1
|
Samanta D, Bhalla S, Bhatia S, Fine AL, Haridas B, Karakas C, Keator CG, Koh HY, Perry MS, Stafstrom CE, Vidaurre J, Warren AEL. Antiseizure medications for Lennox-Gastaut Syndrome: Comprehensive review and proposed consensus treatment algorithm. Epilepsy Behav 2025; 164:110261. [PMID: 39854828 DOI: 10.1016/j.yebeh.2024.110261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025]
Abstract
Lennox-Gastaut syndrome (LGS) is a severe, childhood-onset developmental and epileptic encephalopathy characterized by multiple drug-resistant seizure types, specific electroencephalogram (EEG) patterns, and significant cognitive and behavioral impairments. To date, eight anti-seizure medications (ASMs) have been specifically approved by the U.S. Food and Drug Administration (FDA) for the treatment of LGS: clonazepam, felbamate, lamotrigine, topiramate, rufinamide, clobazam, cannabidiol, and fenfluramine. Additionally, several other ASMs, including valproate, are frequently used off-label for LGS management. As the therapeutic landscape for LGS expands, clinicians are increasingly faced with complex decisions regarding optimal ASM selection. This narrative review explores evolving treatment strategies, offering a consensus-based treatment algorithm designed by a panel of U.S.- based experts. We analyze both FDA-approved and off-label ASMs, drawing on data from randomized controlled trials, open-label extensions, and real-world studies to assess each drug's efficacy and safety profile. A key challenge in comparing ASMs lies in the heterogeneity of study designs and outcome measures. This review addresses these limitations and considers crucial factors influencing ASM selection, such as seizure outcomes, safety profiles, cognitive and behavioral outcomes, drug-drug interactions, and rational polypharmacy. Barriers to access, including economic and regulatory hurdles, are also discussed. The proposed treatment algorithm emphasizes a personalized approach to LGS management, recommending valproate or clobazam as first-line treatments, followed by individualized combinations based on the specific patient profile and associated comorbidities.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Sonam Bhalla
- Division of Child Neurology, Emory University/Children's Healthcare of Atlanta, USA
| | - Sonal Bhatia
- Department of Pediatrics, Division of Pediatric Neurology, Shawn Jenkins Children's Hospital and Medical University of South Carolina, Charleston, SC, USA
| | - Anthony L Fine
- Division of Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Babitha Haridas
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Cemal Karakas
- Division of Pediatric Neurology, Department of Pediatrics, Norton Children's Hospital, University of Louisville, Louisville, KY 40202, USA
| | - Cynthia Guadalupe Keator
- Jane and John Justin Institute for Mind Health, Cook Children's Medical Center, Ft Worth, TX, USA
| | - Hyun Yong Koh
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health, Cook Children's Medical Center, Ft Worth, TX, USA
| | - Carl E Stafstrom
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Jorge Vidaurre
- Department of Pediatrics, Division of Pediatric Neurology, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Aaron E L Warren
- Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Singh YP, Kumar N, Chauhan BS, Garg P. Carbamate as a potential anti-Alzheimer's pharmacophore: A review. Drug Dev Res 2023; 84:1624-1651. [PMID: 37694498 DOI: 10.1002/ddr.22113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Alzheimer's disease (AD) is a progressive age-related neurodegenerative brain disorder, which leads to loss of memory and other cognitive dysfunction. The underlying mechanisms of AD pathogenesis are very complex and still not fully explored. Cholinergic neuronal loss, accumulation of amyloid plaque, metal ions dyshomeostasis, tau hyperphosphorylation, oxidative stress, neuroinflammation, and mitochondrial dysfunction are major hallmarks of AD. The current treatment options for AD are acetylcholinesterase inhibitors (donepezil, rivastigmine, and galantamine) and NMDA receptor antagonists (memantine). These FDA-approved drugs mainly provide symptomatic relief without addressing the pathological aspects of disease progression. So, there is an urgent need for novel drug development that not only addresses the basic mechanisms of the disease but also shows the neuroprotective property. Various research groups across the globe are working on the development of multifunctional agents for AD amelioration using different core scaffolds for their design, and carbamate is among them. Rivastigmine was the first carbamate drug investigated for AD management. The carbamate fragment, a core scaffold of rivastigmine, act as a potential inhibitor of acetylcholinesterase. In this review, we summarize the last 10 years of research conducted on the modification of carbamate with different substituents which primarily target ChE inhibition, reduce oxidative stress, and modulate Aβ aggregation.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Navneet Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | | | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| |
Collapse
|
3
|
Sivakumar S, Ghasemi M, Schachter SC. Targeting NMDA Receptor Complex in Management of Epilepsy. Pharmaceuticals (Basel) 2022; 15:ph15101297. [PMID: 36297409 PMCID: PMC9609646 DOI: 10.3390/ph15101297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are widely distributed in the central nervous system (CNS) and play critical roles in neuronal excitability in the CNS. Both clinical and preclinical studies have revealed that the abnormal expression or function of these receptors can underlie the pathophysiology of seizure disorders and epilepsy. Accordingly, NMDAR modulators have been shown to exert anticonvulsive effects in various preclinical models of seizures, as well as in patients with epilepsy. In this review, we provide an update on the pathologic role of NMDARs in epilepsy and an overview of the NMDAR antagonists that have been evaluated as anticonvulsive agents in clinical studies, as well as in preclinical seizure models.
