1
|
Mülling N, van de Sand L, Völk K, Aufderhorst UW, van der Linden M, Horn PA, Kribben A, Wilde B, Krawczyk A, Witzke O, Lindemann M. Antibody responses after sequential vaccination with PCV13 and PPSV23 in kidney transplant recipients. Infection 2023; 51:1703-1716. [PMID: 37243960 PMCID: PMC10665231 DOI: 10.1007/s15010-023-02054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE Vaccination against Streptococcus pneumoniae is recommended in transplant recipients to reduce the morbidity and mortality from invasive pneumococcal disease. Previous studies indicate that transplant recipients can produce specific antibodies after vaccination with the 13-valent pneumococcal conjugate vaccine Prevenar 13 (PCV13) or the pneumococcal polysaccharide vaccine Pneumovax 23 (PPSV23). National guidelines recommend sequential vaccination with PCV13 followed by PPSV23 in kidney transplant patients. However, there are currently no data on the serological response in kidney transplant recipients, who received a sequential vaccination with PCV13 and PPSV23. METHODS In the current study, we sequentially vaccinated 46 kidney transplant recipients with PCV13 and PPSV23 and determined global and serotype-specific anti-pneumococcal antibody responses in the year following vaccination. RESULTS Serotype-specific and global anti-pneumococcal antibody concentrations were significantly higher compared to baseline. We observed that serotype-specific antibody responses varied by serotype (between 2.2- and 2.9-fold increase after 12 months). The strongest responses after 12 months were detected against the serotypes 9N (2.9-fold increase) and 14 (2.8-fold increase). Global antibody responses also varied with respect to immunoglobulin class. IgG2 revealed the highest increase (2.7-fold), IgM the lowest (1.7-fold). Sequential vaccination with both vaccines achieved higher antibody levels in comparison with a historical cohort studied at our institute, that was vaccinated with PCV13 alone. During the 12-months follow-up period, none of the patients developed pneumococcal-associated pneumonia or vaccination-related allograft rejection. CONCLUSION In conclusion, we strongly recommend sequential vaccination over single immunization in kidney transplant recipients.
Collapse
Affiliation(s)
- Nils Mülling
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lukas van de Sand
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kim Völk
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Mark van der Linden
- Department of Medical Microbiology, German National Reference Center for Streptococci, University Hospital Aachen (RWTH), Aachen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
2
|
Miao C, Cui Y, Yan Z, Jiang Y. Pilus of Streptococcus pneumoniae: structure, function and vaccine potential. Front Cell Infect Microbiol 2023; 13:1270848. [PMID: 37799336 PMCID: PMC10548224 DOI: 10.3389/fcimb.2023.1270848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
The pilus is an extracellular structural part that can be detected in some Streptococcus pneumoniae (S. pneumoniae) isolates (type I pili are found in approximately 30% of strains, while type II pili are found in approximately 20%). It is anchored to the cell wall by LPXTG-like motifs on the peptidoglycan. Two kinds of pili have been discovered, namely, pilus-1 and pilus-2. The former is encoded by pilus islet 1 (PI-1) and is a polymer formed by the protein subunits RrgA, RrgB and RrgC. The latter is encoded by pilus islet 2 (PI-2) and is a polymer composed mainly of the structural protein PitB. Although pili are not necessary for the survival of S. pneumoniae, they serve as the structural basis and as virulence factors that mediate the adhesion of bacteria to host cells and play a direct role in promoting the adhesion, colonization and pathogenesis of S. pneumoniae. In addition, as candidate antigens for protein vaccines, pili have promising potential for use in vaccines with combined immunization strategies. Given the current understanding of the pili of S. pneumoniae regarding the genes, proteins, structure, biological function and epidemiological relationship with serotypes, combined with the immunoprotective efficacy of pilins as protein candidates for vaccines, we here systematically describe the research status and prospects of S. pneumoniae pili and provide new ideas for subsequent vaccine research and development.
