1
|
Bellanti R, Keddie S, Lunn MP, Rinaldi S. Ultrasensitive assay technology and fluid biomarkers for the evaluation of peripheral nerve disease. J Neurol Neurosurg Psychiatry 2024; 95:114-124. [PMID: 37821222 DOI: 10.1136/jnnp-2023-332031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 10/13/2023]
Abstract
The field of biomarker discovery is rapidly expanding. The introduction of ultrasensitive immunoassays and the growing precision of genetic technologies are poised to revolutionise the assessment and monitoring of many diseases. Given the difficulties in imaging and tissue diagnosis, there is mounting interest in serum and cerebrospinal fluid biomarkers of peripheral neuropathy. Realised and potential fluid biomarkers of peripheral nerve disease include neuronal biomarkers of axonal degeneration, glial biomarkers for peripheral demyelinating disorders, immunopathogenic biomarkers (such as the presence and titre of antibodies or the levels of cytokines) and genetic biomarkers. Several are already starting to inform clinical practice, whereas others remain under evaluation as potential indicators of disease activity and treatment response. As more biomarkers become available for clinical use, it has become increasingly difficult for clinicians and researchers to keep up-to-date with the most recent discovery and interpretation. In this review, we aim to inform practising neurologists, neuroscientists and other clinicians about recent advances in fluid biomarker technology, with a focus on single molecule arrays (Simoa), chemiluminescent enzyme immunoassays (CLEIA), electrochemiluminescence (ECL), proximity extension assays (PEA), and microfluidic technology. We discuss established and emerging fluid biomarkers of peripheral neuropathy, their clinical applications, limitations and potential future developments.
Collapse
Affiliation(s)
- Roberto Bellanti
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Stephen Keddie
- Department of Neuromuscular Diseases, The Royal London Hospital, London, UK
| | - Michael P Lunn
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
- Department of Neuroinflammation, National Hospital for Neurology and Neurosurgery, London, UK
| | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Petrova R, Patil AR, Trinh V, McElroy KE, Bhakta M, Tien J, Wilson DS, Warren L, Stratton JR. Disease pathology signatures in a mouse model of Mucopolysaccharidosis type IIIB. Sci Rep 2023; 13:16699. [PMID: 37794029 PMCID: PMC10550979 DOI: 10.1038/s41598-023-42431-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/10/2023] [Indexed: 10/06/2023] Open
Abstract
Mucopolysaccharidosis type IIIB (MPS IIIB) is a rare and devastating childhood-onset lysosomal storage disease caused by complete loss of function of the lysosomal hydrolase α-N-acetylglucosaminidase. The lack of functional enzyme in MPS IIIB patients leads to the progressive accumulation of heparan sulfate throughout the body and triggers a cascade of neuroinflammatory and other biochemical processes ultimately resulting in severe mental impairment and early death in adolescence or young adulthood. The low prevalence and severity of the disease has necessitated the use of animal models to improve our knowledge of the pathophysiology and for the development of therapeutic treatments. In this study, we took a systematic approach to characterizing a classical mouse model of MPS IIIB. Using a series of histological, biochemical, proteomic and behavioral assays, we tested MPS IIIB mice at two stages: during the pre-symptomatic and early symptomatic phases of disease development, in order to validate previously described phenotypes, explore new mechanisms of disease pathology and uncover biomarkers for MPS IIIB. Along with previous findings, this study helps provide a deeper understanding of the pathology landscape of this rare disease with high unmet medical need and serves as an important resource to the scientific community.
Collapse
Affiliation(s)
- Ralitsa Petrova
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA.
| | - Abhijeet R Patil
- Genomics and Computational Biology, Teva Pharmaceutical Industries Ltd, West Chester, PA, USA
| | - Vivian Trinh
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA
| | - Kathryn E McElroy
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA
| | - Minoti Bhakta
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA
| | - Jason Tien
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA
| | - David S Wilson
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA
| | - Liling Warren
- Genomics and Computational Biology, Teva Pharmaceutical Industries Ltd, West Chester, PA, USA
| | - Jennifer R Stratton
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA.