Collapse
Affiliation(s)
- Shravan Sivakumar
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Correspondence: (M.G.); (S.C.S.)
| | - Steven C. Schachter
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02114, USA
- Consortia for Improving Medicine with Innovation & Technology (CIMIT), Boston, MA 02114, USA
- Correspondence: (M.G.); (S.C.S.)
| |
Collapse
|
4
|
Samanta D. Pharmacotherapeutic management of seizures in patients with Angleman syndrome. Expert Opin Pharmacother 2022; 23:1511-1522. [PMID: 35862628 DOI: 10.1080/14656566.2022.2105141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Approximately 80-90% of patients with Angelman syndrome (AS) develop childhood-onset intractable seizures with major negative impact on the quality of life.Thus adequate management of seizures is the most critical priority to improve health-related quality of life in children with AS. AREAS COVERED The primary focus of the review is on pharmacotherapeutic management of seizures. The first part of the review briefly discusses epileptogenesis and polymorphic seizure phenotypes associated with AS to understand pharmacotherapeutic decision-making better. Next, the review explores individual antiseizure medicines (ASMs) and their potential therapeutic utility. Lastly, some future and emerging treatment options are discussed that can transform the management of seizures in patients with AS. EXPERT OPINION Evidence for treating seizures in AS mainly derives from low-quality studies. Levetiracetam and clobazam are the most commonly used ASMs. Although the potential utility of several other ASMs(valproate, topiramate, lamotrigine, ethosuximide, clonazepam) has been well documented for some time, the treatment landscape may rapidly evolve due to the availability of newer and better tolerated ASMs(cannabidiol oil, brivaracetam, perampanel). In addition, a better understanding of the underlying pathogenesis and the development of molecular therapeutics offer hope for precision therapies for seizures.
Collapse
Affiliation(s)
- Debopam Samanta
- Child Neurology Section, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
5
|
Wong BJ, Agarwal R, Chen MI. Anesthesia for the Pediatric Patient With Epilepsy and Minimally Invasive Surgery for Epilepsy. CURRENT ANESTHESIOLOGY REPORTS 2021. [DOI: 10.1007/s40140-021-00457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Synthesis and Enantioselective Pharmacokinetic/Pharmacodynamic Analysis of New CNS-Active Sulfamoylphenyl Carbamate Derivatives. Int J Mol Sci 2021; 22:ijms22073361. [PMID: 33806023 PMCID: PMC8037586 DOI: 10.3390/ijms22073361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
We recently reported a new class of carbamate derivatives as anticonvulsants. Among these, 3-methylpentyl(4-sulfamoylphenyl)carbamate (MSPC) stood out as the most potent compound with ED50 values of 13 mg/kg (i.p.) and 28 mg/kg (p.o.) in the rat maximal electroshock test (MES). 3-Methylpropyl(4-sulfamoylphenyl)carbamate (MBPC), reported and characterized here, is an MSPC analogous compound with two less aliphatic carbon atoms in its structure. As both MSPC and MBPC are chiral compounds, here, we studied the carbonic anhydrase inhibitory and anticonvulsant action of both MBPC enantiomers in comparison to those of MSPC as well as their pharmacokinetic properties. Racemic-MBPC and its enantiomers showed anticonvulsant activity in the rat maximal electroshock (MES) test with ED50 values in the range of 19–39 mg/kg. (R)-MBPC had a 65% higher clearance than its enantiomer and, consequently, a lower plasma exposure (AUC) than (S)-MSBC and racemic-MSBC. Nevertheless, (S)-MBPC had a slightly better brain permeability than (R)-MBPC with a brain-to-plasma (AUC) ratio of 1.32 (S-enantiomer), 1.49 (racemate), and 1.27 (R-enantiomer). This may contribute to its better anticonvulsant-ED50 value. The clearance of MBPC enantiomers was more enantioselective than the brain permeability and MES-ED50 values, suggesting that their anticonvulsant activity might be due to multiple mechanisms of action.
