1
|
Zhou B, Zhang Y, Li S, Wu L, Fejes-Toth G, Naray-Fejes-Toth A, Soukas AA. Serum- and glucocorticoid-induced kinase drives hepatic insulin resistance by directly inhibiting AMP-activated protein kinase. Cell Rep 2021; 37:109785. [PMID: 34610303 PMCID: PMC8576737 DOI: 10.1016/j.celrep.2021.109785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/05/2021] [Accepted: 09/10/2021] [Indexed: 12/01/2022] Open
Abstract
A hallmark of type 2 diabetes (T2D) is hepatic resistance to insulin's glucose-lowering effects. The serum- and glucocorticoid-regulated family of protein kinases (SGK) is activated downstream of mechanistic target of rapamycin complex 2 (mTORC2) in response to insulin in parallel to AKT. Surprisingly, despite an identical substrate recognition motif to AKT, which drives insulin sensitivity, pathological accumulation of SGK1 drives insulin resistance. Liver-specific Sgk1-knockout (Sgk1Lko) mice display improved glucose tolerance and insulin sensitivity and are protected from hepatic steatosis when fed a high-fat diet. Sgk1 promotes insulin resistance by inactivating AMP-activated protein kinase (AMPK) via phosphorylation on inhibitory site AMPKαSer485/491. We demonstrate that SGK1 is dominant among SGK family kinases in regulation of insulin sensitivity, as Sgk1, Sgk2, and Sgk3 triple-knockout mice have similar increases in hepatic insulin sensitivity. In aggregate, these data suggest that targeting hepatic SGK1 may have therapeutic potential in T2D.
Collapse
Affiliation(s)
- Ben Zhou
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yuyao Zhang
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sainan Li
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Lianfeng Wu
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Geza Fejes-Toth
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Aniko Naray-Fejes-Toth
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Alexander A Soukas
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|