1
|
Wang MN, Li Y, Lei LL, Ding DW, Xie XJ. Combining non-negative matrix factorization with graph Laplacian regularization for predicting drug-miRNA associations based on multi-source information fusion. Front Pharmacol 2023; 14:1132012. [PMID: 36817132 PMCID: PMC9931722 DOI: 10.3389/fphar.2023.1132012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Increasing evidences suggest that miRNAs play a key role in the occurrence and progression of many complex human diseases. Therefore, targeting dysregulated miRNAs with small molecule drugs in the clinical has become a new treatment. Nevertheless, it is high cost and time-consuming for identifying miRNAs-targeted with drugs by biological experiments. Thus, more reliable computational method for identification associations of drugs with miRNAs urgently need to be developed. In this study, we proposed an efficient method, called GNMFDMA, to predict potential associations of drug with miRNA by combining graph Laplacian regularization with non-negative matrix factorization. We first calculated the overall similarity matrices of drugs and miRNAs according to the collected different biological information. Subsequently, the new drug-miRNA association adjacency matrix was reformulated based on the K nearest neighbor profiles so as to put right the false negative associations. Finally, graph Laplacian regularization collaborative non-negative matrix factorization was used to calculate the association scores of drugs with miRNAs. In the cross validation, GNMFDMA obtains AUC of 0.9193, which outperformed the existing methods. In addition, case studies on three common drugs (i.e., 5-Aza-CdR, 5-FU and Gemcitabine), 30, 31 and 34 of the top-50 associations inferred by GNMFDMA were verified. These results reveal that GNMFDMA is a reliable and efficient computational approach for identifying the potential drug-miRNA associations.
Collapse
Affiliation(s)
- Mei-Neng Wang
- School of Mathematics and Computer Science, Yichun University, Yichun, China
| | - Yu Li
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China,*Correspondence: Yu Li,
| | - Li-Lan Lei
- School of Mathematics and Computer Science, Yichun University, Yichun, China
| | - De-Wu Ding
- School of Mathematics and Computer Science, Yichun University, Yichun, China
| | - Xue-Jun Xie
- School of Mathematics and Computer Science, Yichun University, Yichun, China
| |
Collapse
|
2
|
Jiao X, Wang M, Zhang Z, Li Z, Ni D, Ashton AW, Tang HY, Speicher DW, Pestell RG. Leronlimab, a humanized monoclonal antibody to CCR5, blocks breast cancer cellular metastasis and enhances cell death induced by DNA damaging chemotherapy. Breast Cancer Res 2021; 23:11. [PMID: 33485378 PMCID: PMC7825185 DOI: 10.1186/s13058-021-01391-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Background Triple-negative breast cancer (BCa) (TNBC) is a deadly form of human BCa with limited treatment options and poor prognosis. In our prior analysis of over 2200 breast cancer samples, the G protein-coupled receptor CCR5 was expressed in > 95% of TNBC samples. A humanized monoclonal antibody to CCR5 (leronlimab), used in the treatment of HIV-infected patients, has shown minimal side effects in large patient populations. Methods A humanized monoclonal antibody to CCR5, leronlimab, was used for the first time in tissue culture and in mice to determine binding characteristics to human breast cancer cells, intracellular signaling, and impact on (i) metastasis prevention and (ii) impact on established metastasis. Results Herein, leronlimab was shown to bind CCR5 in multiple breast cancer cell lines. Binding of leronlimab to CCR5 reduced ligand-induced Ca+ 2 signaling, invasion of TNBC into Matrigel, and transwell migration. Leronlimab enhanced the BCa cell killing of the BCa chemotherapy reagent, doxorubicin. In xenografts conducted with Nu/Nu mice, leronlimab reduced lung metastasis of the TNBC cell line, MB-MDA-231, by > 98% at 6 weeks. Treatment with leronlimab reduced the metastatic tumor burden of established TNBC lung metastasis. Conclusions The safety profile of leronlimab, together with strong preclinical evidence to both prevent and reduce established breast cancer metastasis herein, suggests studies of clinical efficacy may be warranted. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01391-1.
