1
|
García-González J, Marhuenda-Castillo S, Romero-Carretero S, Beltrán-García J. New era of personalized medicine: Advanced therapy medicinal products in Europe. World J Immunol 2021; 11:1-10. [DOI: 10.5411/wji.v11.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Advanced therapy medicinal products are human medical therapies based on genes, cells, or tissues, and due to their characteristics, they offer new innovative opportunities for the treatment of diseases and injuries, especially for diseases beyond the reach of traditional approaches. These therapies are at the forefront of innovation and have historically been very controversial, although in the last decade they have gained prominence while the number of new advanced therapies has increased every year. In this regard, despite the controversy they may generate, they are expected to dominate the market in the coming decades. Technologies based on advanced therapies are the present and future of medicine and bring us closer to the long-awaited precision medicine. Here we review the field as it stands today, with a focus on the molecular mechanisms that guided the different advanced therapies approved by the European Medicines Agency, their current status, and their legal approval.
Collapse
Affiliation(s)
| | | | | | - Jesús Beltrán-García
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia 46010, Spain
- Center for Biomedical Research in Rare Diseases Network (CIBERER), Carlos III Health Institute, Valencia 46010, Spain
- INCLIVA Institute of Sanitary Research, Valencia 46010, Spain
| |
Collapse
|
2
|
Arens J, Grottke O, Haverich A, Maier LS, Schmitz-Rode T, Steinseifer U, Wendel H, Rossaint R. Toward a Long-Term Artificial Lung. ASAIO J 2020; 66:847-854. [PMID: 32740342 PMCID: PMC7386861 DOI: 10.1097/mat.0000000000001139] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Only a very small portion of end-stage organ failures can be treated by transplantation because of the shortage of donor organs. Although artificial long-term organ support such as ventricular assist devices provide therapeutic options serving as a bridge-to-transplantation or destination therapy for end-stage heart failure, suitable long-term artificial lung systems are still at an early stage of development. Although a short-term use of an extracorporeal lung support is feasible today, the currently available technical solutions do not permit the long-term use of lung replacement systems in terms of an implantable artificial lung. This is currently limited by a variety of factors: biocompatibility problems lead to clot formation within the system, especially in areas with unphysiological flow conditions. In addition, proteins, cells, and fibrin are deposited on the membranes, decreasing gas exchange performance and thus, limiting long-term use. Coordinated basic and translational scientific research to solve these problems is therefore necessary to enable the long-term use and implantation of an artificial lung. Strategies for improving the biocompatibility of foreign surfaces, for new anticoagulation regimes, for optimization of gas and blood flow, and for miniaturization of these systems must be found. These strategies must be validated by in vitro and in vivo tests, which remain to be developed. In addition, the influence of long-term support on the pathophysiology must be considered. These challenges require well-connected interdisciplinary teams from the natural and material sciences, engineering, and medicine, which take the necessary steps toward the development of an artificial implantable lung.
Collapse
Affiliation(s)
- Jutta Arens
- From the Chair in Engineering Organ Support Technologies, Department of Biomechanical Engineering, Faculty of Engineering Technologies, University of Twente, Enschede, The Netherlands
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty
| | - Oliver Grottke
- Department of Anesthesiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Axel Haverich
- Thoracic, Cardiac and Vascular Surgery, Medizinische Hochschule Hannover, Hannover, Germany
| | - Lars S. Maier
- Internal Medicine II, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Thomas Schmitz-Rode
- Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty
| | - H.P. Wendel
- Thoracic, Cardiac and Vascular Surgery, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Kremer A, Ribitsch I, Reboredo J, Dürr J, Egerbacher M, Jenner F, Walles H. Three-Dimensional Coculture of Meniscal Cells and Mesenchymal Stem Cells in Collagen Type I Hydrogel on a Small Intestinal Matrix—A Pilot Study Toward Equine Meniscus Tissue Engineering. Tissue Eng Part A 2017; 23:390-402. [DOI: 10.1089/ten.tea.2016.0317] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Antje Kremer
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
- Translational Center Wuerzburg ‘Regenerative therapies,’ Wuerzburg Branch of the Fraunhofer IGB, Wuerzburg, Germany
| | - Iris Ribitsch
- Vienna Equine Tissue Engineering and Regenerative Medicine, Equine Clinic, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jenny Reboredo
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
- Translational Center Wuerzburg ‘Regenerative therapies,’ Wuerzburg Branch of the Fraunhofer IGB, Wuerzburg, Germany
| | - Julia Dürr
- Department of Pathobiology, Institute of Histology & Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Monika Egerbacher
- Department of Pathobiology, Institute of Histology & Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Florien Jenner
- Vienna Equine Tissue Engineering and Regenerative Medicine, Equine Clinic, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Heike Walles
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
- Translational Center Wuerzburg ‘Regenerative therapies,’ Wuerzburg Branch of the Fraunhofer IGB, Wuerzburg, Germany
| |
Collapse
|
4
|
Gardner J, Faulkner A, Mahalatchimy A, Webster A. Are there specific translational challenges in regenerative medicine? Lessons from other fields. Regen Med 2015; 10:885-95. [PMID: 26541074 DOI: 10.2217/rme.15.50] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There is concern that translation 'from bench to bedside' within regenerative medicine (RM) will fail to materialize, or will be dismally slow, due to various challenges arising from the highly novel and disruptive nature of RM. In this article, we provide a summary of these challenges, and we critically engage with the notion that such challenges are specific to RM. It is important, we argue, not to overstate the exceptional nature of RM, as valuable lessons can be learned from elsewhere in medicine. Using several examples of technology adoption, we suggest that emerging RM products and procedures will have to work hard to find or create an adoption space if translation into the clinic is to be successful.
