1
|
Peng X, Li X, Xie B, Lai Y, Sosnik A, Boucetta H, Chen Z, He W. Gout therapeutics and drug delivery. J Control Release 2023; 362:728-754. [PMID: 37690697 DOI: 10.1016/j.jconrel.2023.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Gout is a common inflammatory arthritis caused by persistently elevated uric acid levels. With the improvement of people's living standards, the consumption of processed food and the widespread use of drugs that induce elevated uric acid, gout rates are increasing, seriously affecting the human quality of life, and becoming a burden to health systems worldwide. Since the pathological mechanism of gout has been elucidated, there are relatively effective drug treatments in clinical practice. However, due to (bio)pharmaceutical shortcomings of these drugs, such as poor chemical stability and limited ability to target the pathophysiological pathways, traditional drug treatment strategies show low efficacy and safety. In this scenario, drug delivery systems (DDS) design that overcome these drawbacks is urgently called for. In this review, we initially describe the pathological features, the therapeutic targets, and the drugs currently in clinical use and under investigation to treat gout. We also comprehensively summarize recent research efforts utilizing lipid, polymeric and inorganic carriers to develop advanced DDS for improved gout management and therapy.
Collapse
Affiliation(s)
- Xiuju Peng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Xiaotong Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Bing Xie
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Alejandro Sosnik
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| |
Collapse
|
2
|
Liang T, Zhang Y, Wu S, Chen Q, Wang L. The Role of NLRP3 Inflammasome in Alzheimer’s Disease and Potential Therapeutic Targets. Front Pharmacol 2022; 13:845185. [PMID: 35250595 PMCID: PMC8889079 DOI: 10.3389/fphar.2022.845185] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment. The typical pathological characteristics of AD are extracellular senile plaques composed of amyloid ß (Aβ) protein, intracellular neurofibrillary tangles formed by the hyperphosphorylation of the microtubule-associated protein tau, and neuron loss. In the past hundred years, although human beings have invested a lot of manpower, material and financial resources, there is no widely recognized drug for the effective prevention and clinical cure of AD in the world so far. Therefore, evaluating and exploring new drug targets for AD treatment is an important topic. At present, researchers have not stopped exploring the pathogenesis of AD, and the views on the pathogenic factors of AD are constantly changing. Multiple evidence have confirmed that chronic neuroinflammation plays a crucial role in the pathogenesis of AD. In the field of neuroinflammation, the nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is a key molecular link in the AD neuroinflammatory pathway. Under the stimulation of Aβ oligomers and tau aggregates, it can lead to the assembly and activation of NLRP3 inflammasome in microglia and astrocytes in the brain, thereby causing caspase-1 activation and the secretion of IL-1β and IL-18, which ultimately triggers the pathophysiological changes and cognitive decline of AD. In this review, we summarize current literatures on the activation of NLRP3 inflammasome and activation-related regulation mechanisms, and discuss its possible roles in the pathogenesis of AD. Moreover, focusing on the NLRP3 inflammasome and combining with the upstream and downstream signaling pathway-related molecules of NLRP3 inflammasome as targets, we review the pharmacologically related targets and various methods to alleviate neuroinflammation by regulating the activation of NLRP3 inflammasome, which provides new ideas for the treatment of AD.
Collapse
Affiliation(s)
- Tao Liang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suyuan Wu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Lin Wang,
| |
Collapse
|
3
|
Pérez Ruiz F, Pérez Herrero N, Gantes Pedraza MÁ. Gout. What's up doc? Med Clin (Barc) 2022; 158:615-621. [PMID: 35177268 DOI: 10.1016/j.medcli.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022]
Abstract
A considerable improvement in the knowledge of gout has taken place in the 2decades of the XXIth century. Definitions of disease, estate, and clinical situations, along with a new nomenclature, have been agreed. More importantly, the concept of gout as a "curable" or "controllable" disease has been settled. We know for the first time its prevalence in Spain. Factors associated to disease, the genetics that condition the predisposition to develop hyperuricemia and the structure and functions of the transportome complex that control the renal and intestinal handling of urate have been examined. Imaging techniques have come to support diagnosis. Different primary therapeutic targets have been defined depending on the burden of disease, and targets for secondary prevention considered. We know how to best prescribe available medications and prevent the risk of adverse events. Finally, we have understood the importance of adherence, education, and empower patients during treatment instead of blaming them.
