1
|
de Luis DA, Izaola O, Primo D, Ovalle HF, Lopez JJ, Gomez E, Ortola A, Aller R. Biochemical, Anthropometric and Lifestyle Factors Related with Weight Maintenance after Weight Loss Secondary to a Hypocaloric Mediterranean Diet. ANNALS OF NUTRITION AND METABOLISM 2017; 71:217-223. [PMID: 29136612 DOI: 10.1159/000484446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/20/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The aim of our study was to evaluate the influence of lifestyle factors and molecular biomarkers on the maintenance of the weight lost after a hypocaloric Mediterranean diet. DESIGN After 3 months on a diet, patients (n = 335) remained with no controlled diet during 3 years and they were revaluated. RESULTS Using linear regression, in the group of responders, we detected that a positive weight loss at 3 months, serum levels of leptin at 3 months, and each 30 min per week of physical activity were associated with weight loss maintenance. In the model with reduced weight (RW) as dependent variable, a positive weight loss at 3 months was associated with 2.4% RW (95% CI 1.31-8.11; p = 0.015), each unit of serum leptin levels at 3 months with -0.44% RW (95% CI -0.59 to -0.020; p = 0.007), each basal unit homeostasis model assessment for insulin resistance (HOMA-IR) level with -2.32% (95% CI -13.01 to -0.17; p = 0.040), and each 30 min per week of physical activity with 1.58% RW (95% CI 1.08-2.94; p = 0.020). CONCLUSION Obese subjects who are on maintenance weight loss after a dietary intervention appear to have a better initial response during the 3 months intervention, more physical activity at 3 years, and lower basal HOMA-IR and leptin after weight loss than those who regain weight.
Collapse
|
2
|
Meinert C, Gembardt F, Böhme I, Tetzner A, Wieland T, Greenberg B, Walther T. Identification of intracellular proteins and signaling pathways in human endothelial cells regulated by angiotensin-(1-7). J Proteomics 2015; 130:129-39. [PMID: 26388433 DOI: 10.1016/j.jprot.2015.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 08/21/2015] [Accepted: 09/12/2015] [Indexed: 10/23/2022]
Abstract
The study aimed to identify proteins regulated by the cardiovascular protective peptide angiotensin-(1-7) and to determine potential intracellular signaling cascades. Human endothelial cells were stimulated with Ang-(1-7) for 1 h, 3 h, 6 h, and 9 h. Peptide effects on intracellular signaling were assessed via antibody microarray, containing antibodies against 725 proteins. Bioinformatics software was used to identify affected intracellular signaling pathways. Microarray data was verified exemplarily by Western blot, Real-Time RT-PCR, and immunohistochemical studies. The microarray identified 110 regulated proteins after 1 h, 119 after 3 h, 31 after 6 h, and 86 after 9 h Ang-(1-7) stimulation. Regulated proteins were associated with high significance to several metabolic pathways like “Molecular Mechanism of Cancer” and “p53 signaling” in a time dependent manner. Exemplarily, Western blots for the E3-type small ubiquitin-like modifier ligase PIAS2 confirmed the microarray data and displayed a decrease by more than 50% after Ang-(1-7) stimulation at 1 h and 3 h without affecting its mRNA. Immunohistochemical studies with PIAS2 in human endothelial cells showed a decrease in cytoplasmic PIAS2 after Ang-(1-7) treatment. The Ang-(1-7) mediated decrease of PIAS2 was reproduced in other endothelial cell types. The results suggest that angiotensin-(1-7) plays a role in metabolic pathways related to cell death and cell survival in human endothelial cells.