| |
Collapse
|
3
|
Jin Y, Huang Z, Xu B, Chen J. Localization of multiple DNAzymes as a branchedzyme-powered nanodevice for the immunoassay of tumor biomarkers. Anal Chim Acta 2023; 1274:341580. [PMID: 37455088 DOI: 10.1016/j.aca.2023.341580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Traditional immunoassay methods often face challenges due to the labeling procedure of protein enzymes, the use of multiple antibodies, and severe conditions. To address these limitations, we propose the concept of incorporating branchedzyme-powered nanodevices into immunoassays. In this strategy, multiple DNAzymes are localized onto gold nanoparticles (AuNPs) along with substrates. The localization format facilitates intramolecular reactions between DNAzymes and substrates, leading to accelerated kinetics of the nanodevice. Upon the formation of an immunocomplex with an antibody on a 96-well plate, the branchedzyme-powered nanodevice catalytically releases multiple fluorescent signals under ambient temperature, eliminating the need for secondary antibodies. The branched DNAzymes exhibit catalytic properties similar to those of protein enzymes, thus simplifying the assay procedure and achieving isothermal detection. Furthermore, the detection process can be controlled by the addition or deletion of cofactors. Additionally, the affinity ligand can be easily modified to construct nanodevices specific to different targets without requiring extensive redesign. This strategy has demonstrated successful quantification of tumor biomarkers such as alpha-fetoprotein (AFP) and prostate-specific antigen (PSA) at subpicomolar concentrations, showcasing its suitability for clinical applications. Consequently, the branchedzyme-powered nanodevice represents a valuable addition to the immunoassay toolbox, opening new possibilities for clinical diagnostics.
Collapse
Affiliation(s)
- Yanwen Jin
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan Universtity, Chengdu, Sichuan, 610064, China
| | - Zhuochun Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan Universtity, Chengdu, Sichuan, 610064, China
| | - Bingyan Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan Universtity, Chengdu, Sichuan, 610064, China
| | - Junbo Chen
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
4
|
Zhang J, Lu Y, Gao W, Yang P, Cheng N, Jin Y, Chen J. Structure-switching locked hairpin triggered rolling circle amplification for ochratoxin A (OTA) detection by ICP-MS. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Ren AH, Diamandis EP, Kulasingam V. Uncovering the Depths of the Human Proteome: Antibody-based Technologies for Ultrasensitive Multiplexed Protein Detection and Quantification. Mol Cell Proteomics 2021; 20:100155. [PMID: 34597790 PMCID: PMC9357438 DOI: 10.1016/j.mcpro.2021.100155] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/01/2021] [Accepted: 09/25/2021] [Indexed: 12/20/2022] Open
Abstract
Probing the human proteome in tissues and biofluids such as plasma is attractive for biomarker and drug target discovery. Recent breakthroughs in multiplex, antibody-based, proteomics technologies now enable the simultaneous quantification of thousands of proteins at as low as sub fg/ml concentrations with remarkable dynamic ranges of up to 10-log. We herein provide a comprehensive guide to the methodologies, performance, technical comparisons, advantages, and disadvantages of established and emerging technologies for the multiplexed ultrasensitive measurement of proteins. Gaining holistic knowledge on these innovations is crucial for choosing the right multiplexed proteomics tool for applications at hand to critically complement traditional proteomics methods. This can bring researchers closer than ever before to elucidating the intricate inner workings and cross talk that spans multitude of proteins in disease mechanisms.
Collapse
Affiliation(s)
- Annie H Ren
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| |
Collapse
|
6
|
Sundah NR, Ho NRY, Lim GS, Natalia A, Ding X, Liu Y, Seet JE, Chan CW, Loh TP, Shao H. Barcoded DNA nanostructures for the multiplexed profiling of subcellular protein distribution. Nat Biomed Eng 2019; 3:684-694. [PMID: 31285580 DOI: 10.1038/s41551-019-0417-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 05/14/2019] [Indexed: 11/09/2022]
Abstract
Massively parallel DNA sequencing is established, yet high-throughput protein profiling remains challenging. Here, we report a barcoding approach that leverages the combinatorial sequence content and the configurational programmability of DNA nanostructures for high-throughput multiplexed profiling of the subcellular expression and distribution of proteins in whole cells. The barcodes are formed by in situ hybridization of tetrahedral DNA nanostructures and short DNA sequences conjugated with protein-targeting antibodies, and by nanostructure-assisted ligation (either enzymatic or chemical) of the nanostructures and exogenous DNA sequences bound to nanoparticles of different sizes (which cause these localization sequences to differentially distribute across subcellular compartments). Compared with linear DNA barcoding, the nanostructured barcodes enhance the signal by more than 100-fold. By implementing the barcoding approach on a microfluidic device for the analysis of rare patient samples, we show that molecular subtypes of breast cancer can be accurately classified and that subcellular spatial markers of disease aggressiveness can be identified.