Collapse
Affiliation(s)
- Fernando Pérez Ruiz
- Servicio de Reumatología, Hospital Universitario Cruces, Osakidetza, OSI Enkarterri-Eskerraldea-Cruces, Grupo de Investigación en Artritis, Instituto de Investigación Biocruces-Bizkaia, Departamento de Medicina, Facultad de Medicina y Enfermería, Universidad del País Vasco, Baracaldo, Vizcaya, España.
| | | | | |
Collapse
|
4
|
Desmarais J, Schwab P. Gout Management in Chronic Kidney Disease: Pearls and Pitfalls. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2019. [DOI: 10.1007/s40674-019-00132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Khameneh HJ, Ho AWS, Laudisi F, Derks H, Kandasamy M, Sivasankar B, Teng GG, Mortellaro A. C5a Regulates IL-1β Production and Leukocyte Recruitment in a Murine Model of Monosodium Urate Crystal-Induced Peritonitis. Front Pharmacol 2017; 8:10. [PMID: 28167912 PMCID: PMC5253373 DOI: 10.3389/fphar.2017.00010] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
Gouty arthritis results from the generation of monosodium urate (MSU) crystals within joints. These MSU crystals elicit acute inflammation characterized by massive infiltration of neutrophils and monocytes that are mobilized by the pro-inflammatory cytokine IL-1β. MSU crystals also activate the complement system, which regulates the inflammatory response; however, it is unclear whether or how MSU-mediated complement activation is linked to IL-1β release in vivo, and the various roles that might be played by individual components of the complement cascade. Here we show that exposure to MSU crystals in vivo triggers the complement cascade, leading to the generation of the biologically active complement proteins C3a and C5a. C5a, but not C3a, potentiated IL-1β and IL-1α release from LPS–primed MSU-exposed peritoneal macrophages and human monocytic cells in vitro; while in vivo MSU–induced C5a mediated murine neutrophil recruitment as well as IL-1β production at the site of inflammation. These effects were significantly ameliorated by treatment of mice with a C5a receptor antagonist. Mechanistic studies revealed that C5a most likely increased NLRP3 inflammasome activation via production of reactive oxygen species (ROS), and not through increased transcription of inflammasome components. Therefore we conclude that C5a generated upon MSU-induced complement activation increases neutrophil recruitment in vivo by promoting IL-1 production via the generation of ROS, which activate the NLRP3 inflammasome. Identification of the C5a receptor as a key determinant of IL-1-mediated recruitment of inflammatory cells provides a novel potential target for therapeutic intervention to mitigate gouty arthritis.
Collapse
Affiliation(s)
- Hanif J Khameneh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) Singapore, Singapore
| | - Adrian W S Ho
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) Singapore, Singapore
| | - Federica Laudisi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) Singapore, Singapore
| | - Heidi Derks
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) Singapore, Singapore
| | - Matheswaran Kandasamy
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR) Singapore, Singapore
| | - Baalasubramanian Sivasankar
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR) Singapore, Singapore
| | - Gim Gee Teng
- Division of Rheumatology, University Medicine Cluster, National University Health System (NUHS)Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS) and National University Health System (NUHS)Singapore, Singapore
| | - Alessandra Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) Singapore, Singapore
| |
Collapse
|
6
|
Bardin T, van de Laar MAFJ. The Way Forward: Practical Clinical Considerations for the Use of Canakinumab in Patients With Difficult-to-Treat Gouty Arthritis. Joint Bone Spine 2016; 82 Suppl 1:eS30-2. [PMID: 26717800 DOI: 10.1016/s1297-319x(15)30005-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Canakinumab is indicated for patients with frequent gouty arthritis attacks who cannot be managed with standard-of-care medication, and should be used according to the labeled indication. Given its mechanism of action, physicians need to be aware of the potential contraindications and precautions with its use. When deciding as to whether a patient with gouty arthritis is an appropriate candidate for canakinumab treatment, several key clinical considerations should be kept in mind, which are discussed herein.