Collapse
Affiliation(s)
- Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, 100 East Lancaster Avenue, LIMR R234, Wynnewood, PA, 19096, USA.
| | - Min Wang
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, 100 East Lancaster Avenue, LIMR R234, Wynnewood, PA, 19096, USA
| | - Zhao Zhang
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, 100 East Lancaster Avenue, LIMR R234, Wynnewood, PA, 19096, USA
| | - Zhiping Li
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, 100 East Lancaster Avenue, LIMR R234, Wynnewood, PA, 19096, USA
| | - Dong Ni
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, 100 East Lancaster Avenue, LIMR R234, Wynnewood, PA, 19096, USA
| | - Anthony W Ashton
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, 100 East Lancaster Avenue, LIMR R234, Wynnewood, PA, 19096, USA.,Division of Perinatal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia.,Sydney Medical School Northern, University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, 100 East Lancaster Avenue, LIMR R234, Wynnewood, PA, 19096, USA. .,Wistar Institute, Philadelphia, PA, 19107, USA. .,Xavier University School of Medicine, 1000 Woodbury Rd, Suite 109, Woodbury, NY, 11797, USA.
| |
Collapse
|
3
|
Kandettu A, Radhakrishnan R, Chakrabarty S, Sriharikrishnaa S, Kabekkodu SP. The emerging role of miRNA clusters in breast cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188413. [PMID: 32827583 DOI: 10.1016/j.bbcan.2020.188413] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Micro RNAs (miRNAs) are small non-coding RNAs that are essential for regulation of gene expression of the target genes. Large number of miRNAs are organized into defined units known as miRNA clusters (MCs). The MCs consist of two or more than two miRNA encoding genes driven by a single promoter, transcribed together in the same orientation, that are not separated from each other by a transcription unit. Aberrant miRNA clusters expression is reported in breast cancer (BC), exhibiting both pro-tumorogenic and anti-tumorigenic role. Altered MCs expression facilitates to breast carcinogenesis by promoting the breast cells to acquire the various hallmarks of the cancer. Since miRNA clusters contain multiple miRNA encoding genes, targeting cluster may be more attractive than targeting individual miRNAs. Besides targeting dysregulated miRNA clusters in BC, studies have focused on the mechanism of action, and its contribution to the progression of the BC. The present review provides a comprehensive overview of dysregulated miRNA clusters and its role in the acquisition of cancer hallmarks in BC. More specifically, we have presented the regulation, differential expression, classification, targets, mechanism of action, and signaling pathways of miRNA clusters in BC. Additionally, we have also discussed the potential utility of the miRNA cluster as a diagnostic and prognostic indicator in BC.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - S Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
4
|
Cyclin D1 promotes secretion of pro-oncogenic immuno-miRNAs and piRNAs. Clin Sci (Lond) 2020; 134:791-805. [PMID: 32219337 DOI: 10.1042/cs20191318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/14/2023]
Abstract
The molecular mechanisms governing the secretion of the non-coding genome are poorly understood. We show herein that cyclin D1, the regulatory subunit of the cyclin-dependent kinase that drives cell-cycle progression, governs the secretion and relative proportion of secreted non-coding RNA subtypes (miRNA, rRNA, tRNA, CDBox, scRNA, HAcaBox. scaRNA, piRNA) in human breast cancer. Cyclin D1 induced the secretion of miRNA governing the tumor immune response and oncogenic miRNAs. miR-21 and miR-93, which bind Toll-Like Receptor 8 to trigger a pro-metastatic inflammatory response, represented >85% of the cyclin D1-induced secreted miRNA transcripts. Furthermore, cyclin D1 regulated secretion of the P-element Induced WImpy testis (PIWI)-interacting RNAs (piRNAs) including piR-016658 and piR-016975 that governed stem cell expansion, and increased the abundance of the PIWI member of the Argonaute family, piwil2 in ERα positive breast cancer. The cyclin D1-mediated secretion of pro-tumorigenic immuno-miRs and piRNAs may contribute to tumor initiation and progression.