Collapse
Affiliation(s)
- Christian Meinert
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Universität Heidelberg, Germany; Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Florian Gembardt
- Division of Nephrology, Department of Internal Medicine III, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Ilka Böhme
- Department of Obstetrics, Division of Women and Child Health, Universität Leipzig, Leipzig, Germany
| | - Anja Tetzner
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland; Department of Obstetrics, Division of Women and Child Health, Universität Leipzig, Leipzig, Germany
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Universität Heidelberg, Germany
| | - Barry Greenberg
- Division of Cardiology, University of California, San Diego, USA
| | - Thomas Walther
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Universität Heidelberg, Germany; Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland; Department of Obstetrics, Division of Women and Child Health, Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
3
|
Evans TG. Considerations for the use of transcriptomics in identifying the ‘genes that matter’ for environmental adaptation. J Exp Biol 2015; 218:1925-35. [DOI: 10.1242/jeb.114306] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT
Transcriptomics has emerged as a powerful approach for exploring physiological responses to the environment. However, like any other experimental approach, transcriptomics has its limitations. Transcriptomics has been criticized as an inappropriate method to identify genes with large impacts on adaptive responses to the environment because: (1) genes with large impacts on fitness are rare; (2) a large change in gene expression does not necessarily equate to a large effect on fitness; and (3) protein activity is most relevant to fitness, and mRNA abundance is an unreliable indicator of protein activity. In this review, these criticisms are re-evaluated in the context of recent systems-level experiments that provide new insight into the relationship between gene expression and fitness during environmental stress. In general, these criticisms remain valid today, and indicate that exclusively using transcriptomics to screen for genes that underlie environmental adaptation will overlook constitutively expressed regulatory genes that play major roles in setting tolerance limits. Standard practices in transcriptomic data analysis pipelines may also be limiting insight by prioritizing highly differentially expressed and conserved genes over those genes that undergo moderate fold-changes and cannot be annotated. While these data certainly do not undermine the continued and widespread use of transcriptomics within environmental physiology, they do highlight the types of research questions for which transcriptomics is best suited and the need for more gene functional analyses. Such information is pertinent at a time when transcriptomics has become increasingly tractable and many researchers may be contemplating integrating transcriptomics into their research programs.
Collapse
|
4
|
Riffle BW, Klinefelter GR, Cooper RL, Winnik WM, Swank A, Jayaraman S, Suarez J, Best D, Laws SC. Novel molecular events associated with altered steroidogenesis induced by exposure to atrazine in the intact and castrate male rat. Reprod Toxicol 2014; 47:59-69. [DOI: 10.1016/j.reprotox.2014.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/15/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
|
5
|
Barasa B, Slijper M. Challenges for red blood cell biomarker discovery through proteomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:1003-10. [PMID: 24129076 DOI: 10.1016/j.bbapap.2013.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/11/2013] [Accepted: 10/01/2013] [Indexed: 12/23/2022]
Abstract
Red blood cells are rather unique body cells, since they have lost all organelles when mature, which results in lack of potential to replace proteins that have lost their function. They maintain only a few pathways for obtaining energy and reducing power for the key functions they need to fulfill. This makes RBCs highly sensitive to any aberration. If so, these RBCs are quickly removed from circulation, but if the RBC levels reduce extremely fast, this results in hemolytic anemia. Several causes of HA exist, and proteome analysis is the most straightforward way to obtain deeper insight into RBC functioning under the stress of disease. This should result in discovery of biomarkers, typical for each source of anemia. In this review, several challenges to generate in-depth RBC proteomes are described, like to obtain pure RBCs, to overcome the wide dynamic range in protein expression, and to establish which of the identified/quantified proteins are active in RBCs. The final challenge is to acquire and validate suited biomarkers unique for the changes that occur for each of the clinical questions; in red blood cell aging (also important for transfusion medicine), for thalassemias or sickle cell disease. Biomarkers for other hemolytic anemias that are caused by dysfunction of RBC membrane proteins (the RBC membrane defects) or RBC cytosolic proteins (the enzymopathies) are sometimes even harder to discover, in particular for the patients with RBC rare diseases with unknown cause. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
Collapse
Affiliation(s)
- Benjamin Barasa
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, The Netherlands
| | - Monique Slijper
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, The Netherlands.