Collapse
Affiliation(s)
- Chenglin Miao
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yali Cui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan, China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan, China
| | - Ziyi Yan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Zubair M, Wang J, Yu Y, Faisal M, Qi M, Shah AU, Feng Z, Shao G, Wang Y, Xiong Q. Proteomics approaches: A review regarding an importance of proteome analyses in understanding the pathogens and diseases. Front Vet Sci 2022; 9:1079359. [PMID: 36601329 PMCID: PMC9806867 DOI: 10.3389/fvets.2022.1079359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Proteomics is playing an increasingly important role in identifying pathogens, emerging and re-emerging infectious agents, understanding pathogenesis, and diagnosis of diseases. Recently, more advanced and sophisticated proteomics technologies have transformed disease diagnostics and vaccines development. The detection of pathogens is made possible by more accurate and time-constrained technologies, resulting in an early diagnosis. More detailed and comprehensive information regarding the proteome of any noxious agent is made possible by combining mass spectrometry with various gel-based or short-gun proteomics approaches recently. MALDI-ToF has been proved quite useful in identifying and distinguishing bacterial pathogens. Other quantitative approaches are doing their best to investigate bacterial virulent factors, diagnostic markers and vaccine candidates. Proteomics is also helping in the identification of secreted proteins and their virulence-related functions. This review aims to highlight the role of cutting-edge proteomics approaches in better understanding the functional genomics of pathogens. This also underlines the limitations of proteomics in bacterial secretome research.
Collapse
Affiliation(s)
- Muhammad Zubair
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jia Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Faisal
- Division of Hematology, Department of Medicine, The Ohio State University College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Mingpu Qi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Abid Ullah Shah
- National Research Centre of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yu Wang
- China Pharmaceutical University, Nanjing, China,*Correspondence: Yu Wang
| | - Qiyan Xiong
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,School of Life Sciences, Jiangsu University, Zhenjiang, China,Qiyan Xiong
| |
Collapse
|
4
|
Tao J, Hossain MZ, Xu Z, Ho HC, Khan MA, Huang C, Zheng H, Ni J, Fan Y, Bogale D, Su H, Cheng J. Protective effect of pneumococcal conjugate vaccination on the short-term association between low temperatures and childhood pneumonia hospitalizations: Interrupted time-series and case-crossover analyses in Matlab, Bangladesh. ENVIRONMENTAL RESEARCH 2022; 212:113156. [PMID: 35331698 DOI: 10.1016/j.envres.2022.113156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Studies have shown that ambient extreme temperatures (heat and cold) were associated with an increased risk of childhood pneumonia, but the evidence is very limited in low-middle-income countries. It also remains unknown whether pneumococcal conjugate vaccine (PCV) could prevent temperature-related childhood pneumonia. This study collected data on ambient temperature and hospitalizations for childhood pneumonia in Matlab, Bangladesh from 2012 to 2016. Interrupted time series (ITS) analysis was employed to assess the impact of PCV (10-valent) intervention on childhood pneumonia hospitalizations. A time-stratified case-crossover analysis with a conditional logistic regression was performed to examine the association of childhood pneumonia hospitalizations with extreme temperatures and heatwaves before and after PCV10 intervention. Subgroup analyses were conducted to explore the modification effects of seasons, age, gender, and socioeconomic levels on temperature-related childhood pneumonia hospitalizations. We found that after PCV10 intervention, there was a sharp decrease in hospitalizations for childhood pneumonia (relative risk (RR): 0.59, 95% confidence interval (CI): 0.43-0.83). During the study period, heat effects on childhood pneumonia appeared immediately on the current day (odds ratio (OR): 1.28; 95% CI: 1.02-1.60, lag 0), while cold effects appeared 4 weeks later (OR: 1.53, 95% CI: 1.06-2.22, lag 28). Importantly, cold effects decreased significantly after PCV10 (p-value<0.05), but heat and heatwave effects increased after PCV10 (p-value<0.05). Particularly, children from families with a middle or low socioeconomic level, boys, and infants were more susceptible to heat-related pneumonia. This study suggests that PCV10 intervention in Bangladesh may help decrease cold-related not heat-related childhood pneumonia.