Collapse
Affiliation(s)
- John Gardner
- Science & Technology Studies Unit, Department of Sociology, University of York, Wentworth College, York, Y010 5DD, UK
| | - Alex Faulkner
- Sociology of Biomedicine & Healthcare Policy, Centre for Global Health Policy, University of Sussex, Brighton, BN1 9RH, UK
| | | | - Andrew Webster
- Science & Technology Studies Unit, Department of Sociology, University of York, Wentworth College, York, Y010 5DD, UK
| |
Collapse
|
5
|
Vives J, Oliver-Vila I, Pla A. Quality compliance in the shift from cell transplantation to cell therapy in non-pharma environments. Cytotherapy 2015; 17:1009-14. [DOI: 10.1016/j.jcyt.2015.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/07/2015] [Accepted: 02/09/2015] [Indexed: 11/30/2022]
|
6
|
Jakob F, Ebert R, Rudert M, Nöth U, Walles H, Docheva D, Schieker M, Meinel L, Groll J. In situ guided tissue regeneration in musculoskeletal diseases and aging : Implementing pathology into tailored tissue engineering strategies. Cell Tissue Res 2012; 347:725-35. [PMID: 22011785 PMCID: PMC3306563 DOI: 10.1007/s00441-011-1237-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/01/2011] [Indexed: 12/17/2022]
Abstract
In situ guided tissue regeneration, also addressed as in situ tissue engineering or endogenous regeneration, has a great potential for population-wide "minimal invasive" applications. During the last two decades, tissue engineering has been developed with remarkable in vitro and preclinical success but still the number of applications in clinical routine is extremely small. Moreover, the vision of population-wide applications of ex vivo tissue engineered constructs based on cells, growth and differentiation factors and scaffolds, must probably be deemed unrealistic for economic and regulation-related issues. Hence, the progress made in this respect will be mostly applicable to a fraction of post-traumatic or post-surgery situations such as big tissue defects due to tumor manifestation. Minimally invasive procedures would probably qualify for a broader application and ideally would only require off the shelf standardized products without cells. Such products should mimic the microenvironment of regenerating tissues and make use of the endogenous tissue regeneration capacities. Functionally, the chemotaxis of regenerative cells, their amplification as a transient amplifying pool and their concerted differentiation and remodeling should be addressed. This is especially important because the main target populations for such applications are the elderly and diseased. The quality of regenerative cells is impaired in such organisms and high levels of inhibitors also interfere with regeneration and healing. In metabolic bone diseases like osteoporosis, it is already known that antagonists for inhibitors such as activin and sclerostin enhance bone formation. Implementing such strategies into applications for in situ guided tissue regeneration should greatly enhance the efficacy of tailored procedures in the future.