Collapse
|
7
|
Löscher W, Sills GJ, White HS. The ups and downs of alkyl-carbamates in epilepsy therapy: How does cenobamate differ? Epilepsia 2021; 62:596-614. [PMID: 33580520 DOI: 10.1111/epi.16832] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Since 1955, several alkyl-carbamates have been developed for the treatment of anxiety and epilepsy, including meprobamate, flupirtine, felbamate, retigabine, carisbamate, and cenobamate. They have each enjoyed varying levels of success as antiseizure drugs; however, they have all been plagued by the emergence of serious and sometimes life-threatening adverse events. In this review, we compare and contrast their predominant molecular mechanisms of action, their antiseizure profile, and where possible, their clinical efficacy. The preclinical, clinical, and mechanistic profile of the prototypical γ-aminobutyric acidergic (GABAergic) modulator phenobarbital is included for comparison. Like phenobarbital, all of the clinically approved alkyl-carbamates share an ability to enhance inhibitory neurotransmission through modulation of the GABAA receptor, although the specific mechanism of interaction differs among the different drugs discussed. In addition, several alkyl-carbamates have been shown to interact with voltage-gated ion channels. Flupirtine and retigabine share an ability to activate K+ currents mediated by KCNQ (Kv7) K+ channels, and felbamate, carisbamate, and cenobamate have been shown to block Na+ channels. In contrast to other alkyl-carbamates, cenobamate seems to be unique in its ability to preferentially attenuate the persistent rather than transient Na+ current. Results from recent randomized controlled clinical trials with cenobamate suggest that this newest antiseizure alkyl-carbamate possesses a degree of efficacy not witnessed since felbamate was approved in 1993. Given that ceno-bamate's mechanistic profile is unique among the alkyl-carbamates, it is not clear whether this impressive efficacy reflects an as yet undescribed mechanism of action or whether it possesses a unique synergy between its actions at the GABAA receptor and on persistent Na+ currents. The high efficacy of cenobamate is, however, tempered by the risk of serious rash and low tolerability at higher doses, meaning that further safety studies and clinical experience are needed to determine the true clinical value of cenobamate.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Graeme J Sills
- School of Life Sciences, University of Glasgow, Glasgow, UK
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Di L, Balesano A, Jordan S, Shi SM. The Role of Alcohol Dehydrogenase in Drug Metabolism: Beyond Ethanol Oxidation. AAPS JOURNAL 2021; 23:20. [DOI: 10.1208/s12248-020-00536-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
|
9
|
Strzelczyk A, Schubert-Bast S. Expanding the Treatment Landscape for Lennox-Gastaut Syndrome: Current and Future Strategies. CNS Drugs 2021; 35:61-83. [PMID: 33479851 PMCID: PMC7873005 DOI: 10.1007/s40263-020-00784-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
Lennox-Gastaut syndrome (LGS), a childhood-onset severe developmental and epileptic encephalopathy (DEE), is an entity that encompasses a heterogenous group of aetiologies, with no single genetic cause. It is characterised by multiple seizure types, an abnormal EEG with generalised slow spike and wave discharges and cognitive impairment, associated with high morbidity and profound effects on the quality of life of patients and their families. Drug-refractory seizures are a hallmark and treatment is further complicated by its multiple morbidities, which evolve over the patient's lifetime. This review provides a comprehensive overview of the current and future options for the treatment of seizures associated with LGS. Six treatments are specifically indicated as adjunct therapies for the treatment of seizures associated with LGS in the US: lamotrigine, clobazam, rufinamide, topiramate, felbamate and most recently cannabidiol. These therapies have demonstrated reductions in drop seizures in 15%-68% of patients across trials, with responder rates (≥ 50% reduction in drop seizures) of 37%-78%. Valproate is still the preferred first-line treatment, generally in combination with lamotrigine or clobazam. Other treatments frequently used off-label include the broad spectrum anti-epileptic drugs (AED) levetiracetam, zonisamide and perampanel, while recent evidence from observational studies has indicated that a newer AED, the levetiracetam analogue brivaracetam, may be effective and well tolerated in LGS patients. Other treatments in clinical development include fenfluramine in late phase III, perampanel, soticlestat-OV953/TAK-953, carisbamate and ganaxolone. Non-pharmacologic interventions include the ketogenic diet, vagus nerve stimulation and surgical interventions; these are also expanding, with the potential for less invasive techniques for corpus callosotomy that have promise for reducing complications. However, despite these advancements, patients continue to experience a significant burden. Because LGS is not a single entity, tailoring of treatment is needed as opposed to a 'one size fits all' approach. Further research is needed into the underlying aetiologies and pathophysiology of LGS, together with advancements in treatments that encompass the spectrum of seizures associated with this complex syndrome.