Collapse
Affiliation(s)
- Junwen Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Mohammad Zahid Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, QLD, 4006, Australia
| | - Hung Chak Ho
- Department of Urban Planning and Design, The University of Hong Kong, Hong Kong, China
| | - Md Alfazal Khan
- Matlab Health Research Centre, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Yinguan Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Daniel Bogale
- College of Health Sciences, Arsi University, Asela, Ethiopia
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China.
| |
Collapse
|
5
|
Robbins A, Bahuaud M, Hentzien M, Maestraggi Q, Barbe C, Giusti D, Le Naour R, Batteux F, Servettaz A. The 13-Valent Pneumococcal Conjugate Vaccine Elicits Serological Response and Lasting Protection in Selected Patients With Primary Humoral Immunodeficiency. Front Immunol 2021; 12:697128. [PMID: 34290713 PMCID: PMC8287634 DOI: 10.3389/fimmu.2021.697128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023] Open
Abstract
Background Patients with primary humoral immunodeficiency are more prone to invasive as well as recurrent pneumococcal infections. Therefore, anti-pneumococcal vaccination including the 13-valent conjugate vaccine is recommended. Nevertheless, to date, no data is available on immunogenicity of this vaccine in this population. Objective To assess the immunogenicity and the persistence of protection up to one year after a 13-valent pneumococcal conjugate vaccine in patients with primary humoral immunodeficiency. Methods Twenty-nine patients with common variable immunodeficiency or IgG subclass deficiency were vaccinated. Immune response and immune protection at baseline as well as at one, six and twelve months after vaccination were evaluated by measuring specific IgG serum concentrations (ELISA), and opsonophagocytic activities directed against selected pneumococcal (MOPA). Results By ELISA, half of the patients had protective IgG concentrations before vaccination, 35.7% showed an immune response one month after vaccination, 71.4%, 66.7% and 56.0% of the patients were protected at one, six and twelve months respectively. Conversely, by MOPA, 3.4% of the patients were protected at baseline, 10.7% showed an immune response and 28.6%, 48.2% and 33.3% were protected at one, six and twelve months respectively. IgG subclass deficiency, Ig replacement therapy and higher IgG2 concentrations at diagnosis were associated with long-term protection. Conclusion Pneumococcal conjugate vaccine improves immune protection and antibodies’ functionality in a subset of patients with primary immunodeficiency. Prime-boost vaccine strategy needs to be better and individually adapted.
