles of TS. Key Messages: Successful development of drugs for AD treatment requires disciplined informed decision-making at each phase of development. TS is a methodology for more rigorous drug development to help ensure that inadequately characterized drugs are not advanced and that the development platform at each phase is optimal to support success at the next phase.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, Nevada, USA, .,Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA,
| |
Collapse
|
9
|
Pseudopeptide Amyloid Aggregation Inhibitors: In Silico, Single Molecule and Cell Viability Studies. Int J Mol Sci 2021; 22:ijms22031051. [PMID: 33494369 PMCID: PMC7865305 DOI: 10.3390/ijms22031051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodegeneration in Alzheimer's disease (AD) is defined by pathology featuring amyloid-β (Aβ) deposition in the brain. Aβ monomers themselves are generally considered to be nontoxic, but misfold into β-sheets and aggregate to form neurotoxic oligomers. One suggested strategy to treat AD is to prevent the formation of toxic oligomers. The SG inhibitors are a class of pseudopeptides designed and optimized using molecular dynamics (MD) simulations for affinity to Aβ and experimentally validated for their ability to inhibit amyloid-amyloid binding using single molecule force spectroscopy (SMFS). In this work, we provide a review of our previous MD and SMFS studies of these inhibitors and present new cell viability studies that demonstrate their neuroprotective effects against Aβ(1-42) oligomers using mouse hippocampal-derived HT22 cells. Two of the tested SG inhibitors, predicted to bind Aβ in anti-parallel orientation, demonstrated neuroprotection against Aβ(1-42). A third inhibitor, predicted to bind parallel to Aβ, was not neuroprotective. Myristoylation of SG inhibitors, intended to enhance delivery across the blood-brain barrier (BBB), resulted in cytotoxicity. This is the first use of HT22 cells for the study of peptide aggregation inhibitors. Overall, this work will inform the future development of peptide aggregation inhibitors against Aβ toxicity.
Collapse
|
10
|
Lv J, Chen L, Zhu N, Sun Y, Pan J, Gao J, Liu J, Liu G, Tao Y. Beta amyloid-induced time-dependent learning and memory impairment: involvement of HPA axis dysfunction. Metab Brain Dis 2020; 35:1385-1394. [PMID: 32860609 DOI: 10.1007/s11011-020-00613-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022]
Abstract
Aβ aggregation is one of the pathological biomarkers of Alzheimer's disease (AD). However, the possible mechanism related to Aβ-induced pathological signaling pathway is still unknown. In the present study, Aβ1-42-induced time-dependent memory impairment and its possible relationship to hypothalamic-pituitary-adrenal (HPA) axis hyperactivity were examined. Aβ1-42-treated mice significantly impaired acquisition activity in the learning curve at 10 days, 1 and 4 months in the Morris water-maze (MWM) task. This learning activity was back to normal at 8 months after Aβ1-42 treatment. In the probe trial test, Aβ1-42-treated mice needed longer latencies to touch the precious platform location and fewer numbers of crossing from 10 days to 4 months after microinjection. This Aβ1-42 induced memory loss was consistent with the results of the step-down passive avoidance test. The HPA axis related parameters, such as corticosterone (CORT) level in the serum, glucocorticoid receptor (GR) and corticotropin-releasing factor receptor (CRF-R) expression in the frontal cortex and hippocampus increased in Aβ1-42-treated mice from 10 days to 4 months. While the downstream molecules phosphorylation of cyclic AMP response element binding (pCREB) and brain-derived neurotrophic factor (BDNF) expression decreased during this time. These effects were back to normal 8 months after treatment with Aβ1-42. Altogether, our results suggested that Aβ1-42 induced significant learning and memory impairment, which is involved in HPA axis dysfunction.
Collapse
Affiliation(s)
- Jinpeng Lv
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, 213000, China
| | - Ling Chen
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Naping Zhu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yindi Sun
- Department of Traditional Medical Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Jianchun Pan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jinsheng Gao
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030000, China
| | - Jianwu Liu
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, 213000, China
| | - Guangjun Liu
- The Second People's Hospital of Changzhou, Affiliate Hospital of NanJing Medical University, Changzhou, 213000, China.
| | - Yuanxiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
| |
Collapse
|
11
|
Lozupone M, Solfrizzi V, D'Urso F, Di Gioia I, Sardone R, Dibello V, Stallone R, Liguori A, Ciritella C, Daniele A, Bellomo A, Seripa D, Panza F. Anti-amyloid-β protein agents for the treatment of Alzheimer's disease: an update on emerging drugs. Expert Opin Emerg Drugs 2020; 25:319-335. [PMID: 32772738 DOI: 10.1080/14728214.2020.1808621] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Currently available Alzheimer's disease (AD) therapeutics are only symptomatic, targeting cholinergic and glutamatergic neurotransmissions. Several putative disease-modifying drugs in late-stage clinical development target amyloid-β (Aβ) peptide and tau protein, the principal neurophatological hallmarks of the disease. AREAS COVERED Phase III randomized clinical trials of anti-Aβ drugs for AD treatment were searched in US and EU clinical trial registries and principal biomedical databases until May 2020. EXPERT OPINION At present, compounds in Phase III clinical development for AD include four anti-Ab monoclonal antibodies (solanezumab, gantenerumab, aducanumab, BAN2401), the combination of cromolyn sodium and ibuprofen (ALZT-OP1), and two small molecules (levetiracetam, GV-971). These drugs are mainly being tested in subjects during early AD phases or at preclinical stage of familial AD or even in asymptomatic subjects at high risk of developing AD. The actual results support the hypothesis that elevated Aβ represents an early stage in the AD continuum and demonstrate the feasibility of enrolling these high-risk participants in secondary prevention trials to slow cognitive decline during the AD preclinical stages. However, a series of clinical failures may question further development of Aβ-targeting drugs and the findings from current ongoing Phase III trials will hopefully give light to this critical issue.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro , Bari, Italy
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro" , Bari, Italy
| | - Francesca D'Urso
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Ilaria Di Gioia
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Rodolfo Sardone
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Vittorio Dibello
