1
|
Le Meur M, Pignatelli J, Blasi P, Palomo V. Nanoparticles targeting the central circadian clock: Potential applications for neurological disorders. Adv Drug Deliv Rev 2025; 220:115561. [PMID: 40120723 DOI: 10.1016/j.addr.2025.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Circadian rhythms and their involvement with various human diseases, including neurological disorders, have become an intense area of research for the development of new pharmacological treatments. The location of the circadian clock machinery in the central nervous system makes it challenging to reach molecular targets at therapeutic concentrations. In addition, a timely administration of the therapeutic agents is necessary to efficiently modulate the circadian clock. Thus, the use of nanoparticles in circadian clock dysfunctions may accelerate their clinical translation by addressing these two key challenges: enhancing brain penetration and/or enabling their formulation in chronodelivery systems. This review describes the implications of the circadian clock in neurological pathologies, reviews potential molecular targets and their modulators and suggests how the use of nanoparticle-based formulations could improve their clinical success. Finally, the potential integration of nanoparticles into chronopharmaceutical drug delivery systems will be described.
Collapse
Affiliation(s)
- Marion Le Meur
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain; Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum - Università di Bologna, 40127 Bologna, Italy
| | - Jaime Pignatelli
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paolo Blasi
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum - Università di Bologna, 40127 Bologna, Italy.
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; Unidad de Nanobiotecnología asociada al Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
2
|
Rizzuto MA, Dal Magro R, Barbieri L, Pandolfi L, Sguazzini-Viscontini A, Truffi M, Salvioni L, Corsi F, Colombo M, Re F, Prosperi D. H-Ferritin nanoparticle-mediated delivery of antibodies across a BBB in vitro model for treatment of brain malignancies. Biomater Sci 2021; 9:2032-2042. [PMID: 33544109 DOI: 10.1039/d0bm01726d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Brain cancers are a group of neoplasms that can be either primary, such as glioblastoma multiforme (GBM), or metastatic, such as the HER2+ breast cancer brain metastasis. The brain represents a sanctuary for cancer cells thanks to the presence of the blood brain barrier (BBB) that controls trafficking of molecules, protecting the brain from toxic substances including drugs. Considering that GBM and HER2+ breast cancer brain metastases are characterized by EGFR and HER2 over-expression respectively, CTX- and TZ-based treatment could be effective. Several studies show that these monoclonal antibodies (mAbs) exert both a cytostatic activity interfering with the transduction pathways of EGFR family and a cytotoxic activity mainly through the immune system activation via the antibody dependent cell-mediated cytotoxicity (ADCC). Since the major limitation to therapeutic mAbs application is the presence of the BBB, here we use a recombinant form of human apoferritin (HFn) as a nanovector to promote the delivery of mAbs to the brain for the activation of the ADCC response. Using a transwell model of the BBB we proved the crossing ability of HFn-mAb. Cellular uptake of HFn-mAb by human cerebral microvascular endothelial cells (hCMEC/D3) was demonstrated by confocal microscopy. Moreover, after crossing the endothelial monolayer, HFn-conjugated mAbs retain their biological activity against targets, as assessed by MTS and ADCC assays. Our data support the use of HFn as efficient carrier to enhance the BBB crossing of mAbs, without affecting their antitumoral activity.
Collapse
Affiliation(s)
- Maria Antonietta Rizzuto
- NanoBioLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
The ultimate goal of single-cell analyses is to obtain the biomolecular content for each cell in unicellular and multicellular organisms at different points of their life cycle under variable environmental conditions. These require an assessment of: a) the total number of cells, b) the total number of cell types, and c) the complete and quantitative single molecular detection and identification for all classes of biopolymers, and organic and inorganic compounds, in each individual cell. For proteins, glycans, lipids, and metabolites, whose sequences cannot be amplified by copying as in the case of nucleic acids, the detection limit by mass spectrometry is about 105 molecules. Therefore, proteomic, glycomic, lipidomic, and metabolomic analyses do not yet permit the assembly of the complete single-cell omes. The construction of novel nanoelectrophoretic arrays and nano in microarrays on a single 1-cm-diameter chip has shown proof of concept for a high throughput platform for parallel processing of thousands of individual cells. Combined with dynamic secondary ion mass spectrometry, with 3D scanning capability and lateral resolution of 50 nm, the sensitivity of single molecular quantification and identification for all classes of biomolecules could be reached. Further development and routine application of such technological and instrumentation solution would allow assembly of complete omes with a quantitative assessment of structural and functional cellular diversity at the molecular level.