Collapse
|
5
|
Bellenghi M, Puglisi R, Pontecorvi G, De Feo A, Carè A, Mattia G. Sex and Gender Disparities in Melanoma. Cancers (Basel) 2020; 12:E1819. [PMID: 32645881 PMCID: PMC7408637 DOI: 10.3390/cancers12071819] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
Worldwide, the total incidence of cutaneous melanoma is higher in men than in women, with some differences related to ethnicity and age and, above all, sex and gender. Differences exist in respect to the anatomic localization of melanoma, in that it is more frequent on the trunk in men and on the lower limbs in women. A debated issue is if-and to what extent-melanoma development can be attributed to gender-specific behaviors or to biologically intrinsic differences. In the search for factors responsible for the divergences, a pivotal role of sex hormones has been observed, although conflicting results indicate the involvement of other mechanisms. The presence on the X chromosome of numerous miRNAs and coding genes playing immunological roles represents another important factor, whose relevance can be even increased by the incomplete X chromosome random inactivation. Considering the known advantages of the female immune system, a different cancer immune surveillance efficacy was suggested to explain some sex disparities. Indeed, the complexity of this picture emerged when the recently developed immunotherapies unexpectedly showed better improvements in men than in women. Altogether, these data support the necessity of further studies, which consider enrolling a balanced number of men and women in clinical trials to better understand the differences and obtain actual gender-equitable healthcare.
Collapse
Affiliation(s)
- Maria Bellenghi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Rossella Puglisi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Giada Pontecorvi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Alessandra De Feo
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Alessandra Carè
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Gianfranco Mattia
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| |
Collapse
|
6
|
Alizadeh S, Isanejad A, Sadighi S, Khalighfard S, Alizadeh AM. Effect of a high-intensity interval training on serum microRNA levels in women with breast cancer undergoing hormone therapy. A single-blind randomized trial. Ann Phys Rehabil Med 2019; 62:329-335. [PMID: 31400480 DOI: 10.1016/j.rehab.2019.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND The role of microRNAs (miRs) in hormone therapy (HT) is of keen interest in developing biomarkers and treatments for individuals with breast cancer. Although miRs are often moderate regulators under homeostatic conditions, their function is changed more in response to physical activity. OBJECTIVE This single-blind randomized trial aimed to explore the effect of high-intensity interval training (HIIT) on serum levels of miRs in individuals with early-stage breast cancer undergoing HT. METHODS Hormone receptor-positive women with breast cancer and healthy women were randomly assigned to a healthy control group (n=15), healthy group with HIIT (n=15), breast cancer group with HT (HT, n=26), and breast cancer group with HT and HIIT (HT+HIIT, n=26). The exercise groups underwent interval uphill walking training on a treadmill 3 times a week for 12weeks. At the end of the study, we analyzed changes in levels of cancer-related miRs (oncomiRs) and tumour suppressor miRs (TSmiRs) in response to the HT and HIIT. RESULTS In women with breast cancer versus healthy controls, the expression of some oncomiRs was significantly increased - miR-21 (P<0.001), miR-155 (P=0.001), miR-221 (P=0.008), miR-27a (P<0.001), and miR-10b (P=0.007) - and that of some TSmiRs was significantly decreased - miR-206 (P=0.048), miR-145 (P=0.011), miR-143 (P=0.008), miR-9 (P=0.020), and let-7a (P=0.005). Moreover, HT considerably downregulated oncomiRs and upregulated TSmiRs. HIIT for 12weeks with HT significantly decreased the expression of the oncomiRs and significantly increased that of the TSmiRs as compared with HT alone. CONCLUSIONS HITT could amplify the decrease and/or increase in expression of miRs associated with HT in women with breast cancer. A prospective trial could determine whether the use of circulating miRs for monitoring treatment can be useful in therapy decisions. TRIAL REGISTRATION Iranian Registry of Clinical Trials (No.: IRCT201202289171N1).