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy.,Department of Orofacial Pain and Dysfunction, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , The Netherlands
| | - Roberta Stallone
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Angelo Liguori
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Chiara Ciritella
- Physical and Rehabilitation Medicine Department, University of Foggia , Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart , Rome, Italy.,Institute of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS , Rome, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Davide Seripa
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo Della Sofferenza , Foggia, Italy.,Hematology and Stem Cell Transplant Unit, Vito Fazzi Hospital, ASL Lecce , Lecce, Italy
| | - Francesco Panza
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| |
Collapse
|
12
|
Reynolds DS. A short perspective on the long road to effective treatments for Alzheimer's disease. Br J Pharmacol 2019; 176:3636-3648. [PMID: 30657599 PMCID: PMC6715596 DOI: 10.1111/bph.14581] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/21/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Globally, there are approximately 47 million people living with dementia, and about two thirds of those have Alzheimer's disease (AD). Age is the single biggest risk factor for the vast majority of sporadic AD cases, and because the world's population is aging, the number of people living with AD is set to rise dramatically over the coming decades. There are currently no disease-modifying treatments for AD, and the few symptomatic agents available have limited impact on the disease. Perhaps surprisingly, there is relatively little activity in the AD research and development field compared with other diseases with a high mortality burden, such as cancer. There is enormous economic incentive to discover and develop the first disease-modifying treatment, but previous failure has significantly reduced further industrial investment in this field. The short review looks at the historical path trodden to develop treatments and reflects on the journey down the road to truly effective treatments for people living with AD. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
|
13
|
Cummings J, Feldman HH, Scheltens P. The "rights" of precision drug development for Alzheimer's disease. Alzheimers Res Ther 2019; 11:76. [PMID: 31470905 PMCID: PMC6717388 DOI: 10.1186/s13195-019-0529-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023]
Abstract
There is a high rate of failure in Alzheimer's disease (AD) drug development with 99% of trials showing no drug-placebo difference. This low rate of success delays new treatments for patients and discourages investment in AD drug development. Studies across drug development programs in multiple disorders have identified important strategies for decreasing the risk and increasing the likelihood of success in drug development programs. These experiences provide guidance for the optimization of AD drug development. The "rights" of AD drug development include the right target, right drug, right biomarker, right participant, and right trial. The right target identifies the appropriate biologic process for an AD therapeutic intervention. The right drug must have well-understood pharmacokinetic and pharmacodynamic features, ability to penetrate the blood-brain barrier, efficacy demonstrated in animals, maximum tolerated dose established in phase I, and acceptable toxicity. The right biomarkers include participant selection biomarkers, target engagement biomarkers, biomarkers supportive of disease modification, and biomarkers for side effect monitoring. The right participant hinges on the identification of the phase of AD (preclinical, prodromal, dementia). Severity of disease and drug mechanism both have a role in defining the right participant. The right trial is a well-conducted trial with appropriate clinical and biomarker outcomes collected over an appropriate period of time, powered to detect a clinically meaningful drug-placebo difference, and anticipating variability introduced by globalization. We lack understanding of some critical aspects of disease biology and drug action that may affect the success of development programs even when the "rights" are adhered to. Attention to disciplined drug development will increase the likelihood of success, decrease the risks associated with AD drug development, enhance the ability to attract investment, and make it more likely that new therapies will become available to those with or vulnerable to the emergence of AD.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Department of Brain Health, School of Integrated Health Sciences, UNLV and Cleveland Clinic Lou Ruvo Center for Brain Health, 888 West Bonneville Ave, Las Vegas, NV, 89106, USA.
| | - Howard H Feldman
- Department of Neurosciences, Alzheimer's Disease Cooperative Study, University of California San Diego, San Diego, CA, USA
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Szatmari B, Balicza P, Nemeth G, Molnar MJ. The Panomics Approach in Neurodegenerative Disorders. Curr Med Chem 2019; 26:1712-1720. [PMID: 28685677 DOI: 10.2174/0929867324666170705120038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND The molecular genetic technologies revolutionized the diagnostics of many disorders. Thanks to the new molecular techniques and the rapid improvement of the information technologies the number of mendelien inherited disorders has increased rapidly in the last five years. The omics era brought radical changes in the understanding of complex disorders and the underlying pathomechanisms. However, in most complex disorders the genome wide association studies could not clarify the genetic background even for disorders where a very strong heritability had been observed. OBJECTIVE In this paper the changing concept of the neurodegenerative disorders is discussed. The traditional classification of these disorders was purely based on clinical symptoms and morphological signs in the last century. Identifying the signature lesions of various neurodegenerative disorders may reveal a common pathological pathway in these disorders. New neuroimaging methods provided additional tools to assess pathological pathways in vivo already in the early stages of the diseases. Visualizing in vivo amyloid deposits and neuroinflammation improved our understanding of their role in various neurodegenerative disorders. Genetics may be the most precise way to identify the background of these disorders. However, there is only limited number of cases where true association can be proved between the disorder and the genetic mutations. Most of the neurodegenerative disorders seem to be multifactorial and cannot be traced back to one single cause. CONCLUSION In conclusion, shifting from a classification based on symptomatology only to a modern multidisciplinary approach, based on the constantly evolving panomics findings, would improve our understanding of neurodegenerative diseases and could be the basis of novel therapeutic research.