| |
Collapse
|
6
|
Evans TG, Hofmann GE. Defining the limits of physiological plasticity: how gene expression can assess and predict the consequences of ocean change. Philos Trans R Soc Lond B Biol Sci 2012; 367:1733-45. [PMID: 22566679 PMCID: PMC3350660 DOI: 10.1098/rstb.2012.0019] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Anthropogenic stressors, such as climate change, are driving fundamental shifts in the abiotic characteristics of marine ecosystems. As the environmental aspects of our world's oceans deviate from evolved norms, of major concern is whether extant marine species possess the capacity to cope with such rapid change. In what many scientists consider the post-genomic era, tools that exploit the availability of DNA sequence information are being increasingly recognized as relevant to questions surrounding ocean change and marine conservation. In this review, we highlight the application of high-throughput gene-expression profiling, primarily transcriptomics, to the field of marine conservation physiology. Through the use of case studies, we illustrate how gene expression can be used to standardize metrics of sub-lethal stress, track organism condition in natural environments and bypass phylogenetic barriers that hinder the application of other physiological techniques to conservation. When coupled with fine-scale monitoring of environmental variables, gene-expression profiling provides a powerful approach to conservation capable of informing diverse issues related to ocean change, from coral bleaching to the spread of invasive species. Integrating novel approaches capable of improving existing conservation strategies, including gene-expression profiling, will be critical to ensuring the ecological and economic health of the global ocean.
Collapse
Affiliation(s)
- Tyler G Evans
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9620, USA.
| | | |
Collapse
|
7
|
Pilot and feasibility study: comparative proteomic analysis by 2-DE MALDI TOF/TOF MS reveals 14-3-3 proteins as putative biomarkers of response to neoadjuvant chemotherapy in ER-positive breast cancer. J Proteomics 2012; 75:2745-52. [PMID: 22498883 DOI: 10.1016/j.jprot.2012.03.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 12/20/2022]
Abstract
Neoadjuvant chemotherapy is used to treat oestrogen receptor-positive breast cancer however chemo-resistance is a major obstacle in this molecular subtype. The ability to predict tumour response would allow chemotherapy administration to be directed towards patients who would most benefit, thus maximising treatment efficacy. We aimed to identify protein biomarkers associated with response to neoadjuvant chemotherapy, in a pilot study using comparative 2-DE MALDI TOF/TOF MS proteomic analysis of breast tumour samples. A total of 3 comparative proteomic experiments were performed, comparing protein expression between chemotherapy-sensitive and chemotherapy-resistant oestrogen receptor-positive invasive ductal carcinoma tissue samples. This identified a list of 132 unique proteins that were significantly differentially expressed (≥ 2 fold) in chemotherapy resistant samples, 57 of which were identified in at least two experiments. Ingenuity® Pathway Analysis was used to map the 57 DEPs onto canonical signalling pathways. We implicate several isoforms of 14-3-3 family proteins (theta/tau, gamma, epsilon, beta/alpha and zeta/delta), which have previously been associated with chemotherapy resistance in breast cancer. Extensive clinical validation is now required to fully assess the role of these proteins as putative markers of chemotherapy response in luminal breast cancer subtypes.
Collapse
|
8
|
Scaife L, Hodgkinson VC, Drew PJ, Lind MJ, Cawkwell L. Differential proteomics in the search for biomarkers of radiotherapy resistance. Expert Rev Proteomics 2011; 8:535-52. [PMID: 21819306 DOI: 10.1586/epr.11.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The individualization of radiotherapy treatment would be beneficial for cancer patients; however, there are no predictive biomarkers of radiotherapy resistance in routine clinical use. This article describes the body of work in this field where comparative proteomics methods have been used for the discovery of putative biomarkers associated with radiotherapy resistance. A large number of differentially expressed proteins have been reported, mostly from the study of novel radiotherapy-resistant cell lines. Here, we have assessed these putative biomarkers through the discovery, confirmation and validation phases of the biomarker pipeline, and inform the reader on the current status of proteomics-based findings. Suggested avenues for future work are discussed.