Collapse
Affiliation(s)
- Shaban Alizadeh
- Department of Hematology, Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Isanejad
- Immunoregulation Research Center, Shahed University, Tehran, Iran; Physical Education Department, Shahed University, Tehran, Iran
| | - Sanambar Sadighi
- Medical Oncology and Hematology Department, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalighfard
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran; Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Di Sante G, Pagé J, Jiao X, Nawab O, Cristofanilli M, Skordalakes E, Pestell RG. Recent advances with cyclin-dependent kinase inhibitors: therapeutic agents for breast cancer and their role in immuno-oncology. Expert Rev Anticancer Ther 2019; 19:569-587. [PMID: 31219365 PMCID: PMC6834352 DOI: 10.1080/14737140.2019.1615889] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Collaborative interactions between several diverse biological processes govern the onset and progression of breast cancer. These processes include alterations in cellular metabolism, anti-tumor immune responses, DNA damage repair, proliferation, anti-apoptotic signals, autophagy, epithelial-mesenchymal transition, components of the non-coding genome or onco-mIRs, cancer stem cells and cellular invasiveness. The last two decades have revealed that each of these processes are also directly regulated by a component of the cell cycle apparatus, cyclin D1. Area covered: The current review is provided to update recent developments in the clinical application of cyclin/CDK inhibitors to breast cancer with a focus on the anti-tumor immune response. Expert opinion: The cyclin D1 gene encodes the regulatory subunit of a proline-directed serine-threonine kinase that phosphorylates several substrates. CDKs possess phosphorylation site selectivity, with the phosphate-acceptor residue preceding a proline. Several important proteins are substrates including all three retinoblastoma proteins, NRF1, GCN5, and FOXM1. Over 280 cyclin D3/CDK6 substrates have b\een identified. Given the diversity of substrates for cyclin/CDKs, and the altered thresholds for substrate phosphorylation that occurs during the cell cycle, it is exciting that small molecular inhibitors targeting cyclin D/CDK activity have encouraging results in specific tumors.
Collapse
Affiliation(s)
- Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Jessica Pagé
- Xavier University School of Medicine, Woodbury, NY, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Omar Nawab
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
- Xavier University School of Medicine, Woodbury, NY, USA
| | - Massimo Cristofanilli
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
- Xavier University School of Medicine, Woodbury, NY, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
8
|
miR-338-3p Is Regulated by Estrogens through GPER in Breast Cancer Cells and Cancer-Associated Fibroblasts (CAFs). Cells 2018; 7:cells7110203. [PMID: 30423928 PMCID: PMC6262471 DOI: 10.3390/cells7110203] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022] Open
Abstract
Estrogens acting through the classic estrogen receptors (ERs) and the G protein estrogen receptor (GPER) regulate the expression of diverse miRNAs, small sequences of non-coding RNA involved in several pathophysiological conditions, including breast cancer. In order to provide novel insights on miRNAs regulation by estrogens in breast tumor, we evaluated the expression of 754 miRNAs by TaqMan Array in ER-negative and GPER-positive SkBr3 breast cancer cells and cancer-associated fibroblasts (CAFs) upon 17β-estradiol (E2) treatment. Various miRNAs were regulated by E2 in a peculiar manner in SkBr3 cancer cells and CAFs, while miR-338-3p displayed a similar regulation in both cell types. By METABRIC database analysis we ascertained that miR-338-3p positively correlates with overall survival in breast cancer patients, according to previous studies showing that miR-338-3p may suppress the growth and invasion of different cancer cells. Well-fitting with these data, a miR-338-3p mimic sequence decreased and a miR-338-3p inhibitor sequence rescued the expression of genes and the proliferative effects induced by E2 through GPER in SkBr3 cancer cells and CAFs. Altogether, our results provide novel evidence on the molecular mechanisms by which E2 may regulate miR-338-3p toward breast cancer progression.