Collapse
Affiliation(s)
| | - Peter Balicza
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Gyorgy Nemeth
- Medical Division, Gedeon Richter Plc., Budapest, Hungary
| | - Maria Judit Molnar
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Salloway SP, Sperling R, Fox NC, Sabbagh MN, Honig LS, Porsteinsson AP, Rofael H, Ketter N, Wang D, Liu E, Carr S, Black RS, Brashear HR. Long-Term Follow Up of Patients with Mild-to-Moderate Alzheimer's Disease Treated with Bapineuzumab in a Phase III, Open-Label, Extension Study. J Alzheimers Dis 2019; 64:689-707. [PMID: 29914022 DOI: 10.3233/jad-171157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND A 3-year extension of two Phase III parent studies of intravenous (IV) bapineuzumab in patients with mild-to-moderate Alzheimer's disease dementia (apolipoprotein (APOE) ɛ4 carriers and noncarriers) is summarized. OBJECTIVES The primary and secondary objectives were to evaluate the long-term safety, tolerability, and maintenance of efficacy of bapineuzumab. METHODS A multicenter study in patients who had participated in double-blind placebo-controlled parent studies. Patients enrolled in the extension study were assigned to receive IV infusions of bapineuzumab (0.5 or 1.0 mg/kg) every 13 weeks until termination but were blinded to whether they had received bapineuzumab or placebo in the parent studies. RESULTS A total of 1,462 (688 were APOEɛ4 carriers and 774 were noncarriers) patients were enrolled. Extension-onset adverse events occurred in >81% of the patients in each dose group. Fall, urinary tract infection, agitation, and ARIA-E occurred in ≥10% of participants. The incidence proportion of ARIA-E was higher among carriers and noncarriers who received bapineuzumab for the first time in the extension study (11.8% and 5.4%, respectively) versus those who were previously exposed in the parent studies (5.1% and 1.3%, respectively). After 6 to 12 months exposure to bapineuzumab IV in the extension study, similar deterioration of cognition and function occurred with no significant differences between the dose groups. CONCLUSIONS Infusion of bapineuzumab 0.5 or 1.0 mg/kg every 13 weeks for up to 3 years was generally well tolerated, with a safety and tolerability profile similar to that in previous studies.
Collapse
Affiliation(s)
| | - Reisa Sperling
- Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, MA, USA
| | - Nick C Fox
- Dementia Research Centre, University College London, Institute of Neurology, London, UK
| | | | | | | | - Hany Rofael
- Janssen Alzheimer Immunotherapy Research & Development, LLC, South San Francisco, CA, USA
| | - Nzeera Ketter
- Janssen Alzheimer Immunotherapy Research & Development, LLC, South San Francisco, CA, USA
| | - Daniel Wang
- Janssen Alzheimer Immunotherapy Research & Development, LLC, South San Francisco, CA, USA
| | - Enchi Liu
- Janssen Alzheimer Immunotherapy Research & Development, LLC, South San Francisco, CA, USA
| | - Stephen Carr
- Janssen Alzheimer Immunotherapy Research & Development, LLC, South San Francisco, CA, USA
| | | | | |
Collapse
|
16
|
Chantran Y, Capron J, Alamowitch S, Aucouturier P. Anti-Aβ Antibodies and Cerebral Amyloid Angiopathy Complications. Front Immunol 2019; 10:1534. [PMID: 31333665 PMCID: PMC6620823 DOI: 10.3389/fimmu.2019.01534] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/19/2019] [Indexed: 11/13/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) corresponds to the deposition of amyloid material in the cerebral vasculature, leading to structural modifications of blood vessel walls. The most frequent form of sporadic CAA involves fibrillar β-amyloid peptide (Aβ) deposits, mainly the 40 amino acid form (Aβ1-40), which are commonly found in the elderly with or without Alzheimer's disease. Sporadic CAA usually remains clinically silent. However, in some cases, acute complications either hemorrhagic or inflammatory can occur. Similar complications occurred after active or passive immunization against Aβ in experimental animal models exhibiting CAA, and in subjects with Alzheimer's disease during clinical trials. The triggering of these adverse events by active immunization and monoclonal antibody administration in CAA-bearing individuals suggests that analogous mechanisms could be involved during spontaneous CAA complications, drawing particular attention to the role of anti-Aβ antibodies. However, antibodies that react with several monomeric and aggregated forms of Aβ spontaneously occur in virtually all human individuals, hence being part of the "natural antibody" repertoire. Natural antibodies are usually described as having low-affinity and high cross-reactivity toward microbial components and autoantigens. Although frequently of the IgM class, they also belong to IgG and IgA isotypes. They likely display homeostatic functions and protective roles in aging. Until recently, the peculiar properties of these natural antibodies have hindered proper analysis of the Aβ-reactive antibody repertoire and the study of their implication in CAA complications. Herein, we review and comment the evidences of an auto-immune nature of spontaneous CAA complications, and discuss implications for forthcoming research and clinical practice.
Collapse
Affiliation(s)
- Yannick Chantran
- Sorbonne Université, Inserm, UMRS 938, Hôpital St-Antoine, AP-HP, Paris, France.,Département d'Immunologie Biologique, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Jean Capron
- Sorbonne Université, Inserm, UMRS 938, Hôpital St-Antoine, AP-HP, Paris, France.,Département de Neurologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Sonia Alamowitch
- Sorbonne Université, Inserm, UMRS 938, Hôpital St-Antoine, AP-HP, Paris, France.,Département de Neurologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Pierre Aucouturier
- Sorbonne Université, Inserm, UMRS 938, Hôpital St-Antoine, AP-HP, Paris, France.,Département d'Immunologie Biologique, Hôpital Saint-Antoine, AP-HP, Paris, France
| |
Collapse
|
17
|
Overk C, Masliah E. Dale Schenk One Year Anniversary: Fighting to Preserve the Memories. J Alzheimers Dis 2019; 62:1-13. [PMID: 29439357 DOI: 10.3233/jad-171071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It has been a year since we lost Dale Schenk on September 30, 2016. Dale's visionary work resulted in the remarkable discovery in 1999 that an experimental amyloid-β (Aβ) vaccine reduced the neurodegeneration in a transgenic model of Alzheimer's disease (AD). Following Dale's seminal work, several active and passive immunotherapies have since been developed and tested in the clinic for AD, Parkinson's disease (PD), and other neurodegenerative disorders. Here we provide a brief overview of the current state of development of immunotherapy for AD, PD, and other neurodegenerative disorders in the context of this anniversary. The next steps in the development of immunotherapies will require combinatorial approaches mixing antibodies against various targets (e.g., Aβ, α-syn, Tau, and TDP43) with small molecules that block toxicity, aggregation, inflammation, and promote cell survival.