Collapse
Affiliation(s)
- Ailsa Robbins
- Internal Medicine, Clinical Immunology and Infectious Diseases Department, University Hospital Centre, Reims, France.,Laboratory of Immunology, EA7509 IRMAIC, University of Reims Champagne-Ardenne (URCA), Reims, France
| | - Mathilde Bahuaud
- Plateforme d'Immunomonitoring Vaccinal, Laboratory of Immunology, Cochin Hospital and University Paris-Descartes, APHP, Paris, France
| | - Maxime Hentzien
- Internal Medicine, Clinical Immunology and Infectious Diseases Department, University Hospital Centre, Reims, France
| | - Quentin Maestraggi
- Internal Medicine, Clinical Immunology and Infectious Diseases Department, University Hospital Centre, Reims, France
| | - Coralie Barbe
- Clinical Research Department, EA3797, University of Reims-Champagne-Ardenne, Reims, France
| | - Delphine Giusti
- Laboratory of Immunology, EA7509 IRMAIC, University of Reims Champagne-Ardenne (URCA), Reims, France.,Laboratory of Immunology, Reims University Hospital, University of Reims Champagne-Ardenne, Reims, France
| | - Richard Le Naour
- Laboratory of Immunology, EA7509 IRMAIC, University of Reims Champagne-Ardenne (URCA), Reims, France
| | - Frederic Batteux
- Plateforme d'Immunomonitoring Vaccinal, Laboratory of Immunology, Cochin Hospital and University Paris-Descartes, APHP, Paris, France
| | - Amélie Servettaz
- Internal Medicine, Clinical Immunology and Infectious Diseases Department, University Hospital Centre, Reims, France.,Laboratory of Immunology, EA7509 IRMAIC, University of Reims Champagne-Ardenne (URCA), Reims, France
| |
Collapse
|
6
|
Xu D, Wu X, Peng L, Chen T, Huang Q, Wang Y, Ye C, Peng Y, Hu D, Fang R. The Critical Role of NLRP6 Inflammasome in Streptococcus pneumoniae Infection In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms22083876. [PMID: 33918100 PMCID: PMC8069100 DOI: 10.3390/ijms22083876] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) causes severe pulmonary diseases, leading to high morbidity and mortality. It has been reported that inflammasomes such as NLR family pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2) play an important role in the host defense against S. pneumoniae infection. However, the role of NLRP6 in vivo and in vitro against S. pneumoniae remains unclear. Therefore, we investigated the role of NLRP6 in regulating the S. pneumoniae-induced inflammatory signaling pathway in vitro and the role of NLRP6 in the host defense against S. pneumoniae in vivo by using NLRP6−/− mice. The results showed that the NLRP6 inflammasome regulated the maturation and secretion of IL-1β, but it did not affect the induction of IL-1β transcription in S. pneumoniae-infected macrophages. Furthermore, the activation of caspase-1, caspase-11, and gasdermin D (GSDMD) as well as the oligomerization of apoptosis-associated speck-like protein (ASC) were also mediated by NLRP6 in S. pneumoniae-infected macrophages. However, the activation of NLRP6 reduced the expression of NF-κB and ERK signaling pathways in S. pneumoniae-infected macrophages. In vivo study showed that NLRP6−/− mice had a higher survival rate, lower number of bacteria, and milder inflammatory response in the lung compared with wild-type (WT) mice during S. pneumoniae infection, indicating that NLRP6 plays a negative role in the host defense against S. pneumoniae. Furthermore, increased bacterial clearance in NLRP6 deficient mice was modulated by the recruitment of macrophages and neutrophils. Our study provides a new insight on S. pneumoniae-induced activation of NLRP6 and suggests that blocking NLRP6 could be considered as a potential therapeutic strategy to treat S. pneumoniae infection.
Collapse
Affiliation(s)
- Dongyi Xu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Xingping Wu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Tingting Chen
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Qingyuan Huang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Yu Wang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Yuanyi Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Dongliang Hu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
- Department of Zoonoses, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence: ; Tel./Fax: +86-23-68251196
| |
Collapse
|
7
|
Sharapova Y, Švedas V, Suplatov D. Catalytic and lectin domains in neuraminidase A from Streptococcus pneumoniae are capable of an intermolecular assembly: Implications for biofilm formation. FEBS J 2020; 288:3217-3230. [PMID: 33108702 DOI: 10.1111/febs.15610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 01/14/2023]
Abstract
Neuraminidase A from Streptococcus pneumoniae (NanA) is a cell wall-bound modular enzyme containing one lectin and one catalytic domain. Unlike homologous NanB and NanC expressed by the same bacterium, the two domains within one NanA molecule do not form a stable interaction and are spatially separated by a 16-amino acid-long flexible linker. In this work, the ability of NanA to form intermolecular assemblies was characterized using the methods of molecular modeling and bioinformatic analysis based on crystallographic data and by bringing together previously published experimental data. It was concluded that two catalytic domains, as well as one catalytic and one lectin domain, originating from two cell wall-bound NanA molecules, can interact through a previously uncharacterized interdomain interface to form complexes stabilized by a network of intermolecular hydrogen bonds and salt bridges. Supercomputer modeling strongly indicated that artocarpin, an earlier experimentally discovered inhibitor of the pneumococcal biofilm formation, is able to bind to a site located in the catalytic domain of one NanA entity and prevent its interaction with the lectin or catalytic domain of another NanA entity, thus directly precluding the generation of intermolecular assemblies. The revealed structural adaptation is discussed as one plausible mechanism of noncatalytic participation of this potentially key pathogenicity enzyme in pneumococcal biofilm formation.