Collapse
|
4
|
Current Status and Challenges Associated with CNS-Targeted Gene Delivery across the BBB. Pharmaceutics 2020; 12:pharmaceutics12121216. [PMID: 33334049 PMCID: PMC7765480 DOI: 10.3390/pharmaceutics12121216] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/19/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
The era of the aging society has arrived, and this is accompanied by an increase in the absolute numbers of patients with neurological disorders, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Such neurological disorders are serious costly diseases that have a significant impact on society, both globally and socially. Gene therapy has great promise for the treatment of neurological disorders, but only a few gene therapy drugs are currently available. Delivery to the brain is the biggest hurdle in developing new drugs for the central nervous system (CNS) diseases and this is especially true in the case of gene delivery. Nanotechnologies such as viral and non-viral vectors allow efficient brain-targeted gene delivery systems to be created. The purpose of this review is to provide a comprehensive review of the current status of the development of successful drug delivery to the CNS for the treatment of CNS-related disorders especially by gene therapy. We mainly address three aspects of this situation: (1) blood-brain barrier (BBB) functions; (2) adeno-associated viral (AAV) vectors, currently the most advanced gene delivery vector; (3) non-viral brain targeting by non-invasive methods.
Collapse
|
5
|
Saint-Pol J, Gosselet F, Duban-Deweer S, Pottiez G, Karamanos Y. Targeting and Crossing the Blood-Brain Barrier with Extracellular Vesicles. Cells 2020; 9:cells9040851. [PMID: 32244730 PMCID: PMC7226770 DOI: 10.3390/cells9040851] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
The blood–brain barrier (BBB) is one of the most complex and selective barriers in the human organism. Its role is to protect the brain and preserve the homeostasis of the central nervous system (CNS). The central elements of this physical and physiological barrier are the endothelial cells that form a monolayer of tightly joined cells covering the brain capillaries. However, as endothelial cells regulate nutrient delivery and waste product elimination, they are very sensitive to signals sent by surrounding cells and their environment. Indeed, the neuro-vascular unit (NVU) that corresponds to the assembly of extracellular matrix, pericytes, astrocytes, oligodendrocytes, microglia and neurons have the ability to influence BBB physiology. Extracellular vesicles (EVs) play a central role in terms of communication between cells. The NVU is no exception, as each cell can produce EVs that could help in the communication between cells in short or long distances. Studies have shown that EVs are able to cross the BBB from the brain to the bloodstream as well as from the blood to the CNS. Furthermore, peripheral EVs can interact with the BBB leading to changes in the barrier’s properties. This review focuses on current knowledge and potential applications regarding EVs associated with the BBB.
Collapse
Affiliation(s)
- Julien Saint-Pol
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University Artois, F-62300 Lens, France; (F.G.); (S.D.-D.); (Y.K.)
- Correspondence: ; Tel.: +33-3-2179-1746
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University Artois, F-62300 Lens, France; (F.G.); (S.D.-D.); (Y.K.)
| | - Sophie Duban-Deweer
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University Artois, F-62300 Lens, France; (F.G.); (S.D.-D.); (Y.K.)
| | - Gwënaël Pottiez
- Caprion Biosciences Inc., 141, Avenue du Président-Kennedy Suite 5650, Montréal, QC H2X3Y7, Canada;
| | - Yannis Karamanos
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University Artois, F-62300 Lens, France; (F.G.); (S.D.-D.); (Y.K.)
| |
Collapse
|
6
|
de Lange ECM, van den Brink W, Yamamoto Y, de Witte WEA, Wong YC. Novel CNS drug discovery and development approach: model-based integration to predict neuro-pharmacokinetics and pharmacodynamics. Expert Opin Drug Discov 2017; 12:1207-1218. [PMID: 28933618 DOI: 10.1080/17460441.2017.1380623] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION CNS drug development has been hampered by inadequate consideration of CNS pharmacokinetic (PK), pharmacodynamics (PD) and disease complexity (reductionist approach). Improvement is required via integrative model-based approaches. Areas covered: The authors summarize factors that have played a role in the high attrition rate of CNS compounds. Recent advances in CNS research and drug discovery are presented, especially with regard to assessment of relevant neuro-PK parameters. Suggestions for further improvements are also discussed. Expert opinion: Understanding time- and condition dependent interrelationships between neuro-PK and neuro-PD processes is key to predictions in different conditions. As a first screen, it is suggested to use in silico/in vitro derived molecular properties of candidate compounds and predict concentration-time profiles of compounds in multiple compartments of the human CNS, using time-course based physiology-based (PB) PK models. Then, for selected compounds, one can include in vitro drug-target binding kinetics to predict target occupancy (TO)-time profiles in humans. This will improve neuro-PD prediction. Furthermore, a pharmaco-omics approach is suggested, providing multilevel and paralleled data on systems processes from individuals in a systems-wide manner. Thus, clinical trials will be better informed, using fewer animals, while also, needing fewer individuals and samples per individual for proof of concept in humans.