Collapse
Affiliation(s)
- Cassia Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.,Division of Neurosciences and Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Dupont AC, Largeau B, Guilloteau D, Santiago Ribeiro MJ, Arlicot N. The Place of PET to Assess New Therapeutic Effectiveness in Neurodegenerative Diseases. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:7043578. [PMID: 29887768 PMCID: PMC5985069 DOI: 10.1155/2018/7043578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/01/2018] [Indexed: 12/16/2022]
Abstract
In vivo exploration of neurodegenerative diseases by positron emission tomography (PET) imaging has matured over the last 20 years, using dedicated radiopharmaceuticals targeting cellular metabolism, neurotransmission, neuroinflammation, or abnormal protein aggregates (beta-amyloid and intracellular microtubule inclusions containing hyperphosphorylated tau). The ability of PET to characterize biological processes at the cellular and molecular levels enables early detection and identification of molecular mechanisms associated with disease progression, by providing accurate, reliable, and longitudinally reproducible quantitative biomarkers. Thus, PET imaging has become a relevant imaging method for monitoring response to therapy, approved as an outcome measure in bioclinical trials. The aim of this paper is to review and discuss the current inputs of PET in the assessment of therapeutic effectiveness in neurodegenerative diseases connected by common pathophysiological mechanisms, including Parkinson's disease, Huntington's disease, dementia, amyotrophic lateral sclerosis, multiple sclerosis, and also in psychiatric disorders. We also discuss opportunities for PET imaging to drive more personalized neuroprotective and therapeutic strategies, taking into account individual variability, within the growing framework of precision medicine.
Collapse
Affiliation(s)
- Anne-Claire Dupont
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Unité de Radiopharmacie, Tours, France
| | | | - Denis Guilloteau
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Service de Médecine Nucléaire in vitro, Tours, France
- INSERM CIC 1415, University Hospital, Tours, France
| | - Maria Joao Santiago Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- INSERM CIC 1415, University Hospital, Tours, France
- CHRU de Tours, Service de Médecine Nucléaire in vivo, Tours, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Unité de Radiopharmacie, Tours, France
- INSERM CIC 1415, University Hospital, Tours, France
| |
Collapse
|
19
|
Iwatsubo T, Iwata A, Suzuki K, Ihara R, Arai H, Ishii K, Senda M, Ito K, Ikeuchi T, Kuwano R, Matsuda H, Sun CK, Beckett LA, Petersen RC, Weiner MW, Aisen PS, Donohue MC. Japanese and North American Alzheimer's Disease Neuroimaging Initiative studies: Harmonization for international trials. Alzheimers Dement 2018; 14:1077-1087. [PMID: 29753531 DOI: 10.1016/j.jalz.2018.03.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/19/2018] [Accepted: 03/01/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION We conducted Japanese Alzheimer's Disease Neuroimaging Initiative (J-ADNI) and compared the basic characteristics and progression profiles with those of ADNI in North America. METHODS A total of 537 Japanese subjects with normal cognition, late amnestic mild cognitive impairment (LMCI), or mild Alzheimer's disease (AD) were enrolled using the same criteria as ADNI. Rates of changes in representative cognitive or functional measures were compared for amyloid positron emission tomography- or cerebrospinal fluid amyloid β(1-42)-positive LMCI and mild AD between J-ADNI and ADNI. RESULTS Amyloid positivity rates were significantly higher in normal cognition of ADNI but at similar levels in LMCI and mild AD between J-ADNI and ADNI. Profiles of decline in cognitive or functional measures in amyloid-positive LMCI in J-ADNI (n = 75) and ADNI (n = 269) were remarkably similar, whereas those in mild AD were milder in J-ADNI (n = 73) compared with ADNI (n = 230). DISCUSSION These results support the feasibility of bridging of clinical trials in the prodromal stage of AD between Asia and western countries.
Collapse
Affiliation(s)
- Takeshi Iwatsubo
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, Tokyo, Japan; Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Atsushi Iwata
- Department of Neurology, The University of Tokyo Hospital, Tokyo, Japan
| | - Kazushi Suzuki
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, Tokyo, Japan
| | - Ryoko Ihara
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, Tokyo, Japan
| | - Hiroyuki Arai
- Department of Geriatrics, Tohoku University, Sendai, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Michio Senda
- Division of Molecular Imaging, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Kengo Ito
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Bioresource Science Branch, Center for Bioresources, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ryozo Kuwano
- Department of Molecular Genetics, Bioresource Science Branch, Center for Bioresources, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center for Neurology and Psychiatry, Kodaira, Japan
| | | | - Chung-Kai Sun
- Alzheimer's Therapeutics Research Institute, University of Southern California, San Diego, CA, USA
| | - Laurel A Beckett
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, Davis, CA, USA
| | | | - Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Paul S Aisen
- Alzheimer's Therapeutics Research Institute, University of Southern California, San Diego, CA, USA
| | - Michael C Donohue
- Alzheimer's Therapeutics Research Institute, University of Southern California, San Diego, CA, USA
| | | |
Collapse
|
20
|
Shahpasand K, Sepehri Shamloo A, Nabavi SM, Ping Lu K, Zhen Zhou X. "Tau immunotherapy: Hopes and hindrances". Hum Vaccin Immunother 2017; 14:277-284. [PMID: 29049003 DOI: 10.1080/21645515.2017.1393594] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder having two major pathological hallmarks: the extracellular senile plaques and intracellular neurofibrillary tangles composed of amyloid beta protein and hyperphosphorylated tau respectively. Removal of protein deposits from AD brains are the newer attempts for treating AD. The major developments in this direction have been the amyloid and tau based therapeutics. While senile plaque removal employing monoclonal antibodies (mAbs) restore brain function in mouse models of AD, tau has been recently introduced as the major neurodegenerative factor mediating neural cell death. So, several research groups have focused on tau therapy. So far, the outcome of tau immunotherapy has been promising and clearance of hyperphosphorylated tau has been shown to restore the brain function in animal models. But the point is which phosphorylated tau is the most critical form to be removed from the brain, especially because removal of physiologic tau can cause neurodegenerative consequence. Recently, we have shown that phosphorylated tau at Thr231 in the cis conformation is a very early driver of neurodegeneration and cis mAb treatment efficiently restores brain structure and function in TBI models. Because of efficient therapeutic effects in mice model of TBI and considering cis pT231-tau accumulation in AD brains, it could be a very good candidate for tau immunotherapy upon several tauopathy disorders including AD.
