1
|
Torella MC, Duarte B, Villarroel M, Lasa J, Zubiaurre I. INCREASED RISK OF SYNCHRONOUS COLORECTAL LESIONS IN PATIENTS REFERRED FOR ENDOSCOPIC MUCOSAL RESECTION OF LATERAL SPREADING TUMORS. ARQUIVOS DE GASTROENTEROLOGIA 2019; 56:276-279. [PMID: 31633725 DOI: 10.1590/s0004-2803.201900000-52] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Endoscopic mucosal resection is one of the most frequent therapeutic alternatives for large colorectal lateral spreading tumors. There are few data on the prevalence of synchronous lesions on these patients. OBJECTIVE To describe the prevalence of synchronous colorectal lesions in patients referred for endoscopic mucosal resection of lateral spreading tumors >20 mm. METHODS We reviewed the endoscopic database of our Department and identified adult patients who were referred for the resection of a colorectal lateral spreading tumor >20 mm and had a diagnostic colonoscopy performed up to six months before. The proportion of patients with at least one synchronous lesion was estimated. The following features were compared between patients with and without synchronous lesions: age, gender, bowel preparation quality and cecal intubation on index colonoscopy and therapeutic colonoscopy, serrated adenoma as index lesion. RESULTS From December 2016 to November 2017, we identified 70 patients who fulfilled inclusion criteria. Median size of lesions was 25 mm (20-45). Eighty percent were located in the right colon and 35.71% were serrated adenomas. Synchronous lesion rate was 38.57%. Bowel preparation quality was similar in both groups when comparing both index and therapeutic colonoscopies. Patients with synchronous lesions had a higher proportion of serrated adenoma as index lesion than patients without synchronous lesions [51.85% vs 25.58%, OR 3.13 (1.13-8.68), P=0.03]. CONCLUSION We found a high prevalence of synchronous lesions among patients with a large colorectal lateral spreading tumor. This risk seems to be increased if index lesions are serrated adenomas.
Collapse
Affiliation(s)
| | - Belén Duarte
- Hospital Británico de Buenos Aires, Gastroenterology Department, Buenos Aires, Argentina
| | - Mariano Villarroel
- Hospital Británico de Buenos Aires, Gastroenterology Department, Buenos Aires, Argentina
| | - Juan Lasa
- Hospital Británico de Buenos Aires, Gastroenterology Department, Buenos Aires, Argentina
| | - Ignacio Zubiaurre
- Hospital Británico de Buenos Aires, Gastroenterology Department, Buenos Aires, Argentina
| |
Collapse
|
2
|
Mokarram P, Albokashy M, Zarghooni M, Moosavi MA, Sepehri Z, Chen QM, Hudecki A, Sargazi A, Alizadeh J, Moghadam AR, Hashemi M, Movassagh H, Klonisch T, Owji AA, Łos MJ, Ghavami S. New frontiers in the treatment of colorectal cancer: Autophagy and the unfolded protein response as promising targets. Autophagy 2017; 13:781-819. [PMID: 28358273 PMCID: PMC5446063 DOI: 10.1080/15548627.2017.1290751] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC), despite numerous therapeutic and screening attempts, still remains a major life-threatening malignancy. CRC etiology entails both genetic and environmental factors. Macroautophagy/autophagy and the unfolded protein response (UPR) are fundamental mechanisms involved in the regulation of cellular responses to environmental and genetic stresses. Both pathways are interconnected and regulate cellular responses to apoptotic stimuli. In this review, we address the epidemiology and risk factors of CRC, including genetic mutations leading to the occurrence of the disease. Next, we discuss mutations of genes related to autophagy and the UPR in CRC. Then, we discuss how autophagy and the UPR are involved in the regulation of CRC and how they associate with obesity and inflammatory responses in CRC. Finally, we provide perspectives for the modulation of autophagy and the UPR as new therapeutic options for CRC treatment.