Collapse
Affiliation(s)
- Noah R Sundah
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore.,Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Nicholas R Y Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Geok Soon Lim
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Xianguang Ding
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Yu Liu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore.,Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Ju Ee Seet
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Ching Wan Chan
- Department of Surgery, National University Hospital, Singapore, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tze Ping Loh
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.,Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Huilin Shao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore. .,Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore. .,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore. .,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Visual and modular detection of pathogen nucleic acids with enzyme-DNA molecular complexes. Nat Commun 2018; 9:3238. [PMID: 30104566 PMCID: PMC6089962 DOI: 10.1038/s41467-018-05733-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
Rapid, visual detection of pathogen nucleic acids has broad applications in infection management. Here we present a modular detection platform, termed enzyme-assisted nanocomplexes for visual identification of nucleic acids (enVision). The system consists of an integrated circuit of enzyme–DNA nanostructures, which function as independent recognition and signaling elements, for direct and versatile detection of pathogen nucleic acids from infected cells. The built-in enzymatic cascades produce a rapid color readout for the naked eye; the assay is thus fast (<2 h), sensitive (<10 amol), and readily quantified with smartphones. When implemented on a configurable microfluidic platform, the technology demonstrates superior programmability to perform versatile computations, for detecting diverse pathogen targets and their virus–host genome integration loci. We further design the enVision platform for molecular-typing of infections in patient endocervical samples. The technology not only improves the clinical inter-subtype differentiation, but also expands the intra-subtype coverage to identify previously undetectable infections. Rapid, visual detection of pathogens is important for point-of-care diagnostics. Here the authors present enVision, which uses enzyme-DNA complexes to detect pathogen nucleic acids and provide a rapid, smartphone compatible readout.
Collapse
|
8
|
Immuno-detection by sequencing enables large-scale high-dimensional phenotyping in cells. Nat Commun 2018; 9:2384. [PMID: 29921844 PMCID: PMC6008431 DOI: 10.1038/s41467-018-04761-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/20/2018] [Indexed: 12/24/2022] Open
Abstract
Cell-based small molecule screening is an effective strategy leading to new medicines. Scientists in the pharmaceutical industry as well as in academia have made tremendous progress in developing both large-scale and smaller-scale screening assays. However, an accessible and universal technology for measuring large numbers of molecular and cellular phenotypes in many samples in parallel is not available. Here we present the immuno-detection by sequencing (ID-seq) technology that combines antibody-based protein detection and DNA-sequencing via DNA-tagged antibodies. We use ID-seq to simultaneously measure 70 (phospho-)proteins in primary human epidermal stem cells to screen the effects of ~300 kinase inhibitor probes to characterise the role of 225 kinases. The results show an association between decreased mTOR signalling and increased differentiation and uncover 13 kinases potentially regulating epidermal renewal through distinct mechanisms. Taken together, our work establishes ID-seq as a flexible solution for large-scale high-dimensional phenotyping in fixed cell populations. Detecting proteins and post-translational modifications is important for drug screens, but the number of proteins measurable simultaneously is limited. Here the authors use antibodies tagged with DNA barcodes and high-throughput sequencing to detect up to 70 (phospho-)proteins in stem cells.
Collapse
|
9
|
Kim D, Jetson RR, Krusemark CJ. A DNA-assisted immunoassay for enzyme activity via a DNA-linked, activity-based probe. Chem Commun (Camb) 2018; 53:9474-9477. [PMID: 28795701 DOI: 10.1039/c7cc05236g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we describe an immunoassay approach for the detection of enzyme activity by quantitative PCR (qPCR) or parallel DNA sequencing which relies on activity-based probes linked to barcoding DNAs. We demonstrate this technique in the detection of serine hydrolase activities using a fluorophosphonate-oligonucleotide conjugate.
Collapse
Affiliation(s)
- Dongwook Kim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
10
|
Sarkar S, Sabhachandani P, Konry T. Isothermal Amplification Strategies for Detection in Microfluidic Devices. Trends Biotechnol 2017; 35:186-189. [DOI: 10.1016/j.tibtech.2016.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 11/25/2022]
|
11
|
Liu Z, Liu Y, Sun Y, Chen G, Chen Y. Double-stranded DNA-scaffolded fluorescent probes for fluorescence imaging of cell-surface molecules. RSC Adv 2017. [DOI: 10.1039/c7ra09869c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Double-stranded DNA-scaffolded fluorescent probes were developed for fluorescence imaging of molecules on cell surfaces.
Collapse
Affiliation(s)
- Zhanghua Liu
- Nanoscale Science and Technology Laboratory
- Institute for Advanced Study
- Nanchang University
- Nanchang
- P. R. China
| | - Yang Liu
- Nanoscale Science and Technology Laboratory
- Institute for Advanced Study
- Nanchang University
- Nanchang
- P. R. China
| | - Yanan Sun
- Nanoscale Science and Technology Laboratory
- Institute for Advanced Study
- Nanchang University
- Nanchang
- P. R. China
| | - Guo Chen
- Nanoscale Science and Technology Laboratory
- Institute for Advanced Study
- Nanchang University
- Nanchang
- P. R. China
| | - Yong Chen
- Nanoscale Science and Technology Laboratory
- Institute for Advanced Study
- Nanchang University
- Nanchang
- P. R. China
| |
Collapse
|
12
|
Jetson RR, Krusemark CJ. Sensing Enzymatic Activity by Exposure and Selection of DNA-Encoded Probes. Angew Chem Int Ed Engl 2016; 55:9562-6. [PMID: 27355201 PMCID: PMC5402352 DOI: 10.1002/anie.201603387] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/11/2016] [Indexed: 11/05/2022]
Abstract
A sensing approach is applied to encode quantitative enzymatic activity information into DNA sequence populations. The method utilizes DNA-linked peptide substrates as activity probes. Signal detection involves chemical manipulation of a probe population downstream of sample exposure and application of purifying, selective pressure for enzyme products. Selection-induced changes in DNA abundance indicate sample activity. The detection of protein kinase, protease, and farnesyltransferase activities is demonstrated. The assays were employed to measure enzyme inhibition by small molecules and activity in cell lysates using parallel DNA sequencing or quantitative PCR. This strategy will allow the extensive infrastructure for genetic analysis to be applied to proteomic assays, which has a number of advantages in throughput, sensitivity, and sample multiplexing.