Collapse
Affiliation(s)
- Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Julius Maximilians University of Wuerzburg, Brettreichstrasse 11, D-97082 Wuerzburg, Germany
| | - Regina Ebert
- Orthopedic Center for Musculoskeletal Research, Julius Maximilians University of Wuerzburg, Brettreichstrasse 11, D-97082 Wuerzburg, Germany
| | - Maximilian Rudert
- Orthopedic Center for Musculoskeletal Research, Julius Maximilians University of Wuerzburg, Brettreichstrasse 11, D-97082 Wuerzburg, Germany
| | - Ulrich Nöth
- Orthopedic Center for Musculoskeletal Research, Julius Maximilians University of Wuerzburg, Brettreichstrasse 11, D-97082 Wuerzburg, Germany
| | - Heike Walles
- Institute for Tissue Engineering and Regenerative Medicine, Julius Maximilians University of Wuerzburg, Röntgenring 11, D-97070 Wuerzburg, Germany
| | - Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Ludwig Maximilians University Munich, Nußbaumstrasse 20, D-80336 München, Germany
| | - Matthias Schieker
- Experimental Surgery and Regenerative Medicine, Ludwig Maximilians University Munich, Nußbaumstrasse 20, D-80336 München, Germany
| | - Lorenz Meinel
- Chair for Pharmaceutical Technology, Julius Maximilians University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany
| | - Jürgen Groll
- Department and Chair of Functional Materials in Medicine and Dentistry, Julius Maximilians University of Wuerzburg, Pleicherwall 2, D-97070 Wuerzburg, Germany
| |
Collapse
|
7
|
Hendrich C, Franz E, Waertel G, Krebs R, Jäger M. Safety of autologous bone marrow aspiration concentrate transplantation: initial experiences in 101 patients. Orthop Rev (Pavia) 2011; 1:e32. [PMID: 21808691 PMCID: PMC3143993 DOI: 10.4081/or.2009.e32] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/09/2009] [Accepted: 12/09/2009] [Indexed: 11/23/2022] Open
Abstract
The clinical application of cellular based therapies with ex vivo cultivation for the treatment of diseases of the musculoskeletal system has until now been limited. In particular, the advanced laboratory and technical effort necessary, regulatory issues as well as high costs are major obstacles. On the other hand, newly developed cell therapy systems permit intra-operative enrichment and application of mesenchymal and progenitor stem cells from bone marrow aspirate concentrate (BMAC) in one single operative session. The objective of the present clinical surveillance study was to evaluate new bone formation after the application of BMAC as well as to record any possible therapy-specific complications For this purpose, the clinical-radiological progress of a total of 101 patients with various bone healing disturbances was documented (surveillance study). The study included 37 necrosis of the head of the femur, 32 avascular necroses/bone marrow edema of other localization, 12 non-unions, 20 other defects. The application of BMAC was performed in the presence of osteonecrosis via a local injection as part of a core decompression (n=72) or by the local adsorption of intra-operative cellular bone substitution material (scaffold) incubated with BMAC during osteosynthesis (n=17) or in further surgery (n=12). After an average of 14 months (2–24 months), the patients were re-examined clinically and radiologically and interviewed. Further surgery was necessary in 2 patients within the follow-up period. These were due to a progression of a collapsed head of the femur with initial necrosis in ARCO Stage III, as well as inadequate new bone formation with secondary loss of correction after periprosthetic femoral fracture. The latter healed after repeated osteosynthesis plus BMAC application without any consequences. Other than these 2 patients, no further complications were observed. In particular, no infections, no excessive new bone formation, no induction of tumor formation, as well as no morbidity due to the bone marrow aspiration from the iliac crest were seen. There were no specific complications within the short follow-up period and a simple intra-operative use of the system for different forms of bone loss could be demonstrated. In the authors' opinion, the on-site preparation of the bone marrow cells within the operating theater eliminates the specific risk of ex vivo cell proliferation and has a safety advantage in the use of autologous cell therapy for bone regeneration. Additional studies should be completed to determine efficacy.
Collapse
|
8
|
Walles T. Tracheobronchial bio-engineering: biotechnology fulfilling unmet medical needs. Adv Drug Deliv Rev 2011; 63:367-74. [PMID: 21295094 DOI: 10.1016/j.addr.2011.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/25/2011] [Accepted: 01/27/2011] [Indexed: 12/11/2022]
Abstract
The development of substitutes for the human trachea or its bronchial tree represents a niche application in the rapidly advancing scientific field of Regenerative Medicine. Despite a comparatively small research foundation in the field of tracheo-bronchial bioengineering, four different approaches have already been translated into clinical settings and applied in patients. This can be attributed to the lack of established treatment options for a small group of patients with extensive major airway disease. In this review, the clinical background and tissue-specific basics of tracheo-bronchial bioengineering will be evaluated. Focusing on the clinical applications of bioengineered tracheal tissues, a "top-down" or "bedside-to-bench" analysis is performed in order to guide future basic and clinical research activities for airway bioengineering.
Collapse
Affiliation(s)
- Thorsten Walles
- Robert-Bosch-Hospital GmbH, Schillerhoehe Hospital, Department of General Thoracic Surgery, Gerlingen, Germany.
| |
Collapse
|