Collapse
Affiliation(s)
- Elizabeth C M de Lange
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Willem van den Brink
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Yumi Yamamoto
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Wilhelmus E A de Witte
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Yin Cheong Wong
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| |
Collapse
|
7
|
Chen Z, Zhai M, Xie X, Zhang Y, Ma S, Li Z, Yu F, Zhao B, Zhang M, Yang Y, Mei X. Apoferritin Nanocage for Brain Targeted Doxorubicin Delivery. Mol Pharm 2017; 14:3087-3097. [PMID: 28728419 DOI: 10.1021/acs.molpharmaceut.7b00341] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An ideal brain-targeted nanocarrier must be sufficiently potent to penetrate the blood-brain barrier (BBB) and sufficiently competent to target the cells of interest with adequate optimized physiochemical features and biocompatibility. However, it is an enormous challenge to the researchers to organize the above-mentioned properties into a single nanocarrier particle. New frontiers in nanomedicine are advancing the research of new biomaterials. Herein, we demonstrate a straightforward strategy for brain targeting by encapsulating doxorubicin (DOX) into a naturally available and unmodified apoferritin nanocage (DOX-loaded APO). APO can specifically bind to cells expressing transferrin receptor 1 (TfR1). Because of the high expression of TfR1 in both brain endothelial and glioma cells, DOX-loaded APO can cross the BBB and deliver drugs to the glioma with TfR1. Subsequent research demonstrated that the DOX-loaded APO had good physicochemical properties (particle size of 12.03 ± 0.42 nm, drug encapsulation efficiency of 81.8 ± 1.1%) and significant penetrating and targeting effects in the coculture model of bEnd.3 and C6 cells in vitro. In vivo imaging revealed that DOX-loaded APO accumulated specifically in brain tumor tissues. Additionally, in vivo tumor therapy experiments (at a dosage of 1 mg/kg DOX) demonstrated that a longer survival period was observed in mice that had been treated with DOX-loaded APO (30 days) compared with mice receiving free DOX solution (19 days).
Collapse
Affiliation(s)
- Zhijiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China.,Hubei University of Science and Technology , Xianning 437100, China
| | - Meifang Zhai
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China.,Jiamusi University , Jiamusi 154002, China
| | | | - Yue Zhang
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China.,Wuhan General Hospital of PLA , Wuhan 430070, China
| | - Siyu Ma
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Fanglin Yu
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Xingguo Mei
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| |
Collapse
|
8
|
Huang N, Cheng S, Zhang X, Tian Q, Pi J, Tang J, Huang Q, Wang F, Chen J, Xie Z, Xu Z, Chen W, Zheng H, Cheng Y. Efficacy of NGR peptide-modified PEGylated quantum dots for crossing the blood-brain barrier and targeted fluorescence imaging of glioma and tumor vasculature. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:83-93. [PMID: 27682740 DOI: 10.1016/j.nano.2016.08.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/31/2016] [Accepted: 08/22/2016] [Indexed: 01/28/2023]
Abstract
Delivery of imaging agents to brain glioma is challenging because the blood-brain barrier (BBB) functions as a physiological checkpoint guarding the central nervous system from circulating large molecules. Moreover, the ability of existing probes to target glioma has been insufficient and needs to be improved. In present study, PEG-based long circulation, CdSe/ZnS quantum dots (QDs)-based nanoscale and fluorescence, asparagines-glycine-arginine peptides (NGR)-based specific CD13 recognition were integrated to design and synthesize a novel nanoprobe by conjugating biotinylated NGR peptides to avidin-PEG-coated QDs. Our data showed that the NGR-PEG-QDs were nanoscale with less than 100 nm and were stable in various pH (4.0~8.0). These nanomaterials with non-toxic concentrations could cross the BBB and target CD13-overexpressing glioma and tumor vasculature in vitro and in vivo, contributing to fluorescence imaging of this brain malignancy. These achievements allowed groundbreaking technological advances in targeted fluorescence imaging for the diagnosis and surgical removal of glioma, facilitating potential transformation toward clinical nanomedicine.
Collapse
Affiliation(s)
- Ning Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Si Cheng
- Department of Orthopaedics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, China
| | - Qi Tian
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jiangli Pi
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Jun Tang
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zongyi Xie
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongye Xu
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weifu Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huzhi Zheng
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Yuan Cheng
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|