Collapse
Affiliation(s)
- Rachael R Jetson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47905, USA
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47905, USA.
| |
Collapse
|
13
|
Wen G, Ju H. Enhanced Photoelectrochemical Proximity Assay for Highly Selective Protein Detection in Biological Matrixes. Anal Chem 2016; 88:8339-45. [DOI: 10.1021/acs.analchem.6b02740] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Guangming Wen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
- School
of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Huangxian Ju
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
14
|
|
15
|
Spengler M, Adler M, Niemeyer CM. Highly sensitive ligand-binding assays in pre-clinical and clinical applications: immuno-PCR and other emerging techniques. Analyst 2016. [PMID: 26196036 DOI: 10.1039/c5an00822k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recombinant DNA technology and corresponding innovations in molecular biology, chemistry and medicine have led to novel therapeutic biomacromolecules as lead candidates in the pharmaceutical drug development pipelines. While monoclonal antibodies and other proteins provide therapeutic potential beyond the possibilities of small molecule drugs, the concomitant demand for supportive bioanalytical sample testing creates multiple novel challenges. For example, intact macromolecules can usually not be quantified by mass-spectrometry without enzymatic digestion and isotopically labeled internal standards are costly and/or difficult to prepare. Classical ELISA-type immunoassays, on the other hand, often lack the sensitivity required to obtain pharmacokinetics of low dosed drugs or pharmacodynamics of suitable biomarkers. Here we summarize emerging state-of-the-art ligand-binding assay technologies for pharmaceutical sample testing, which reveal enhanced analytical sensitivity over classical ELISA formats. We focus on immuno-PCR, which combines antibody specificity with the extremely sensitive detection of a tethered DNA marker by quantitative PCR, and alternative nucleic acid-based technologies as well as methods based on electrochemiluminescence or single-molecule counting. Using case studies, we discuss advantages and drawbacks of these methods for preclinical and clinical sample testing.
Collapse
Affiliation(s)
- Mark Spengler
- Chimera Biotec GmbH, Emil-Figge-Str. 76 A, D-44227 Dortmund, Germany.
| | | | | |
Collapse
|
16
|
McGinn S, Bauer D, Brefort T, Dong L, El-Sagheer A, Elsharawy A, Evans G, Falk-Sörqvist E, Forster M, Fredriksson S, Freeman P, Freitag C, Fritzsche J, Gibson S, Gullberg M, Gut M, Heath S, Heath-Brun I, Heron AJ, Hohlbein J, Ke R, Lancaster O, Le Reste L, Maglia G, Marie R, Mauger F, Mertes F, Mignardi M, Moens L, Oostmeijer J, Out R, Pedersen JN, Persson F, Picaud V, Rotem D, Schracke N, Sengenes J, Stähler PF, Stade B, Stoddart D, Teng X, Veal CD, Zahra N, Bayley H, Beier M, Brown T, Dekker C, Ekström B, Flyvbjerg H, Franke A, Guenther S, Kapanidis AN, Kaye J, Kristensen A, Lehrach H, Mangion J, Sauer S, Schyns E, Tost J, van Helvoort JMLM, van der Zaag PJ, Tegenfeldt JO, Brookes AJ, Mir K, Nilsson M, Willcocks JP, Gut IG. New technologies for DNA analysis--a review of the READNA Project. N Biotechnol 2015; 33:311-30. [PMID: 26514324 DOI: 10.1016/j.nbt.2015.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/17/2015] [Indexed: 01/09/2023]
Abstract
The REvolutionary Approaches and Devices for Nucleic Acid analysis (READNA) project received funding from the European Commission for 41/2 years. The objectives of the project revolved around technological developments in nucleic acid analysis. The project partners have discovered, created and developed a huge body of insights into nucleic acid analysis, ranging from improvements and implementation of current technologies to the most promising sequencing technologies that constitute a 3(rd) and 4(th) generation of sequencing methods with nanopores and in situ sequencing, respectively.