Collapse
Affiliation(s)
- Koorosh Shahpasand
- a Department of Brain and Cognitive Sciences , Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Alireza Sepehri Shamloo
- a Department of Brain and Cognitive Sciences , Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Seyed Massood Nabavi
- a Department of Brain and Cognitive Sciences , Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Kun Ping Lu
- b Division of Translational Therapeutics, Department of Medicine , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA.,c Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Xiao Zhen Zhou
- b Division of Translational Therapeutics, Department of Medicine , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA.,c Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
21
|
Panza F, Seripa D, Lozupone M, Solfrizzi V, Imbimbo BP, Barulli MR, Tortelli R, Capozzo R, Bisceglia P, Dimitri A, Stallone R, Dibello V, Quaranta N, Daniele A, Bellomo A, Greco A, Logroscino G. The potential of solanezumab and gantenerumab to prevent Alzheimer’s disease in people with inherited mutations that cause its early onset. Expert Opin Biol Ther 2017; 18:25-35. [DOI: 10.1080/14712598.2018.1389885] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Francesco Panza
- Unit of Neurodegenerative Disease, Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari ‘Aldo Moro’, Bari, Italy
- Unit of Neurodegenerative Disease, Department of Clinical Research in Neurology, University of Bari ‘Aldo Moro’ at ‘Pia Fondazione Card. G. Panico’, Tricase, Italy
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Davide Seripa
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Madia Lozupone
- Unit of Neurodegenerative Disease, Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Vincenzo Solfrizzi
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Bruno P. Imbimbo
- Research & Development Department, Chiesi Farmaceutici, Parma, Italy
| | - Maria Rosaria Barulli
- Unit of Neurodegenerative Disease, Department of Clinical Research in Neurology, University of Bari ‘Aldo Moro’ at ‘Pia Fondazione Card. G. Panico’, Tricase, Italy
| | - Rosanna Tortelli
- Unit of Neurodegenerative Disease, Department of Clinical Research in Neurology, University of Bari ‘Aldo Moro’ at ‘Pia Fondazione Card. G. Panico’, Tricase, Italy
| | - Rosa Capozzo
- Unit of Neurodegenerative Disease, Department of Clinical Research in Neurology, University of Bari ‘Aldo Moro’ at ‘Pia Fondazione Card. G. Panico’, Tricase, Italy
| | - Paola Bisceglia
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Andrea Dimitri
- Psychiatric Unit, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Roberta Stallone
- Unit of Neurodegenerative Disease, Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Vittorio Dibello
- Interdisciplinary Department of Medicine (DIM), Section of Dentistry, University of Bari Aldo, Moro, Italy
| | - Nicola Quaranta
- Otolaryngology Unit, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Antonio Greco
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giancarlo Logroscino
- Unit of Neurodegenerative Disease, Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari ‘Aldo Moro’, Bari, Italy
- Unit of Neurodegenerative Disease, Department of Clinical Research in Neurology, University of Bari ‘Aldo Moro’ at ‘Pia Fondazione Card. G. Panico’, Tricase, Italy
| |
Collapse
|
22
|
Wang Y, Yan T, Lu H, Yin W, Lin B, Fan W, Zhang X, Fernandez-Funez P. Lessons from Anti-Amyloid-β Immunotherapies in Alzheimer Disease: Aiming at a Moving Target. NEURODEGENER DIS 2017; 17:242-250. [DOI: 10.1159/000478741] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/16/2017] [Indexed: 11/19/2022] Open
|
23
|
Mathis CA, Lopresti BJ, Ikonomovic MD, Klunk WE. Small-molecule PET Tracers for Imaging Proteinopathies. Semin Nucl Med 2017; 47:553-575. [PMID: 28826526 DOI: 10.1053/j.semnuclmed.2017.06.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this chapter, we provide a review of the challenges and advances in developing successful PET imaging agents for 3 major types of aggregated amyloid proteins: amyloid-beta (Aβ), tau, and alpha-synuclein (α-syn). These 3 amyloids are involved in the pathogenesis of a variety of neurodegenerative diseases, referred to as proteinopathies or proteopathies, that include Alzheimer disease, Lewy body dementias, multiple system atrophy, and frontotemporal dementias, among others. In the Introduction section, we briefly discuss the history of amyloid in neurodegenerative diseases and describe why progress in developing effective imaging agents has been hampered by the failure of crystallography to provide definitive ligand-protein interactions for rational radioligand design efforts. Instead, the field has relied on largely serendipitous, trial-and-error methods to achieve useful and specific PET amyloid imaging tracers for Aβ, tau, and α-syn deposits. Because many of the proteopathies involve more than 1 amyloid protein, it is important to develop selective PET tracers for the different amyloids to help assess the relative contribution of each to total amyloid burden. We use Pittsburgh compound B to illustrate some of the critical steps in developing a potent and selective Aβ PET imaging agent. Other selective Aβ and tau PET imaging compounds have followed similar pathways in their developmental processes. Success for selective α-syn PET imaging agents has not been realized yet, but work is ongoing in multiple laboratories throughout the world. In the tau sections, we provide background regarding 3-repeat (3R) and 4-repeat (4R) tau proteins and how they can affect the binding of tau radioligands in different tauopathies. We review the ongoing efforts to assess the properties of tau ligands, which are useful in 3R, 4R, or combined 3R-4R tauopathies. Finally, we describe in the α-syn sections recent attempts to develop selective tracers to image α-synucleinopathies.
Collapse
Affiliation(s)
- Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA.