Collapse
|
9
|
Howard EW, Yang X. microRNA Regulation in Estrogen Receptor-Positive Breast Cancer and Endocrine Therapy. Biol Proced Online 2018; 20:17. [PMID: 30214383 PMCID: PMC6134714 DOI: 10.1186/s12575-018-0082-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
As de novo and acquired resistance to standard first line endocrine therapies is a growing clinical challenge for estrogen receptor-positive (ER+) breast cancer patients, understanding the mechanisms of resistance is critical to develop novel therapeutic strategies to prevent therapeutic resistance and improve patient outcomes. The widespread post-transcriptional regulatory role that microRNAs (miRNAs) can have on various oncogenic pathways has been well-documented. In particular, several miRNAs are reported to suppress ERα expression via direct binding with the 3’ UTR of ESR1 mRNA, which can confer resistance to estrogen/ERα-targeted therapies. In turn, estrogen/ERα activation can modulate miRNA expression, which may contribute to ER+ breast carcinogenesis. Given the reported oncogenic and tumor suppressor functions of miRNAs in ER+ breast cancer, the targeted regulation of specific miRNAs is emerging as a promising strategy to treat ER+ breast cancer and significantly improve patient responsiveness to endocrine therapies. In this review, we highlight the major miRNA-ER regulatory mechanisms in context with ER+ breast carcinogenesis, as well as the critical miRNAs that contribute to endocrine therapy resistance or sensitivity. Collectively, this comprehensive review of the current literature sheds light on the clinical applications and challenges associated with miRNA regulatory mechanisms and novel miRNA targets that may have translational value as potential therapeutics for the treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, 500 Laureate Way, NRI 4301, Kannapolis, North Carolina 28081 USA
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, 500 Laureate Way, NRI 4301, Kannapolis, North Carolina 28081 USA
| |
Collapse
|
10
|
Zhao J, Cao J, Zhou L, Du Y, Zhang X, Yang B, Gao Y, Wang Y, Ma N, Yang W. MiR-1260b inhibitor enhances the chemosensitivity of colorectal cancer cells to fluorouracil by targeting PDCD4/IGF1. Oncol Lett 2018; 16:5131-5139. [PMID: 30250581 PMCID: PMC6144919 DOI: 10.3892/ol.2018.9307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is the most common malignant tumor type and has become resistant to 5-fluorouracil (5-FU) in recent decades, which is one of the most popular therapies. Recently, microRNA (miRNA or miR) has been investigated as a potential therapeutic strategy for CRC. However, there has been little investigation of the underlying mechanism of the association between expression of miRNA and chemosensitivity. The present study aimed to investigate the effect of miR-1260b inhibitor on CRC cells, and their chemosensitivity to 5-FU, by treating them with the miR-1260b inhibitor. miR-1260b inhibitor was demonstrated to significantly promote the proliferation and invasion of the CRC cell line, HCT116, and to increase the apoptotic rate. Furthermore, it was validated that programmed cell death 4 (PDCD4) was a direct target of miR-1260b inhibitor in CRC with bioinformatics tools and a luciferase assay. Western blot analysis revealed that miR-1260b inhibitor could significantly decrease PDCD4 expression, and downregulate the expression of phosphorylated-Akt (p-Akt) and phosphorylated-extracellular-signal-regulated kinase (p-ERK). In conclusion, it was confirmed that the anti-tumor effect of the miR-1260b inhibitor was conducted by blocking the phosphorylated 3-kinase/Akt pathway as dysregulated protein expression induced by miR-1260b inhibitor was rescued by insulin-like growth factor. Notably, miR-1260b inhibitor could significantly enhanced the chemoresponse of HCT116 cells to 5-FU via reduced proliferation, increased apoptosis, and downregulation of PDCD4, p-Akt and p-ERK protein expression. In summary, the present study may provide a novel direction for future clinical therapy to enhance the chemosensitivity of tumor cells.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Oncology, The Changzhi People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Jingjie Cao
- Department of Radiotherapy, The 264th Hospital of Chinese People's Liberation Army, Taiyuan, Shanxi 030001, P.R. China
| | - Lurong Zhou
- Medical Department, The Changzhi People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Yunyi Du
- Department of Oncology, The Changzhi People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Xiaoling Zhang
- Department of Oncology, The Changzhi People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Bo Yang
- Department of Oncology, The Changzhi People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Yangjun Gao
- Department of Oncology, The Changzhi People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Yu Wang