Collapse
Affiliation(s)
- Steven McGinn
- CEA - Centre National de Génotypage, 2, rue Gaston Cremieux, 91057 Evry Cedex, France
| | - David Bauer
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Thomas Brefort
- Comprehensive Biomarker Center GmbH, Im Neuenheimer Feld 583, D-69120 Heidelberg, Germany
| | - Liqin Dong
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Afaf El-Sagheer
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK; Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford OX1 3TA, UK; Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Abdou Elsharawy
- Institute of Clinical Molecular Biology, Christian-Albrechts-University (CAU), Am Botanischen Garten 11, D-24118 Kiel, Germany; Faculty of Sciences, Division of Biochemistry, Chemistry Department, Damietta University, New Damietta City, Egypt
| | - Geraint Evans
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, Parks Road, Oxford OX1 3PU, UK
| | - Elin Falk-Sörqvist
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University (CAU), Am Botanischen Garten 11, D-24118 Kiel, Germany
| | | | - Peter Freeman
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Camilla Freitag
- Department of Physics, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Joachim Fritzsche
- Department of Applied Physics, Chalmers University of Technology, Kemivägen 10, 412 96 Göteborg, Sweden
| | - Spencer Gibson
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Mats Gullberg
- Olink AB, Dag Hammarskjölds väg 52A, 752 37 Uppsala, Sweden
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, C/Baldiri Reixac 7, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Simon Heath
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, C/Baldiri Reixac 7, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Isabelle Heath-Brun
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, C/Baldiri Reixac 7, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Andrew J Heron
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Johannes Hohlbein
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, Parks Road, Oxford OX1 3PU, UK
| | - Rongqin Ke
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, Se-171 21 Solna, Sweden; Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Owen Lancaster
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Ludovic Le Reste
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, Parks Road, Oxford OX1 3PU, UK
| | - Giovanni Maglia
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Rodolphe Marie
- DTU Nanotech, Oerstedsplads Building 345 East, 2800, Kongens Lyngby, Denmark
| | - Florence Mauger
- CEA - Centre National de Génotypage, 2, rue Gaston Cremieux, 91057 Evry Cedex, France
| | - Florian Mertes
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Marco Mignardi
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, Se-171 21 Solna, Sweden; Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Lotte Moens
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | | | - Ruud Out
- FlexGen BV, Galileiweg 8, 2333 BD Leiden, The Netherlands
| | | | - Fredrik Persson
- Department of Physics, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Vincent Picaud
- CEA-Saclay, Bât DIGITEO 565 - Pt Courrier 192, 91191 Gif-sur-Yvette Cedex, France
| | - Dvir Rotem
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Nadine Schracke
- Comprehensive Biomarker Center GmbH, Im Neuenheimer Feld 583, D-69120 Heidelberg, Germany
| | - Jennifer Sengenes
- CEA - Centre National de Génotypage, 2, rue Gaston Cremieux, 91057 Evry Cedex, France
| | - Peer F Stähler
- Comprehensive Biomarker Center GmbH, Im Neuenheimer Feld 583, D-69120 Heidelberg, Germany
| | - Björn Stade
- Institute of Clinical Molecular Biology, Christian-Albrechts-University (CAU), Am Botanischen Garten 11, D-24118 Kiel, Germany
| | - David Stoddart
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Xia Teng
- FlexGen BV, Galileiweg 8, 2333 BD Leiden, The Netherlands
| | - Colin D Veal
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Nathalie Zahra
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Markus Beier
- Comprehensive Biomarker Center GmbH, Im Neuenheimer Feld 583, D-69120 Heidelberg, Germany
| | - Tom Brown
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK; Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford OX1 3TA, UK
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Björn Ekström
- Olink AB, Dag Hammarskjölds väg 52A, 752 37 Uppsala, Sweden
| | - Henrik Flyvbjerg
- DTU Nanotech, Oerstedsplads Building 345 East, 2800, Kongens Lyngby, Denmark
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University (CAU), Am Botanischen Garten 11, D-24118 Kiel, Germany
| | - Simone Guenther
- Thermo Fisher Scientific Frankfurter Straße 129B, 64293 Darmstadt, Germany
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, Parks Road, Oxford OX1 3PU, UK
| | - Jane Kaye
- HeLEX - Centre for Health, Law and Emerging Technologies, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| | - Anders Kristensen
- DTU Nanotech, Oerstedsplads Building 345 East, 2800, Kongens Lyngby, Denmark
| | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Jonathan Mangion
- Thermo Fisher Scientific Frankfurter Straße 129B, 64293 Darmstadt, Germany
| | - Sascha Sauer
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Emile Schyns
- PHOTONIS France S.A.S. Avenue Roger Roncier, 19100 Brive B.P. 520, 19106 BRIVE Cedex, France
| | - Jörg Tost
- CEA - Centre National de Génotypage, 2, rue Gaston Cremieux, 91057 Evry Cedex, France
| | | | - Pieter J van der Zaag
- Philips Research Laboratories, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Jonas O Tegenfeldt
- Division of Solid State Physics and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | | | - Kalim Mir
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, Se-171 21 Solna, Sweden; Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - James P Willcocks
- Oxford Nanopore Technologies, Edmund Cartwright House, 4 Robert Robinson Avenue, Oxford Science Park, Oxford OX4 4GA, UK
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, C/Baldiri Reixac 7, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
17
|
Li H, Sun Y, Elseviers J, Muyldermans S, Liu S, Wan Y. A nanobody-based electrochemiluminescent immunosensor for sensitive detection of human procalcitonin. Analyst 2015; 139:3718-21. [PMID: 24931592 DOI: 10.1039/c4an00626g] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of a nanobody-based electrochemiluminescent immunosensor for procalcitonin quantification is described. A highly specific and enhanced sensitivity of target detection was achieved by CdTe quantum dot encapsulated silica nanoparticle-assisted signal amplification.