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
24
|
Panza F, Seripa D, Solfrizzi V, Imbimbo BP, Lozupone M, Leo A, Sardone R, Gagliardi G, Lofano L, Creanza BC, Bisceglia P, Daniele A, Bellomo A, Greco A, Logroscino G. Emerging drugs to reduce abnormal β-amyloid protein in Alzheimer’s disease patients. Expert Opin Emerg Drugs 2016; 21:377-391. [DOI: 10.1080/14728214.2016.1241232] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Ivanoiu A, Pariente J, Booth K, Lobello K, Luscan G, Hua L, Lucas P, Styren S, Yang L, Li D, Black RS, Brashear HR, McRae T. Long-term safety and tolerability of bapineuzumab in patients with Alzheimer's disease in two phase 3 extension studies. ALZHEIMERS RESEARCH & THERAPY 2016; 8:24. [PMID: 27334799 PMCID: PMC4918115 DOI: 10.1186/s13195-016-0193-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/18/2016] [Indexed: 11/24/2022]
Abstract
Background Immunotherapy with monoclonal antibodies that target amyloid beta has been under investigation as a treatment for patients with Alzheimer’s disease (AD). The 3000 and 3001 phase 3 clinical studies of intravenous bapineuzumab assessed safety and efficacy in patients with mild to moderate AD recruited in over 26 countries. This article describes the long-term safety and tolerability of bapineuzumab in the extension studies for these two protocols. Methods The long-term safety and tolerability of intravenous-administered bapineuzumab in patients with AD was evaluated in apolipoprotein E ε4 allele noncarriers (Study 3002, extension of Study 3000) and apolipoprotein E ε4 allele carriers (Study 3003, extension of Study 3001). Those receiving bapineuzumab in the parent study were continued at the same dose; if receiving placebo, patients began bapineuzumab. Bapineuzumab doses were 0.5 mg/kg in both studies and also 1.0 mg/kg in the noncarrier study. Clinical efficacy of bapineuzumab was also assessed in exploratory analyses. Results Because of lack of efficacy in two other phase 3 trials, the parent protocols were stopped early. As a result, Studies 3002 and 3003 were also terminated. In total, 492 and 202 patients were enrolled in Studies 3003 and 3002, respectively. In apolipoprotein E ε4 carriers (Study 3003), treatment-emergent adverse events occurred in 70.7 % of the patients who originally received placebo and 66.9 % of those who originally received bapineuzumab. In noncarriers, treatment-emergent adverse events occurred in 82.1 % and 67.6 % of patients who received placebo + bapineuzumab 0.5 mg/kg and placebo + bapineuzumab 1.0 mg/kg, respectively, and in 72.7 % and 64.3 % of those who received bapineuzumab + bapineuzumab 0.5 mg/kg and 1.0 mg/kg, respectively. Amyloid-related imaging abnormalities with edema or effusions were the main bapineuzumab-associated adverse events in both studies, occurring in approximately 11 % of placebo + bapineuzumab and 4 % of bapineuzumab + bapineuzumab groups overall. Exploratory analyses of clinical efficacy were not significantly different between groups in either study. Conclusions In these phase 3 extension studies, intravenous bapineuzumab administered for up to approximately 3 years showed no unexpected safety signals and a safety profile consistent with previous bapineuzumab trials. Trial registration Noncarriers (Study 3002): ClinicalTrials.gov NCT00996918. Registered 14 October 2009. Carriers (Study 3003): ClinicalTrials.gov NCT00998764. Registered 16 October 2009. Electronic supplementary material The online version of this article (doi:10.1186/s13195-016-0193-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adrian Ivanoiu
- Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, 10 Avenue Hipocrate, B-1200, Bruxelles, Belgium.
| | - Jérémie Pariente
- Centre d'investigation Clinique, Centre Mémoire et Langage, Service de Neurologie, CHU Purpan, Place du Dr Baylac, 31059, Toulouse, France
| | - Kevin Booth
- Pfizer Inc., 500 Arcola Road, Collegeville, PA, 19426, USA
| | - Kasia Lobello
- Pfizer Inc., 500 Arcola Road, Collegeville, PA, 19426, USA
| | - Gerald Luscan
- Pfizer PGRD, 23-25 avenue du Docteur Lannelongue, 75668, Paris cedex 14, France
| | - Lisa Hua
- Pfizer Inc., 500 Arcola Road, Collegeville, PA, 19426, USA
| | - Prisca Lucas
- Pfizer PGRD, 23-25 avenue du Docteur Lannelongue, 75668, Paris cedex 14, France
| | - Scot Styren
- Pfizer Inc., Eastern Point Road, Groton, CT, 06340, USA
| | - Lingfeng Yang
- Pfizer Inc., 500 Arcola Road, Collegeville, PA, 19426, USA
| | - David Li
- Pfizer Inc., 500 Arcola Road, Collegeville, PA, 19426, USA
| | - Ronald S Black
- Pfizer Inc., 500 Arcola Road, Collegeville, PA, 19426, USA
| | - H Robert Brashear
- Janssen Alzheimer Immunotherapy Research & Development, LLC, 700 Gateway Blvd., South San Francisco, CA, 94080, USA
| | - Thomas McRae
- Pfizer Inc., 235 East 42nd Street, New York, NY, 10017, USA
| |
Collapse
|
26
|
Vandenberghe R, Rinne JO, Boada M, Katayama S, Scheltens P, Vellas B, Tuchman M, Gass A, Fiebach JB, Hill D, Lobello K, Li D, McRae T, Lucas P, Evans I, Booth K, Luscan G, Wyman BT, Hua L, Yang L, Brashear HR, Black RS. Bapineuzumab for mild to moderate Alzheimer's disease in two global, randomized, phase 3 trials. ALZHEIMERS RESEARCH & THERAPY 2016; 8:18. [PMID: 27176461 PMCID: PMC4866415 DOI: 10.1186/s13195-016-0189-7] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/22/2016] [Indexed: 01/22/2023]
Abstract