Collapse
Affiliation(s)
- Lucy Scaife
- Cancer Biology Proteomics Group, Postgraduate Medical Institute of the University of Hull, UK
| | | | | | | | | |
Collapse
|
9
|
Repeatedly identified differentially expressed proteins (RIDEPs) from antibody microarray proteomic analysis. J Proteomics 2011; 74:698-703. [DOI: 10.1016/j.jprot.2011.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/19/2011] [Accepted: 02/14/2011] [Indexed: 02/08/2023]
|
10
|
English JA, Pennington K, Dunn MJ, Cotter DR. The neuroproteomics of schizophrenia. Biol Psychiatry 2011; 69:163-72. [PMID: 20887976 DOI: 10.1016/j.biopsych.2010.06.031] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/02/2010] [Accepted: 06/18/2010] [Indexed: 11/30/2022]
Abstract
Proteomics is the study of global gene expression of an organ, body system, fluid, or cellular compartment at the protein level. Proteomic findings are reflective of complex gene × environment interactions, and the importance of this is increasingly appreciated in schizophrenia research. In this review, we outline the main proteomic methods available to researchers in this area and summarize, for the first time, the findings of the main quantitative neuroproteomic investigations of schizophrenia brain. Our review of these data revealed 16 gray matter proteins, and eight white matter proteins that were differentially expressed in the same direction in two or more investigations. Pathway analysis identified cellular assembly and organization as particularly disrupted in both gray and white matter, whereas the glycolysis-gluconeogenesis pathway was the major signaling pathway significantly altered in both. Reassuringly, these findings show remarkable convergence with functional pathways and positional candidate genes implicated from genomic studies. The specificity of schizophrenia proteomic findings are also addressed in the context of neuroproteomic investigations of neurodegenerative disorders and bipolar disorder. Finally, we discuss the major challenges in the field of neuroproteomics, such as the need for high throughput validation methods and optimal sample preparation. Future directions in the neuroproteomics of schizophrenia, including the use of blood-based biomarker work, the need to focus on subproteomes, and the increasing use of mass spectrometry-based methods are all discussed. This area of research is still in its infancy and offers huge potential to our understanding of schizophrenia on a cellular level.
Collapse
Affiliation(s)
- Jane A English
- Proteome Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, and Medical Sciences, University College Dublin, Ireland
| | | | | | | |
Collapse
|
11
|
Bouwman FG, van Ginneken MME, Noben JP, Royackers E, de Graaf-Roelfsema E, Wijnberg ID, van der Kolk JH, Mariman ECM, van Breda E. Differential expression of equine muscle biopsy proteins during normal training and intensified training in young standardbred horses using proteomics technology. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2009; 5:55-64. [PMID: 20374942 DOI: 10.1016/j.cbd.2009.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/05/2009] [Accepted: 11/06/2009] [Indexed: 11/26/2022]
Abstract
The major aim of the present study was to investigate the proteome of standardbred horses at different stages of training and intensified training. We searched for biomarkers using small skeletal muscle biopsies of live animals. 2D gel electrophoresis and mass spectrometry were successfully applied to investigate training-induced differential expression of equine muscle biopsy proteins. Despite the poor resolution of the equine genome and proteome, we were able to identify the proteins of 20 differential spots representing 16 different proteins. Evaluation of those proteins complies with adaptation of the skeletal muscle after normal training involving structural changes towards a higher oxidative capacity, an increased capacity to take up long-chain fatty acids, and to store energy in the form of glycogen. Intensified training leads to additional changed spots. Alpha-1-antitrypsin was found increased after intensified training but not after normal training. This protein may thus be considered as a marker for overtraining in horses and also linked to overtraining in human athletes.
Collapse
Affiliation(s)
- Freek G Bouwman
- NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Human Biology, Maastricht University Medical Centre+, PO BOX 616, NL-6200MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|