- Department of Oncology, The Changzhi People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Ning Ma
- Department of Oncology, The Changzhi People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Wei Yang
- Department of Oncology, The Changzhi People's Hospital, Changzhi, Shanxi 046000, P.R. China
| |
Collapse
|
11
|
Gao G, Bian Y, Qian H, Yang M, Hu J, Li L, Yu L, Liu B, Qian X. Gambogic acid regulates the migration and invasion of colorectal cancer via microRNA-21-mediated activation of phosphatase and tensin homolog. Exp Ther Med 2018; 16:1758-1765. [PMID: 30186399 PMCID: PMC6122420 DOI: 10.3892/etm.2018.6421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 06/22/2018] [Indexed: 01/14/2023] Open
Abstract
Gambogic acid (GA) has been reported to inhibit cancer cell proliferation and migration and enhance apoptosis. Several signaling pathways were identified to be involved in GA function, including PI3K/Akt, caspase-3 apoptosis and TNF-α/NF-κB. However, to the best of our knowledge, the association between miRNA and GA has not been explored. The present study initially demonstrated that GA could inhibit HT-29 cancer cell proliferation using an MTT assay. In addition, a Transwell assay and a wound-healing assay respectively indicated that GA inhibited HT-29 cancer cell invasion and migration, which was also confirmed by the increased MMP-9 protein expression. Furthermore, GA induced the apoptosis of HT-29 cancer cells in an Annexin V and PI double staining assay. Moreover, treatment with GA significantly decreased miR-21 expression in these cells. Additionally, western blot analysis demonstrated that GA treatment enhanced the activation of phosphatase and tensin homolog (PTEN) along with the suppression of PI3K and p-Akt. Furthermore, miR-21 mimics reversed all the aforementioned activities of GA, which indicated that miR-21 was the effector of GA and blocked PI3K/Akt signaling pathway via enhancing PTEN activity. In summary, GA induced HT-29 cancer cell apoptosis via decreasing miR-21 expression and blocking PI3K/Akt, which may be a useful novel insight for future CRC treatment.
Collapse
Affiliation(s)
- Guangyi Gao
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China.,Department of Traditional Chinese Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, Jiangsu 223002, P.R. China
| | - Yinzhu Bian
- Department of Oncology, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224005, P.R. China
| | - Hanqing Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Mi Yang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jing Hu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Li Li
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Baorui Liu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China.,The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaoping Qian
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China.,The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
12
|
Chen Y, Tang W, Liu C, Lin J, Wang Y, Zhang S, Chen G, Zheng X. miRNA-146a rs2910164 C>G polymorphism increased the risk of esophagogastric junction adenocarcinoma: a case-control study involving 2,740 participants. Cancer Manag Res 2018; 10:1657-1664. [PMID: 29983589 PMCID: PMC6025765 DOI: 10.2147/cmar.s165921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose The miRNA-146a rs2910164 C>G polymorphism may contribute to the development of cancer. However, the association between this polymorphism and the risk of esophagogastric junction adenocarcinoma (EGJA) remains unclear. In the present study, we carried out a case–control study to explore the potential relationship between miRNA-146a rs2910164 C>G polymorphism and EGJA risk. Patients and methods In total, 1,063 EGJA patients and 1,677 cancer-free controls were enrolled. The SNPscan™ genotyping assay, a patented technology, was used to test the genotyping of miRNA-146a rs2910164 C>G polymorphism. Results We found that miRNA-146a rs2910164 C>G polymorphism was associated with a risk of developing EGJA (additive model: adjusted odds ratio (OR), 1.27; 95% CI, 1.07–1.51; P=0.006; homozygote model: adjusted OR, 1.31; 95% CI, 1.03–1.65; P=0.027 and dominant model: adjusted OR, 1.36; 95% CI, 1.15–1.60; P<0.001). After adjustment for the Bonferroni correction, these associations were also found in additive and dominant genetic models. In the subgroup analyses, after adjustment by sex, age, alcohol consumption, and smoking status, results of multiple logistic regression analysis indicated that miRNA-146a rs2910164 C>G polymorphism increased the risk of EGJA in males, females, <64 years old, ≥64 years old, never smoking, and never drinking subgroups. Conclusion The current study highlights that the miRNA-146a rs2910164 C>G polymorphism increased the risk of EGJA in eastern Chinese Han population.