Background Our objective was to evaluate the efficacy (clinical and biomarker) and safety of intravenous bapineuzumab in patients with mild to moderate Alzheimer’s disease (AD). Methods Two of four phase 3, multicenter, randomized, double-blind, placebo-controlled, 18-month trials were conducted globally: one in apolipoprotein E ε4 carriers and another in noncarriers. Patients received bapineuzumab 0.5 mg/kg (both trials) or 1.0 mg/kg (noncarrier trial) or placebo every 13 weeks. Coprimary endpoints were change from baseline to week 78 on the 11-item Alzheimer’s Disease Assessment Scale–Cognitive subscale and the Disability Assessment for Dementia. Results A total of 683 and 329 patients completed the current carrier and noncarrier trials, respectively, which were terminated prematurely owing to lack of efficacy in the two other phase 3 trials of bapineuzumab in AD. The current trials showed no significant difference between bapineuzumab and placebo for the coprimary endpoints and no effect of bapineuzumab on amyloid load or cerebrospinal fluid phosphorylated tau. (Both measures were stable over time in the placebo group.) Amyloid-related imaging abnormalities with edema or effusion were confirmed as the most notable adverse event. Conclusions These phase 3 global trials confirmed lack of efficacy of bapineuzumab at tested doses on clinical endpoints in patients with mild to moderate AD. Some differences in the biomarker results were seen compared with the other phase 3 bapineuzumab trials. No unexpected adverse events were observed. Trial registration Noncarriers (3000) ClinicalTrials.gov identifier NCT00667810; registered 24 Apr 2008. Carriers (3001) ClinicalTrials.gov identifier NCT00676143; registered 2 May 2008. Electronic supplementary material The online version of this article (doi:10.1186/s13195-016-0189-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rik Vandenberghe
- University Hospitals Leuven, Department of Neurosciences, Alzheimer Research Centre KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Juha O Rinne
- Turku PET Centre and Division of Clinical Neurosciences, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Mercè Boada
- Fundació ACE, Barcelona Alzheimer Treatment and Research Center, Gran via de Carles III, 85 Bis, 08028, Barcelona, Spain
| | - Sadao Katayama
- Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Philip Scheltens
- Alzheimercentrum VUmc, Neurology, VU University Medical Center, PO Box 7057, 1007, MB, Amsterdam, Netherlands
| | - Bruno Vellas
- CHU Toulouse, Gérontopôle, 170 Avenue de Casselardit, TSA 40031, 31059, Toulouse, Cedex 9, France
| | - Michael Tuchman
- Palm Beach Neurological Center, 3365 Burns Road, Suite 203, Palm Beach Gardens, FL, 33410, USA
| | - Achim Gass
- Department of Neurology, University Hospital Mannheim, University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Jochen B Fiebach
- Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Derek Hill
- IXICO Ltd., The London Bioscience Innovation Centre, 4th Floor, Griffin Court, 15 Long Lane, London, EC1A 9PN, UK
| | - Kasia Lobello
- Pfizer Inc., 500 Arcola Road, Collegeville, PA, 19426, USA
| | - David Li
- Pfizer Inc., 500 Arcola Road, Collegeville, PA, 19426, USA
| | - Tom McRae
- Pfizer Inc., 235 East 42nd Street, New York, NY, 10017, USA
| | - Prisca Lucas
- Pfizer Global Research and Development (PGRD), 23-25 avenue Du Docteur Lannelongue, Paris, Île-De-France, 75014, France
| | - Iona Evans
- Pfizer Ltd., Walton Oaks, Dorking Road, Tadworth, Surrey, KT20 7NS, UK
| | - Kevin Booth
- Pfizer Inc., 500 Arcola Road, Collegeville, PA, 19426, USA
| | - Gerald Luscan
- Pfizer Global Research and Development (PGRD), 23-25 avenue Du Docteur Lannelongue, Paris, Île-De-France, 75014, France
| | | | - Lisa Hua
- Pfizer Inc., 500 Arcola Road, Collegeville, PA, 19426, USA
| | - Lingfeng Yang
- Pfizer Inc., 500 Arcola Road, Collegeville, PA, 19426, USA
| | - H Robert Brashear
- Janssen Alzheimer Immunotherapy Research & Development, LLC, 700 Gateway Boulevard, South San Francisco, CA, 94080, USA
| | - Ronald S Black
- Pfizer Inc., 500 Arcola Road, Collegeville, PA, 19426, USA
| | | |
Collapse
|
27
|
Galimberti D, Scarpini E. Emerging amyloid disease-modifying drugs for Alzheimer's disease. Expert Opin Emerg Drugs 2016; 21:5-7. [PMID: 26817686 DOI: 10.1517/14728214.2016.1146678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Daniela Galimberti
- a Neurology Unit, Department of Pathophysiology and Transplantation , University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico , Milan , Italy
| | - Elio Scarpini
- a Neurology Unit, Department of Pathophysiology and Transplantation , University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico , Milan , Italy
| |
Collapse
|
28
|
Valera E, Spencer B, Masliah E. Immunotherapeutic Approaches Targeting Amyloid-β, α-Synuclein, and Tau for the Treatment of Neurodegenerative Disorders. Neurotherapeutics 2016; 13:179-89. [PMID: 26494242 PMCID: PMC4720672 DOI: 10.1007/s13311-015-0397-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disease-modifying alternatives are sorely needed for the treatment of neurodegenerative disorders, a group of diseases that afflict approximately 50 million Americans annually. Immunotherapy is one of the most developed approaches in this direction. Vaccination against amyloid-β, α-synuclein, or tau has been extensively explored, specially as the discovery that these proteins may propagate cell-to-cell and be accessible to antibodies when embedded into the plasma membrane or in the extracellular space. Likewise, the use of passive immunization approaches with specific antibodies against abnormal conformations of these proteins has also yielded promising results. The clinical development of immunotherapies for Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, dementia with Lewy bodies, and other neurodegenerative disorders is a field in constant evolution. Results to date suggest that immunotherapy is a promising therapeutic approach for neurodegenerative diseases that progress with the accumulation and prion-like propagation of toxic protein aggregates. Here we provide an overview of the most novel and relevant immunotherapeutic advances targeting amyloid-β in Alzheimer’s disease, α-synuclein in Alzheimer’s disease and Parkinson’s disease, and tau in Alzheimer’s disease and frontotemporal dementia.