Collapse
Affiliation(s)
- Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16 (Haus 95), 60528, Frankfurt am Main, Germany.
- LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.
| | - Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16 (Haus 95), 60528, Frankfurt am Main, Germany
- LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
- Department of Neuropediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Buckley CT, Waters OR, DeMaagd G. Cenobamate: A New Adjunctive Agent for Drug-Resistant Focal Onset Epilepsy. Ann Pharmacother 2020; 55:318-329. [PMID: 32623899 DOI: 10.1177/1060028020941113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To review the pharmacology, efficacy, and safety of oral cenobamate in the treatment of uncontrolled focal epilepsy. DATA SOURCES The PubMed database and ClinicalTrials.gov were searched using the following terms: cenobamate, Xcopri, and YKP3089. STUDY SELECTION AND DATA EXTRACTION Articles published in English between January 2000 and April 2020 related to pharmacology, safety, and clinical trials were assessed. DATA SYNTHESIS In a phase 2 trial, cenobamate reduced the median percentage change in seizure frequency from baseline by 56% compared with 22% for placebo (P < 0.0001). In another phase 2 trial of multiple cenobamate doses, cenobamate reduced seizure frequency by 36% (P = 0.0071) in the 100-mg group and 55% (P < 0.0001) in both the 200- and 400-mg groups, compared to 24% with placebo. Adverse effects of cenobamate appear to be similar to those of other antiseizure medications and primarily affect the neurological system. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE In patients taking antiseizure medications who continue to have focal seizures, cenobamate has efficacy at multiple doses and is generally well tolerated. Cenobamate may be distinguished from other antiseizure medications by high rates of seizure freedom not seen in previous placebo-controlled trials, which has the potential to significantly improve quality of life. However, despite this efficacy, Drug Reaction with Eosinophilia and Systemic Symptoms may remain a significant concern with cenobamate. CONCLUSION As seen in clinical trials, cenobamate as an adjunctive, once-daily treatment represents an efficacious and generally well-tolerated therapy for patients with drug-resistant focal epilepsy.
Collapse
|
11
|
Evaluating the knowledge, attitudes and practices of healthcare workers towards adverse drug reaction reporting at a public tertiary hospital in Johannesburg. INTERNATIONAL JOURNAL OF AFRICA NURSING SCIENCES 2020. [DOI: 10.1016/j.ijans.2020.100191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Bibi D, Shusterman B, Nocentini A, Supuran CT, Bialer M. Stereoselective pharmacokinetic and pharmacodynamic analysis of a CNS-active sulphamoylphenyl carbamate derivative. J Enzyme Inhib Med Chem 2019; 34:1078-1082. [PMID: 31124389 PMCID: PMC6534253 DOI: 10.1080/14756366.2019.1612887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
3-Methylpentyl(4-sulphamoylphenyl)carbamate (MSPC) came as the most potent compound out of a new series of carbamates composed of phenyl-ethanol or branched aliphatic alcohols, and 4-benzenesulphonamide-carbamic acid. In this study, the anticonvulsant activity and pharmacokinetics (PKs) of MSPC-two individual enantiomers were comparatively analysed in rats as well as their carbonic anhydrase (CA) inhibition. The anticonvulsant activity of MSPC enantiomers was evaluated at the rat-maximal electroshock (MES) test, and their CA inhibition evaluated. (R)-MSPC had a 29% higher clearance and consequently, a lower plasma exposure area under the curve (AUC) than (S)-MSPC and racemic-MSPC. Nevertheless, (R)-MSPC had a better brain permeability than its (S)-enantiomer with brain-to-plasma-(AUC)-ratio (BPR) of 2.07 ((R)-enantiomer), 1.85 (racemate), and 0.79 ((S)-enantiomer). As a whole body (in vivo) pharmacodynamic (PD) measure, MSPC-anticonvulsant maximal electroshock seizure (MES) activity was less enantioselective than MSPC-CA inhibition. The lack of significant differences between racemic-MSPC and its individual enantiomers suggest that their anticonvulsant activity might be due to multiple mechanisms of action.