Collapse
Affiliation(s)
- Henan Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | | | | | | | | | | |
Collapse
|
18
|
Fischer SK, Joyce A, Spengler M, Yang TY, Zhuang Y, Fjording MS, Mikulskis A. Emerging technologies to increase ligand binding assay sensitivity. AAPS JOURNAL 2014; 17:93-101. [PMID: 25331105 DOI: 10.1208/s12248-014-9682-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/02/2014] [Indexed: 02/07/2023]
Abstract
Ligand binding assays (LBAs) have been the method of choice for protein analyte measurements for more than four decades. Over the years, LBA methods have improved in sensitivity and achieved larger dynamic ranges by using alternative detection systems and new technologies. As a consequence, the landscape and application of immunoassay platforms has changed dramatically. The introduction of bead-based methods, coupled with single molecule detection standardization and the ability to amplify assay signals, has improved the sensitivity of many immunoassays, in some cases by several logs of magnitude. Three promising immunoassay platforms are described in this article: Single Molecule Counting (SMC™) from Singulex Inc, Single Molecule Arrays (Simoa™) from Quanterix Corporation, and Immuno-PCR (Imperacer®) from Chimera Biotec GmbH. These platforms have the potential to significantly improve immunoassay sensitivity and thereby address the bioanalytical needs and challenges faced during biopharmaceutical drug development.
Collapse
Affiliation(s)
- Saloumeh K Fischer
- Department of BioAnalytical Sciences, Genentech, 1 DNA Way, South San Francisco, California, 94080-4990, USA,
| | | | | | | | | | | | | |
Collapse
|
19
|
Besseris GJ. A fast-and-robust profiler for improving polymerase chain reaction diagnostics. PLoS One 2014; 9:e108973. [PMID: 25269015 PMCID: PMC4182614 DOI: 10.1371/journal.pone.0108973] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 09/04/2014] [Indexed: 11/23/2022] Open
Abstract
Polymerase chain reaction (PCR) is an in vitro technology in molecular genetics that progressively amplifies minimal copies of short DNA sequences in a fast and inexpensive manner. However, PCR performance is sensitive to suboptimal processing conditions. Compromised PCR conditions lead to artifacts and bias that downgrade the discriminatory power and reproducibility of the results. Promising attempts to resolve the PCR performance optimization issue have been guided by quality improvement tactics adopted in the past for industrial trials. Thus, orthogonal arrays (OAs) have been employed to program quick-and-easy structured experiments. Profiling of influences facilitates the quantification of effects that may counteract the detectability of amplified DNA fragments. Nevertheless, the attractive feature of reducing greatly the amount of work and expenditures by planning trials with saturated-unreplicated OA schemes is known to be relinquished in the subsequent analysis phase. This is because of an inherent incompatibility of ordinary multi-factorial comparison techniques to convert small yet dense datasets. Treating unreplicated-saturated data with either the analysis of variance (ANOVA) or regression models destroys the information extraction process. Both of those mentioned approaches are rendered blind to error since the examined effects absorb all available degrees of freedom. Therefore, in lack of approximating an experimental uncertainty, any outcome interpretation is rendered subjective. We propose a profiling method that permits the non-linear maximization of amplicon resolution by eliminating the necessity for direct error estimation. Our approach is distribution-free, calibration-free, simulation-free and sparsity-free with well-known power properties. It is also user-friendly by promoting rudimentary analytics. Testing our method on published amplicon count data, we found that the preponderant effect is the concentration of MgCl2 (p<0.05) followed by the primer content (p<0.1) whilst the effects due to either the content of the deoxynucleotide (dNTP) or DNA remained dormant (p>0.1). Comparison of the proposed method with other stochastic approaches is also discussed. Our technique is expected to have extensive applications in genetics and biotechnology where there is a demand for cheap, expedient, and robust information.