Collapse
Affiliation(s)
- Thomas Bardin
- Head, Department of Rheumatology, Lariboisière Hospital, Assistance Publique Hôpitaux de Paris, University Paris VII, Paris, France.
| | | |
Collapse
|
7
|
Avram A, Duarte C, Santos MJ, Papagoras C, Ritis K, Scarpioni R, Schmidt WA, Skendros P. Identifying Patient Candidates for IL-1 Inhibition: Lessons From Real-World Cases. Joint Bone Spine 2015; 82 Suppl 1:eS17-eS29. [PMID: 26717798 DOI: 10.1016/s1297-319x(15)30004-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A subgroup of patients with gouty arthritis have a chronic recurring form that is particularly difficult to treat. Such patients experience repeated flares and often have abundant tophi. Many also have underlying comorbidities, such as renal impairment, cardiovascular disease, gastrointestinal disorders, obesity, and hypertension, which contraindicate the use of standard anti-inflammatory medications. Five patients with difficult to treat gouty arthritis who were either candidates and/or treated with anti-IL therapy are described.
Collapse
Affiliation(s)
- Annalina Avram
- Medical Doctor; Immanuel Krankenhaus Berlin, Medical Centre for Rheumatology Berlin - Buch, Berlin, Germany
| | - Cátia Duarte
- Rheumatologist, Rheumatology Department, Centro Hospitalar, Universitario de Coimbra, Coimbra, Portugal
| | - Maria José Santos
- Medical Doctor, Department of Rheumatology, Hospital Garcia de 'Orta, Lisbon, Portugal; University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Charalampos Papagoras
- Rheumatologist, First Department of Internal Medicine and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Konstantinos Ritis
- Professor of Internal Medicine, First Department of Internal Medicine and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Roberto Scarpioni
- Head, Department of Nephrology and Dialysis, Ospedale AUSL "Guglielmo da Saliceto", Piacenza, Italy
| | - Wolfgang A Schmidt
- Deputy Director, Immanuel Krankenhause Berline Medical Centre for Rheumatology Berlin - Buch, Berlin, Germany.
| | - Panagiotis Skendros
- Assistant Professor of Internal Medicine, First Department of Internal Medicine and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| |
Collapse
|
8
|
Andrade-Oliveira V, Câmara NOS, Moraes-Vieira PM. Adipokines as drug targets in diabetes and underlying disturbances. J Diabetes Res 2015; 2015:681612. [PMID: 25918733 PMCID: PMC4397001 DOI: 10.1155/2015/681612] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 03/19/2015] [Indexed: 12/14/2022] Open
Abstract
Diabetes and obesity are worldwide health problems. White fat dynamically participates in hormonal and inflammatory regulation. White adipose tissue is recognized as a multifactorial organ that secretes several adipose-derived factors that have been collectively termed "adipokines." Adipokines are pleiotropic molecules that gather factors such as leptin, adiponectin, visfatin, apelin, vaspin, hepcidin, RBP4, and inflammatory cytokines, including TNF and IL-1β, among others. Multiple roles in metabolic and inflammatory responses have been assigned to these molecules. Several adipokines contribute to the self-styled "low-grade inflammatory state" of obese and insulin-resistant subjects, inducing the accumulation of metabolic anomalies within these individuals, including autoimmune and inflammatory diseases. Thus, adipokines are an interesting drug target to treat autoimmune diseases, obesity, insulin resistance, and adipose tissue inflammation. The aim of this review is to present an overview of the roles of adipokines in different immune and nonimmune cells, which will contribute to diabetes as well as to adipose tissue inflammation and insulin resistance development. We describe how adipokines regulate inflammation in these diseases and their therapeutic implications. We also survey current attempts to exploit adipokines for clinical applications, which hold potential as novel approaches to drug development in several immune-mediated diseases.
Collapse
Affiliation(s)
- Vinícius Andrade-Oliveira
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, SP, Brazil
| | - Niels O. S. Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, SP, Brazil
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, SP, Brazil
| | - Pedro M. Moraes-Vieira
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, USA
- *Pedro M. Moraes-Vieira:
| |
Collapse
|
9
|
Reply: Gout treatment--more tablets might be needed. Nat Rev Rheumatol 2014; 10:193. [PMID: 24468935 DOI: 10.1038/nrrheum.2013.173-c2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|