Collapse
Affiliation(s)
- David Bibi
- a Faculty of Medicine, School of Pharmacy, Institute of Drug Research , The Hebrew University of Jerusalem , Jerusalem , Israel
| | - Bella Shusterman
- a Faculty of Medicine, School of Pharmacy, Institute of Drug Research , The Hebrew University of Jerusalem , Jerusalem , Israel
| | - Alessio Nocentini
- b Department of Neurofarba , University of Florence , Florence , Italy
| | - Claudiu T Supuran
- b Department of Neurofarba , University of Florence , Florence , Italy
| | - Meir Bialer
- a Faculty of Medicine, School of Pharmacy, Institute of Drug Research , The Hebrew University of Jerusalem , Jerusalem , Israel.,c Faculty of Medicine, School of Pharmacy, David R. Bloom Center for Pharmacy , The Hebrew University of Jerusalem , Jerusalem , Israel
| |
Collapse
|
13
|
Li X, Wang H, Chen Q, Li Z, Liu C, Yin S, You Z. Felbamate produces antidepressant‐like actions in the chronic unpredictable mild stress and chronic social defeat stress models of depression. Fundam Clin Pharmacol 2019; 33:621-633. [PMID: 30951217 DOI: 10.1111/fcp.12466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/04/2019] [Accepted: 04/03/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Xiuqin Li
- Department of Pharmacy Taizhou People's Hospital The Fifth Affiliated Hospital of Nantong University Taizhou 225300 Jiangsu Province China
| | - Hongze Wang
- Department of Pharmacy Taizhou People's Hospital The Fifth Affiliated Hospital of Nantong University Taizhou 225300 Jiangsu Province China
| | - Qingnian Chen
- Department of Pharmacy Taizhou People's Hospital The Fifth Affiliated Hospital of Nantong University Taizhou 225300 Jiangsu Province China
| | - Zhiqin Li
- Department of Pharmacy Taizhou People's Hospital The Fifth Affiliated Hospital of Nantong University Taizhou 225300 Jiangsu Province China
| | - Chao Liu
- Yangtze River Pharmaceutical Group Taizhou 225321 Jiangsu Province China
| | - Shengnan Yin
- Department of Pharmacy Taizhou Hospital of Traditional Chinese Medicine Taizhou 225300 Jiangsu Province China
| | - Zhengchen You
- Department of Burns and Plastic Surgery Taizhou People’s Hospital, The Fifth Affiliated Hospital of Nantong University Taizhou 225300 Jiangsu Province China
| |
Collapse
|
14
|
Verrotti A, Iapadre G, Di Donato G, Di Francesco L, Zagaroli L, Matricardi S, Belcastro V, Iezzi ML. Pharmacokinetic considerations for anti-epileptic drugs in children. Expert Opin Drug Metab Toxicol 2019; 15:199-211. [PMID: 30689454 DOI: 10.1080/17425255.2019.1575361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
Epilepsy is a chronic and debilitating neurological disease, with a peak of incidence in the first years of life. Today, the vast armamentarium of antiepileptic drugs (AEDs) available make even more challenging to select the most appropriate AED and establish the most effective dosing regimen. In fact, AEDs pharmacokinetics is under the influence of important age-related factors which cannot be ignored. Areas covered: Physiological changes occurring during development age (different body composition, immature metabolic patterns, reduced renal activity) can significantly modify the pharmacokinetic profile of AEDs (adsorption, volume of distribution, half-life, clearance), leading to an altered treatment response. We reviewed the main pharmacokinetic characteristics of AEDs used in children, focusing on age-related factors which are of relevance when treating this patient population. Expert opinion: To deal with this pharmacokinetic variability, physicians have at their disposal two tools: 1) therapeutic drug concentration monitoring, which may help to set the optimal therapeutic regimen for each patient and to monitor eventual fluctuation, and 2) the use of extended-release drug formulations, when available. In the next future, the development of 'ad-hoc' electronic dashboard systems will represent relevant decision-support tools making the AED therapy even more individualized and precise, especially in children.