Collapse
Affiliation(s)
- George J. Besseris
- Technology Management Department, City University of Seattle, Bellevue, Washington, United States of America
| |
Collapse
|
20
|
Yan J, Gu GJ, Jost C, Hammond M, Plückthun A, Landegren U, Kamali-Moghaddam M. A universal approach to prepare reagents for DNA-assisted protein analysis. PLoS One 2014; 9:e108061. [PMID: 25233463 PMCID: PMC4169473 DOI: 10.1371/journal.pone.0108061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/06/2014] [Indexed: 02/08/2023] Open
Abstract
The quality of DNA-labeled affinity probes is critical in DNA-assisted protein analyses, such as proximity ligation and extension assays, immuno-PCR, and immuno-rolling circle amplification reactions. Efficient, high-performance methods are therefore required for isolation of pure conjugates from reactions where DNA strands have been coupled to antibodies or recombinant affinity reagents. Here we describe a universal, scalable approach for preparing high-quality oligonucleotide-protein conjugates by sequentially removing any unconjugated affinity reagents and remaining free oligonucleotides from conjugation reactions. We applied the approach to generate high-quality probes using either antibodies or recombinant affinity reagents. The purified high-grade probes were used in proximity ligation assays in solution and insitu, demonstrating both augmented assay sensitivity and improved signal-to-noise ratios.
Collapse
Affiliation(s)
- Junhong Yan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gucci Jijuan Gu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Genetics, Stanford University, Palo Alto, California, United States of America
| | - Christian Jost
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Maria Hammond
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Ulf Landegren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
21
|
Lundström CS, Mattsson A, Lövgren K, Eriksson Å, Sundberg ÅL, Lundgren M, Nilsson CE. Sensitive methods for evaluation of antibodies for host cell protein analysis and screening of impurities in a vaccine process. Vaccine 2014; 32:2911-5. [DOI: 10.1016/j.vaccine.2014.02.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Ren K, Wu J, Yan F, Ju H. Ratiometric electrochemical proximity assay for sensitive one-step protein detection. Sci Rep 2014; 4:4360. [PMID: 24618513 PMCID: PMC3950580 DOI: 10.1038/srep04360] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/25/2014] [Indexed: 11/17/2022] Open
Abstract
This work proposes the concept of ratiometric electrochemical proximity assay (REPA), which can be used for one-step, highly sensitive and selective detection of protein. The assay strategy was achieved on a sensing interface that was formed by hybridization of methylene blue (MB)-labeled antibody-DNA probe (MB-DNA1-Ab1) with ferrocene (Fc)-labeled DNA capture probe (Fc-P) modified gold electrode. On the interface the target protein could trigger the formation of immunocomplex between MB-DNA1-Ab1 and detection antibody-DNA probe (Ab2-DNA2) and subsequently the proximity hybridization of DNA1-DNA2, which led to the departure of MB-DNA1-Ab1 from the interface. The remained Fc-P could form a hairpin structure to take Fc group to electrode surface. Therefore, the recognition of target protein to Ab1 and Ab2 resulted in both the "signal-off" of MB and the "signal-on" of Fc for dual-signal electrochemical ratiometric readout. The proposed REPA could be carried out in one-step with 40-min duration and showed a wide detection range from 0.05 to 100 ng/mL with pg/mL limit of detection, displaying great potential for convenient point-of-care testing and commercial application.
Collapse
Affiliation(s)
- Kewei Ren
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093, P.R. China
- These authors contributed equally to this work
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093, P.R. China
- These authors contributed equally to this work
| | - Feng Yan
- Jiangsu Institute of Cancer Prevention and Cure, Nanjing 210009, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
23
|
Wilson R. Sensitivity and specificity: twin goals of proteomics assays. Can they be combined? Expert Rev Proteomics 2014; 10:135-49. [DOI: 10.1586/epr.13.7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Nong RY, Wu D, Yan J, Hammond M, Gu GJ, Kamali-Moghaddam M, Landegren U, Darmanis S. Solid-phase proximity ligation assays for individual or parallel protein analyses with readout via real-time PCR or sequencing. Nat Protoc 2013; 8:1234-48. [PMID: 23722261 DOI: 10.1038/nprot.2013.070] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Solid-phase proximity ligation assays share properties with the classical sandwich immunoassays for protein detection. The proteins captured via antibodies on solid supports are, however, detected not by single antibodies with detectable functions, but by pairs of antibodies with attached DNA strands. Upon recognition by these sets of three antibodies, pairs of DNA strands brought in proximity are joined by ligation. The ligated reporter DNA strands are then detected via methods such as real-time PCR or next-generation sequencing (NGS). We describe how to construct assays that can offer improved detection specificity by virtue of recognition by three antibodies, as well as enhanced sensitivity owing to reduced background and amplified detection. Finally, we also illustrate how the assays can be applied for parallel detection of proteins, taking advantage of the oligonucleotide ligation step to avoid background problems that might arise with multiplexing. The protocol for the singleplex solid-phase proximity ligation assay takes ~5 h. The multiplex version of the assay takes 7-8 h depending on whether quantitative PCR (qPCR) or sequencing is used as the readout. The time for the sequencing-based protocol includes the library preparation but not the actual sequencing, as times may vary based on the choice of sequencing platform.