Collapse
Affiliation(s)
- Yu Chen
- Department of Medical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China,
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Chao Liu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China
| | - Yafeng Wang
- Department of Cardiology, The People's Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan Province, China
| | - Sheng Zhang
- Department of General Surgery, Changzhou No. 3 People's Hospital, Changzhou, Jiangsu Province, China
| | - Gang Chen
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China, .,Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China,
| | - Xiongwei Zheng
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China, .,Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China,
| |
Collapse
|
13
|
Guney Eskiler G, Cecener G, Dikmen G, Egeli U, Tunca B. Solid lipid nanoparticles: Reversal of tamoxifen resistance in breast cancer. Eur J Pharm Sci 2018; 120:73-88. [PMID: 29719240 DOI: 10.1016/j.ejps.2018.04.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/28/2018] [Accepted: 04/27/2018] [Indexed: 12/18/2022]
Abstract
The objective of the present study was to investigate the effect of tamoxifen (Tam) loaded solid lipid nanoparticles (SLNs) on MCF7 Tam-resistant breast cancer cells (MCF7-TamR). Tam-SLNs were produced by the hot homogenization method. The characterization studies of Tam-SLNs demonstrated good physical stability with small particle size. The in vitro cytotoxicity results showed that Tam-SLNs enhanced the efficacy of Tam and reversed the acquired Tam resistance by inducing apoptosis, altering the expression levels of specific miRNA and the related apoptosis-associated target-genes in both MCF7 and MCF7-TamR cells without damaging the MCF10A control cells (p < 0.05). In conclusion, we demonstrated a molecular mechanism of the induction of apoptosis by Tam-SLNs in MCF7 and MCF7-TamR cells, and thus, we demonstrated that Tam-SLNs were more effective than Tam. The present study suggests that the use SLNs may be a potential therapeutic strategy to overcome Tam-resistance in breast cancer for clinical use.
Collapse
Affiliation(s)
- Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Gulsah Cecener
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey.