Collapse
Affiliation(s)
- Yana Sharapova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vytas Švedas
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Suplatov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Wang G, Zhao G, Chao X, Xie L, Wang H. The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176278. [PMID: 32872324 PMCID: PMC7503635 DOI: 10.3390/ijerph17176278] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Klebsiella pneumoniae is an important gram-negative opportunistic pathogen that causes a variety of infectious diseases, including urinary tract infections, bacteremia, pneumonia, and liver abscesses. With the emergence of multidrug-resistant (MDR) and hypervirulent K. pneumoniae (hvKP) strains, the rapid spread of these clinical strains in geography is particularly worrying. However, the detailed mechanisms of virulence and antibiotic resistance in K. pneumoniae are still not very clear. Therefore, studying and elucidating the pathogenic mechanisms and drug resistance mechanism of K. pneumoniae infection are important parts of current medical research. In this paper, we systematically summarized the virulence, biofilm, and antibiotic tolerance mechanisms of K. pneumoniae, and explored the application of whole genome sequencing and global proteomics, which will provide new clues for clinical treatment of K. pneumoniae.
Collapse
Affiliation(s)
| | | | | | - Longxiang Xie
- Correspondence: (L.X.); (H.W.); Tel.: +86-0371-22892960 (L.X.)
| | - Hongju Wang
- Correspondence: (L.X.); (H.W.); Tel.: +86-0371-22892960 (L.X.)
| |
Collapse
|
9
|
Sharapova YA, Švedas VK. Molecular Modeling of the Binding of the Allosteric Inhibitor Optactin at a New Binding Site in Neuraminidase A from Streptococcus pneumoniae. ACTA ACUST UNITED AC 2018. [DOI: 10.3103/s0027131418050097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Bidmos FA, Siris S, Gladstone CA, Langford PR. Bacterial Vaccine Antigen Discovery in the Reverse Vaccinology 2.0 Era: Progress and Challenges. Front Immunol 2018; 9:2315. [PMID: 30349542 PMCID: PMC6187972 DOI: 10.3389/fimmu.2018.02315] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/17/2018] [Indexed: 11/13/2022] Open
Abstract
The ongoing, and very serious, threat from antimicrobial resistance necessitates the development and use of preventative measures, predominantly vaccination. Polysaccharide-based vaccines have provided a degree of success in limiting morbidity from disseminated bacterial infections, including those caused by the major human obligate pathogens, Neisseria meningitidis, and Streptococcus pneumoniae. Limitations of these polysaccharide vaccines, such as partial coverage and induced escape leading to persistence of disease, provide a compelling argument for the development of protein vaccines. In this review, we briefly chronicle approaches that have yielded licensed vaccines before highlighting reverse vaccinology 2.0 and its potential application in the discovery of novel bacterial protein vaccine candidates. Technical challenges and research gaps are also discussed.