Collapse
Affiliation(s)
- Rachel Yuan Nong
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Janssen KPF, Knez K, Spasic D, Lammertyn J. Nucleic acids for ultra-sensitive protein detection. SENSORS (BASEL, SWITZERLAND) 2013; 13:1353-84. [PMID: 23337338 PMCID: PMC3574740 DOI: 10.3390/s130101353] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/26/2012] [Accepted: 12/28/2012] [Indexed: 12/13/2022]
Abstract
Major advancements in molecular biology and clinical diagnostics cannot be brought about strictly through the use of genomics based methods. Improved methods for protein detection and proteomic screening are an absolute necessity to complement to wealth of information offered by novel, high-throughput sequencing technologies. Only then will it be possible to advance insights into clinical processes and to characterize the importance of specific protein biomarkers for disease detection or the realization of "personalized medicine". Currently however, large-scale proteomic information is still not as easily obtained as its genomic counterpart, mainly because traditional antibody-based technologies struggle to meet the stringent sensitivity and throughput requirements that are required whereas mass-spectrometry based methods might be burdened by significant costs involved. However, recent years have seen the development of new biodetection strategies linking nucleic acids with existing antibody technology or replacing antibodies with oligonucleotide recognition elements altogether. These advancements have unlocked many new strategies to lower detection limits and dramatically increase throughput of protein detection assays. In this review, an overview of these new strategies will be given.
Collapse
Affiliation(s)
- Kris P. F. Janssen
- MeBioS Biosensor Group, Faculteit Bio-Ingenieurswetenschappen, KU Leuven, Willem De Croylaan, Leuven, Belgium; E-Mails: (K.P.F.J.); (K.K.); (D.S.)
| | - Karel Knez
- MeBioS Biosensor Group, Faculteit Bio-Ingenieurswetenschappen, KU Leuven, Willem De Croylaan, Leuven, Belgium; E-Mails: (K.P.F.J.); (K.K.); (D.S.)
| | - Dragana Spasic
- MeBioS Biosensor Group, Faculteit Bio-Ingenieurswetenschappen, KU Leuven, Willem De Croylaan, Leuven, Belgium; E-Mails: (K.P.F.J.); (K.K.); (D.S.)
| | - Jeroen Lammertyn
- MeBioS Biosensor Group, Faculteit Bio-Ingenieurswetenschappen, KU Leuven, Willem De Croylaan, Leuven, Belgium; E-Mails: (K.P.F.J.); (K.K.); (D.S.)
| |
Collapse
|
26
|
Protein tag-mediated conjugation of oligonucleotides to recombinant affinity binders for proximity ligation. N Biotechnol 2012; 30:144-52. [PMID: 22664266 DOI: 10.1016/j.nbt.2012.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/14/2012] [Accepted: 05/17/2012] [Indexed: 11/22/2022]
Abstract
While antibodies currently play a dominant role as affinity reagents in biological research and for diagnostics, a broad range of recombinant proteins are emerging as promising alternative affinity reagents in detection assays and quantification. DNA-mediated affinity-based assays, such as immuno-PCR and proximity ligation assays (PLA), use oligonucleotides attached to affinity reagents as reporter molecules. Conjugation of oligonucleotides to affinity reagents generally employs chemistries that target primary amines or cysteines. Because of the random nature of these processes neither the number of oligonucleotides conjugated per molecule nor their sites of attachment can be accurately controlled for affinity reagents with several available amines and cysteines. Here, we present a straightforward and convenient approach to functionalize recombinant affinity reagents for PLA by expressing the reagents as fusion partners with SNAP protein tags. This allowed us to conjugate oligonucleotides in a site-specific fashion, yielding precisely one oligonucleotide per affinity reagent. We demonstrate this method using designed ankyrin repeat proteins (DARPins) recognizing the tumor antigen HER2 and we apply the conjugates in different assay formats. We also show that SNAP or CLIP tags, expressed as fusion partners of transfected genes, allow oligonucleotide conjugations to be performed in fixed cells, with no need for specific affinity reagents. The approach is used to demonstrate induced interactions between the fusion proteins FKBP and FRB by allowing the in situ conjugated oligonucleotides to direct the production of templates for localized rolling circle amplification reactions.
Collapse
|