Collapse
Affiliation(s)
- Elvira Valera
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
| | - Brian Spencer
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
| | - Eliezer Masliah
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
- grid.266100.30000000121074242Department of Pathology, University of California, La Jolla, San Diego, CA 92093 USA
| |
Collapse
|
29
|
Central nervous system myeloid cells as drug targets: current status and translational challenges. Nat Rev Drug Discov 2015; 15:110-24. [DOI: 10.1038/nrd.2015.14] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Stella F, Radanovic M, Canineu PR, de Paula VJR, Forlenza OV. Anti-dementia medications: current prescriptions in clinical practice and new agents in progress. Ther Adv Drug Saf 2015; 6:151-65. [PMID: 26301069 DOI: 10.1177/2042098615592116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Almost three decades after the publication of the first clinical studies with tacrine, the pharmacological treatment of Alzheimer's disease (AD) remains a challenge. Randomized clinical trials have yielded evidence of significant - although modest and transient - benefit from cholinergic replacement therapy for people diagnosed with AD, and disease modification with antidementia compounds is still an urgent, unmet need. The natural history of AD is very long, and its pharmacological treatment must acknowledge different needs according to the stage of the disease process. Cognitive and functional deterioration evolves gradually since the onset of clinical symptoms, which may be preceded by several years or perhaps decades of silent, presymptomatic neurodegeneration. Therefore, the pharmacological treatment of AD must ideally comprise both a symptomatic effect to preserve or improve cognition and a disease-modifying effect to tackle the progression of the pathological process. Primary prevention is the ultimate goal, should these strategies be delivered to patients with preclinical AD. In this article, we briefly address the pharmaceutical compounds that are currently used for the symptomatic treatment of AD and discuss the ongoing strategies designed to modify its natural course.
Collapse
Affiliation(s)
- Florindo Stella
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, and UNESP - Universidade Estadual Paulista, Biosciences Institute, Campus of Rio Claro, São Paulo, Brazil
| | - Márcia Radanovic
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paulo Renato Canineu
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Vanessa J R de Paula
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Orestes V Forlenza
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Rua Dr. Ovídio Pires de Campos 785, 05403-010 - São Paulo, Brazil
| |
Collapse
|
31
|
Sugino H, Watanabe A, Amada N, Yamamoto M, Ohgi Y, Kostic D, Sanchez R. Global Trends in Alzheimer Disease Clinical Development: Increasing the Probability of Success. Clin Ther 2015; 37:1632-42. [PMID: 26243073 DOI: 10.1016/j.clinthera.2015.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 02/03/2023]
Abstract
PURPOSE Alzheimer disease (AD) is a growing global health and economic issue as elderly populations increase dramatically across the world. Despite the many clinical trials conducted, currently no approved disease-modifying treatment exists. In this commentary, the present status of AD drug development and the grounds for collaborations between government, academia, and industry to accelerate the development of disease-modifying AD therapies are discussed. METHODS Official government documents, literature, and news releases were surveyed by MEDLINE and website research. FINDINGS Currently approved anti-AD drugs provide only short-lived symptomatic improvements, which have no effect on the underlying pathogenic mechanisms or progression of the disease. The failure to approve a disease-modifying drug for AD may be because the progression of AD in the patient populations enrolled in clinical studies was too advanced for drugs to demonstrate cognitive and functional improvements. The US Food and Drug Administration and the European Medicines Agency recently published draft guidance for industry which discusses approaches for conducting clinical studies with patients in early AD stages. For successful clinical trials in early-stage AD, however, it will be necessary to identify biomarkers highly correlated with the clinical onset and the longitudinal progress of AD. In addition, because of the high cost and length of clinical AD studies, support in the form of global initiatives and collaborations between government, industry, and academia is needed. IMPLICATIONS In response to this situation, national guidance and international collaborations have been established. Global initiatives are focusing on 2025 as a goal to provide new treatment options, and early signs of success in biomarker and drug development are already emerging.
Collapse
Affiliation(s)
- Haruhiko Sugino
- Global CNS Business, Otsuka Pharmaceutical Development and Commercialization, Ltd (OPDC), Princeton, New Jersey.
| | - Akihito Watanabe
- Global Pharmaceutical Business, Otsuka Pharmaceutical Co Ltd, Tokyo, Japan
| | - Naoki Amada
- Qs' Research Institute, Otsuka Pharmaceutical Co Ltd, Tokushima, Japan
| | - Miho Yamamoto
- Global Pharmaceutical Business, Otsuka Pharmaceutical Co Ltd, Tokyo, Japan
| | - Yuta Ohgi
- Qs' Research Institute, Otsuka Pharmaceutical Co Ltd, Tokushima, Japan
| | | | - Raymond Sanchez
- Global Clinical Development, OPDC, USA, Princeton, New Jersey
| |
Collapse
|
32
|
Carvalho C, Correia SC, Perry G, Castellani RJ, Moreira PI. Cerebrovascular and mitochondrial abnormalities in Alzheimer's disease: a brief overview. J Neural Transm (Vienna) 2015; 123:107-11. [PMID: 25608860 DOI: 10.1007/s00702-015-1367-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/11/2015] [Indexed: 10/24/2022]
Abstract
Multiple lines of evidence suggest that vascular alterations contribute to Alzheimer's disease (AD) pathogenesis. It is also well established that mitochondrial abnormalities occur early in course of AD. Here, we give an overview of the vascular and mitochondrial abnormalities occurring in AD, including mitochondrial alterations in vascular endothelial cells within the brain, which is emerging as a common feature that bridges cerebral vasculature and mitochondrial metabolism.
Collapse
Affiliation(s)
- Cristina Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354, Coimbra, Portugal
| | - Sónia C Correia
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - George Perry
- College of Sciences, The University of Texas at San Antonio, San Antonio, TX, 78249, USA. .,Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| | - Rudy J Castellani
- Division of Neuropathology, University of Maryland, Baltimore, MD, USA
| | - Paula I Moreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354, Coimbra, Portugal. .,Faculty of Medicine, Institute of Physiology, University of Coimbra, 3000-354, Coimbra, Portugal.
| |
Collapse
|
33
|
Robinson M, Yasie Lee B, Leonenko Z. Drugs and drug delivery systems targeting amyloid-β in Alzheimer's disease. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.3.332] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|