| | - Gokhan Dikmen
- Central Research Laboratory, Application and Research Center (ARUM), Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Unal Egeli
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| |
Collapse
|
14
|
Wang G, Gormley M, Qiao J, Zhao Q, Wang M, Di Sante G, Deng S, Dong L, Pestell T, Ju X, Casimiro MC, Addya S, Ertel A, Tozeren A, Li Q, Yu Z, Pestell RG. Cyclin D1-mediated microRNA expression signature predicts breast cancer outcome. Theranostics 2018; 8:2251-2263. [PMID: 29721077 PMCID: PMC5928887 DOI: 10.7150/thno.23877] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/25/2017] [Indexed: 01/03/2023] Open
Abstract
Background: Genetic classification of breast cancer based on the coding mRNA suggests the evolution of distinct subtypes. Whether the non-coding genome is altered concordantly with the coding genome and the mechanism by which the cell cycle directly controls the non-coding genome is poorly understood. Methods: Herein, the miRNA signature maintained by endogenous cyclin D1 in human breast cancer cells was defined. In order to determine the clinical significance of the cyclin D1-mediated miRNA signature, we defined a miRNA expression superset from 459 breast cancer samples. We compared the coding and non-coding genome of breast cancer subtypes. Results: Hierarchical clustering of human breast cancers defined four distinct miRNA clusters (G1-G4) associated with distinguishable relapse-free survival by Kaplan-Meier analysis. The cyclin D1-regulated miRNA signature included several oncomirs, was conserved in multiple breast cancer cell lines, was associated with the G2 tumor miRNA cluster, ERα+ status, better outcome and activation of the Wnt pathway. The coding and non-coding genome were discordant within breast cancer subtypes. Seed elements for cyclin D1-regulated miRNA were identified in 63 genes of the Wnt signaling pathway including DKK. Cyclin D1 restrained DKK1 via the 3'UTR. In vivo studies using inducible transgenics confirmed cyclin D1 induces Wnt-dependent gene expression. Conclusion: The non-coding genome defines breast cancer subtypes that are discordant with their coding genome subtype suggesting distinct evolutionary drivers within the tumors. Cyclin D1 orchestrates expression of a miRNA signature that induces Wnt/β-catenin signaling, therefore cyclin D1 serves both upstream and downstream of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Guangxue Wang
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Michael Gormley
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Jing Qiao
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qian Zhao
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Min Wang
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
| | - Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
| | - Shengqiong Deng
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Shanghai Gongli Hospital, the Second Military Medical University, Shanghai 200120, China
| | - Lin Dong
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Tim Pestell
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Xiaoming Ju
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Mathew C. Casimiro
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
| | - Sankar Addya
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Adam Ertel
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Ayden Tozeren
- Center for Integrated Bioinformatics, Drexel University, Philadelphia, PA 19104
- School of Biomedical Engineering, Systems and Health Sciences, Drexel University, Philadelphia, PA 19104
| | - Qinchuan Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zuoren Yu
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Richard G. Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
15
|
Gajulapalli VNR, Malisetty VL, Chitta SK, Manavathi B. Oestrogen receptor negativity in breast cancer: a cause or consequence? Biosci Rep 2016; 36:e00432. [PMID: 27884978 PMCID: PMC5180249 DOI: 10.1042/bsr20160228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023] Open
Abstract
Endocrine resistance, which occurs either by de novo or acquired route, is posing a major challenge in treating hormone-dependent breast cancers by endocrine therapies. The loss of oestrogen receptor α (ERα) expression is the vital cause of establishing endocrine resistance in this subtype. Understanding the mechanisms that determine the causes of this phenomenon are therefore essential to reduce the disease efficacy. But how we negate oestrogen receptor (ER) negativity and endocrine resistance in breast cancer is questionable. To answer that, two important approaches are considered: (1) understanding the cellular origin of heterogeneity and ER negativity in breast cancers and (2) characterization of molecular regulators of endocrine resistance. Breast tumours are heterogeneous in nature, having distinct molecular, cellular, histological and clinical behaviour. Recent advancements in perception of the heterogeneity of breast cancer revealed that the origin of a particular mammary tumour phenotype depends on the interactions between the cell of origin and driver genetic hits. On the other hand, histone deacetylases (HDACs), DNA methyltransferases (DNMTs), miRNAs and ubiquitin ligases emerged as vital molecular regulators of ER negativity in breast cancers. Restoring response to endocrine therapy through re-expression of ERα by modulating the expression of these molecular regulators is therefore considered as a relevant concept that can be implemented in treating ER-negative breast cancers. In this review, we will thoroughly discuss the underlying mechanisms for the loss of ERα expression and provide the future prospects for implementing the strategies to negate ER negativity in breast cancers.
Collapse
Affiliation(s)
- Vijaya Narasihma Reddy Gajulapalli
- Department of Biochemistry, Molecular and Cellular Oncology Laboratory, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | - Suresh Kumar Chitta
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh 515002, India
| | - Bramanandam Manavathi
- Department of Biochemistry, Molecular and Cellular Oncology Laboratory, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|