Collapse
Affiliation(s)
- Fadil A Bidmos
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Sara Siris
- Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Paul R Langford
- Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Sharapova Y, Suplatov D, Švedas V. Neuraminidase A from Streptococcus pneumoniae has a modular organization of catalytic and lectin domains separated by a flexible linker. FEBS J 2018; 285:2428-2445. [PMID: 29704878 DOI: 10.1111/febs.14486] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/01/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
Abstract
Neuraminidase A (NanA) of the pathogen Streptococcus pneumoniae cleaves receptors of the human respiratory epithelial surface during bacterial colonization. The full-size structure of NanA that contains one lectin and one catalytic domain within a single polypeptide chain remains unresolved. Both domains are crucial for the microorganism's virulence and considered as promising antimicrobial targets. Methods of bioinformatics and molecular dynamics have been implemented to model NanA's structure and study interaction between the lectin and catalytic domains in three neuraminidases NanA, NanB, and NanC from Streptococcus pneumoniae. A significant difference in spatial organization of these homologous enzymes has been revealed. The lectin and catalytic domains of NanB and NanC form rigid globules stabilized by multiple interdomain interactions, whereas in NanA, the two domains are separated by a 16 amino acids long flexible linker - a characteristic of proteins that require conformational flexibility for their functioning. The biological role of this structural adaptation of NanA as a key virulence enzyme is discussed.
Collapse
Affiliation(s)
- Yana Sharapova
- Faculty of Bioengineering and Bioinformatics, Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Russia
| | - Dmitry Suplatov
- Faculty of Bioengineering and Bioinformatics, Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Russia
| | - Vytas Švedas
- Faculty of Bioengineering and Bioinformatics, Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Russia
| |
Collapse
|
12
|
Moens L, Hermand P, Wellens T, Wuyts G, Derua R, Waelkens E, Ysebaert C, Godfroid F, Bossuyt X. Identification of SP1683 as a pneumococcal protein that is protective against nasopharyngeal colonization. Hum Vaccin Immunother 2018; 14:1234-1242. [PMID: 29400602 DOI: 10.1080/21645515.2018.1430541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Serotype-independent protein-based pneumococcal vaccines represent attractive alternatives to capsular polysaccharide-based vaccines. The aim of this study was to identify novel immunogenic proteins from Streptococcus pneumoniae that may be used in protein-based pneumococcal vaccine. An immunoproteomics approach and a humanized severe combined immunodeficient mouse model were used to identify S. pneumoniae proteins that are immunogenic for the human immune system. Among the several proteins identified, SP1683 was selected, recombinantly produced, and infection and colonization murine models were used to evaluate the capacity of SP1683 to elicit protective responses, in comparison to known pneumococcal immunogenic proteins (PhtD and detoxified pneumolysin, dPly). Immunisation with SP1683 elicited a weaker antibody response than immunisation with PhtD and did not provide protection in the model of invasive disease. However, similar to PhtD, it was able to significantly reduce colonization in the mouse model of nasopharyngeal carriage. Treatment with anti-IL17A and anti-IL17F antibodies abolished the protection against colonization elicited by SP1683 or PhtD + dPly, which indicated that the protection afforded in this model was Th17-dependent. In conclusion, intranasal immunization with the pneumococcal protein SP1683 conferred IL17-dependent protection against nasopharyngeal carriage in mice, but systemic immunization did not protect against invasive disease. These results do not support the use of SP1683 as an isolated pneumococcal vaccine antigen. Nevertheless, SP1683 could be used as a first line of defence in formulations combining several proteins.