Collapse
Affiliation(s)
- Pooneh Mokarram
- a Colorectal Research Center and Department of Biochemistry , School of Medicine, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mohammed Albokashy
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Maryam Zarghooni
- c Zabol University of Medical Sciences , Zabol , Iran.,d University of Toronto Alumni , Toronto , ON , Canada
| | - Mohammad Amin Moosavi
- e Department of Molecular Medicine , Institute of Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology , Tehran , Iran
| | - Zahra Sepehri
- c Zabol University of Medical Sciences , Zabol , Iran
| | - Qi Min Chen
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | | | | | - Javad Alizadeh
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Adel Rezaei Moghadam
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Mohammad Hashemi
- g Department of Clinical Biochemistry , School of Medicine, Zahedan University of Medical Sciences , Zahedan , Iran
| | - Hesam Movassagh
- h Department of Immunology , Rady Faculty of Health Sciences, College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Thomas Klonisch
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Ali Akbar Owji
- i Department of Clinical Biochemistry , School of Medicine, Shiraz Medical University , Shiraz , Iran
| | - Marek J Łos
- j Małopolska Centre of Biotechnology , Jagiellonian University , Krakow , Poland ; LinkoCare Life Sciences AB , Sweden
| | - Saeid Ghavami
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada.,k Health Policy Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
3
|
Steele SR, Johnson EK, Champagne B, Davis B, Lee S, Rivadeneira D, Ross H, Hayden DA, Maykel JA. Endoscopy and polyps-diagnostic and therapeutic advances in management. World J Gastroenterol 2013; 19:4277-4288. [PMID: 23885138 PMCID: PMC3718895 DOI: 10.3748/wjg.v19.i27.4277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 05/30/2013] [Accepted: 06/10/2013] [Indexed: 02/06/2023] Open
Abstract
Despite multiple efforts aimed at early detection through screening, colon cancer remains the third leading cause of cancer-related deaths in the United States, with an estimated 51000 deaths during 2013 alone. The goal remains to identify and remove benign neoplastic polyps prior to becoming invasive cancers. Polypoid lesions of the colon vary widely from hyperplastic, hamartomatous and inflammatory to neoplastic adenomatous growths. Although these lesions are all benign, they are common, with up to one-quarter of patients over 60 years old will develop pre-malignant adenomatous polyps. Colonoscopy is the most effective screening tool to detect polyps and colon cancer, although several studies have demonstrated missed polyp rates from 6%-29%, largely due to variations in polyp size. This number can be as high as 40%, even with advanced (> 1 cm) adenomas. Other factors including sub-optimal bowel preparation, experience of the endoscopist, and patient anatomical variations all affect the detection rate. Additional challenges in decision-making exist when dealing with more advanced, and typically larger, polyps that have traditionally required formal resection. In this brief review, we will explore the recent advances in polyp detection and therapeutic options.
Collapse
|
4
|
Whitt JD, Li N, Tinsley HN, Chen X, Zhang W, Li Y, Gary BD, Keeton AB, Xi Y, Abadi AH, Grizzle WE, Piazza GA. A novel sulindac derivative that potently suppresses colon tumor cell growth by inhibiting cGMP phosphodiesterase and β-catenin transcriptional activity. Cancer Prev Res (Phila) 2012; 5:822-33. [PMID: 22556201 DOI: 10.1158/1940-6207.capr-11-0559] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been widely reported to inhibit tumor growth by a COX-independent mechanism, although alternative targets have not been well defined or used to develop improved drugs for cancer chemoprevention. Here, we characterize a novel sulindac derivative referred to as sulindac benzylamine (SBA) that does not inhibit COX-1 or COX-2, yet potently inhibits the growth and induces the apoptosis of human colon tumor cells. The basis for this activity appears to involve cyclic guanosine 3',5',-monophosphate phosphodiesterase (cGMP PDE) inhibition as evident by its ability to inhibit cGMP hydrolysis in colon tumor cell lysates and purified cGMP-specific PDE5, increase intracellular cGMP levels, and activate cGMP-dependent protein kinase G at concentrations that suppress tumor cell growth. PDE5 was found to be essential for colon tumor cell growth as determined by siRNA knockdown studies, elevated in colon tumor cells as compared with normal colonocytes, and associated with the tumor selectivity of SBA. SBA activation of PKG may suppress the oncogenic activity of β-catenin as evident by its ability to reduce β-catenin nuclear levels, Tcf (T-cell factor) transcriptional activity, and survivin levels. These events preceded apoptosis induction and appear to result from a rapid elevation of intracellular cGMP levels following cGMP PDE inhibition. We conclude that PDE5 and possibly other cGMP degrading isozymes can be targeted to develop safer and more efficacious NSAID derivatives for colorectal cancer chemoprevention.
Collapse
Affiliation(s)
- Jason D Whitt
- Department of Pharmacology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|