Collapse
Affiliation(s)
- Alberto Verrotti
- a Department of Pediatrics , University of L'Aquila , L'Aquila , Italy
| | - Giulia Iapadre
- a Department of Pediatrics , University of L'Aquila , L'Aquila , Italy
| | - Giulia Di Donato
- a Department of Pediatrics , University of L'Aquila , L'Aquila , Italy
| | | | - Luca Zagaroli
- a Department of Pediatrics , University of L'Aquila , L'Aquila , Italy
| | - Sara Matricardi
- b Child Neurology and Psychiatry Unit , Children's Hospital G. Salesi , Ancona , Italy
| | | | - Maria Laura Iezzi
- a Department of Pediatrics , University of L'Aquila , L'Aquila , Italy
| |
Collapse
|
15
|
Kwok CS, Johnson EL, Krauss GL. Comparing Safety and Efficacy of "Third-Generation" Antiepileptic Drugs: Long-Term Extension and Post-marketing Treatment. CNS Drugs 2017; 31:959-974. [PMID: 29204953 DOI: 10.1007/s40263-017-0480-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Four "third-generation" antiepileptic drugs (AEDs) were approved for adjunctive treatment of refractory focal onset seizures during the past 10 years. Long-term efficacy and safety of the drugs were demonstrated in large extension studies and in reports of subgroups of patients not studied in pivotal trials. Reviewing extension study and post-marketing outcome series for the four newer AEDs-lacosamide, perampanel, eslicarbazepine acetate and brivaracetam-can guide clinicians in treating and monitoring patients. AED extension studies evaluate treatment retention, drug tolerability, and drug safety during individualized treatment with flexible dosing and thus provide information not available in rigid pivotal trials. Patient retention in the studies ranged from 75 to 80% at 1 year and from 36 to 68% at 2-year treatment intervals. Safety findings were generally similar to those of pivotal trials, with no major safety risks identified and with several specific adverse drug effects, such as hyponatremia, reported. The third-generation AEDs, some through new mechanisms and others with improved tolerability compared to related AEDs, provide new options in efficacy and tolerability.
Collapse
Affiliation(s)
- Charlotte S Kwok
- Department of Neurology, Johns Hopkins University, Meyer 2-147, 600 N. Wolfe St, Baltimore, MD, 21210, USA
| | - Emily L Johnson
- Department of Neurology, Johns Hopkins University, Meyer 2-147, 600 N. Wolfe St, Baltimore, MD, 21210, USA
| | - Gregory L Krauss
- Department of Neurology, Johns Hopkins University, Meyer 2-147, 600 N. Wolfe St, Baltimore, MD, 21210, USA.
| |
Collapse
|
16
|
Mawasi H, Bibi D, Bialer M. Design and comparative anticonvulsant activity assessment of CNS-active alkyl-carbamoyl imidazole derivatives. Bioorg Med Chem 2016; 24:4246-4253. [PMID: 27469980 DOI: 10.1016/j.bmc.2016.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/04/2016] [Accepted: 07/09/2016] [Indexed: 11/29/2022]
Abstract
A novel series of carbamoyl derivatives of alkylimidazole has been designed and their anticonvulsant activity was comparatively evaluated in the mice- and rats-maximal-electroshock (MES), subcutaneous-metrazol (scMet) seizure tests and the mice-6Hz psychomotor (6Hz) models. The ten new designed molecules contain in their chemical structure imidazole, alkyl side-chain and carbamate as three potential active moieties. In spite of the close structural features of the carbamoyl imidazole derivatives only compounds 7, 8, 13 and 16 were active at the MES test with ED50 values ranging from 12 to 20mg/kg coupled with high protective index (PI=TD50/ED50) values of 4.1-7.3 after ip administration to rats. A similar phenomenon was observed in mice where compounds 7, 8, 9, 12 had MES-ED50 values of 14-26mg/kg. Compounds 7 and 13 also demonstrated anticonvulsant activity in the 6Hz model with ED50 values of 32 and 44mg/kg, respectively. As the most active entities, compounds 7, 8 followed by 13 and 16, thus offer an optimal efficacy-safety profile and consequently, might be promising candidates for development as new antiepileptics.
Collapse
Affiliation(s)
- Hafiz Mawasi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, PO 12065, Jerusalem 91120, Israel
| | - David Bibi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, PO 12065, Jerusalem 91120, Israel
| | - Meir Bialer
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, PO 12065, Jerusalem 91120, Israel; David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|