Collapse
Affiliation(s)
- Leen Moens
- a Laboratory of Experimental Laboratory Immunology, Department of Microbiology and Immunology , KU Leuven , Leuven , Belgium
| | | | - Tine Wellens
- a Laboratory of Experimental Laboratory Immunology, Department of Microbiology and Immunology , KU Leuven , Leuven , Belgium
| | - Greet Wuyts
- a Laboratory of Experimental Laboratory Immunology, Department of Microbiology and Immunology , KU Leuven , Leuven , Belgium
| | - Rita Derua
- c Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine , KU Leuven , Leuven , Belgium
| | - Etienne Waelkens
- c Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine , KU Leuven , Leuven , Belgium
| | | | | | - Xavier Bossuyt
- a Laboratory of Experimental Laboratory Immunology, Department of Microbiology and Immunology , KU Leuven , Leuven , Belgium.,d Laboratory Medicine, University Hospitals Leuven , Leuven , Belgium
| |
Collapse
|
13
|
Bittaye M, Cash P, Forbes K. Proteomic variation and diversity in clinical Streptococcus pneumoniae isolates from invasive and non-invasive sites. PLoS One 2017; 12:e0179075. [PMID: 28575057 PMCID: PMC5456405 DOI: 10.1371/journal.pone.0179075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/23/2017] [Indexed: 11/26/2022] Open
Abstract
Streptococcus pneumoniae is responsible for a variety of invasive and non-invasive human infections. There are over 90 serotypes of S. pneumoniae differing in their ability to adapt to the different niches within the host. Two-dimensional gel electrophoresis was used to discriminate clinical S. pneumoniae isolates recovered from either blood cultures (invasive site isolates) or other sites, including sputum, tracheal aspirate, ear, eye and skin swabs (non-invasive site isolates). Global protein expression profiles for five invasive site and six non-invasive site isolates representing five different serotypes (serotypes 4, 6, 9, 14 and 23) were obtained for each isolate and combined into a single data set using Progenesis SameSpots™ software. One-hundred and eighty six protein spots (39% of the protein spots in the dataset) differed significantly (ANOVA, p<0.05) in abundance between the invasive site (101 upregulated protein spots) and non-invasive site (85 upregulated protein spots) isolates. Correlations between the bacterial proteomes and their sites of isolation were determined by Principal Component Analysis (PCA) using the significantly different protein spots. Out of the 186 variable protein spots, 105 exhibited a serotype-associated pattern of variability. The expression of the remaining 81 protein spots was concluded to be uniquely linked to the site of bacterial isolation. Mass spectrometry was used to identify selected protein spots that showed either constant or differential abundance levels. The identified proteins had a diverse range of functions including, capsule biogenesis, DNA repair, protein deglycation, translation, stress response and virulence as well as amino acid, carbohydrate, lipid and nucleotide metabolism. These findings provide insight on the proteins that contribute towards the adaptation of the bacteria to different sites within the host.
Collapse
Affiliation(s)
- Mustapha Bittaye
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail: ,
| | - Phil Cash
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Ken Forbes
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
14
|
From Immunologically Archaic to Neoteric Glycovaccines. Vaccines (Basel) 2017; 5:vaccines5010004. [PMID: 28134792 PMCID: PMC5371740 DOI: 10.3390/vaccines5010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/14/2016] [Accepted: 01/22/2017] [Indexed: 12/13/2022] Open
Abstract
Polysaccharides (PS) are present in the outermost surface of bacteria and readily come in contact with immune cells. They interact with specific antibodies, which in turn confer protection from infections. Vaccines with PS from pneumococci, meningococci, Haemophilus influenzae type b, and Salmonella typhi may be protective, although with the important constraint of failing to generate permanent immunological memory. This limitation has in part been circumvented by conjugating glycovaccines to proteins that stimulate T helper cells and facilitate the establishment of immunological memory. Currently, protection evoked by conjugated PS vaccines lasts for a few years. The same approach failed with PS from staphylococci, Streptococcus agalactiae, and Klebsiella. All those germs cause severe infections in humans and often develop resistance to antibiotic therapy. Thereby, prevention is of increasing importance to better control outbreaks. As only 23 of more than 90 pneumococcal serotypes and 4 of 13 clinically relevant Neisseria meningitidis serogroups are covered by available vaccines there is still tremendous clinical need for PS vaccines. This review focuses on glycovaccines and the immunological mechanisms for their success or failure. We discuss recent advances that may facilitate generation of high affinity anti-PS antibodies and confer specific immunity and long-lasting protection.
Collapse
|