1
|
Sunbul FS, Almuqbil RM, Zhang H, Alhudaithi SS, Fernandez ME, Aldaqqa RR, Garcia VA, Robila V, Halquist MS, Gordon SW, Bos PD, da Rocha SRP. An improved experimental model of osteosarcoma lung metastases to investigate innovative therapeutic interventions and sex as a biological variable. Int J Pharm 2025; 673:125372. [PMID: 39971171 DOI: 10.1016/j.ijpharm.2025.125372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy, with OS lung metastasis (OSLM) being the leading cause of death in OS patients. No curative pharmacotherapies for OSLM are available, highlighting the clinical need for new therapies. Improved and rigorous preclinical models of OSLM are key in supporting advancements in this field. We aimed to develop an immunocompetent mouse model of OSLM that allows monitoring pharmacotherapies' effect on the lung metastatic burden over time and assessing the impact of sex as a biological variable in tumor growth and response to therapy. We transformed K7M2 cells to express bioluminescence and fluorescence, enabling real-time tracking of OSLM in BALB/c mice following tail vein injection. Metastasis was confined to the lungs and exhibited exponential growth with typical downregulated Fas receptor expression. In vivo bioluminescence correlated strongly with ex vivo, suggesting its reliability for evaluating metastatic progression and therapy response. Fluorescence from tdT was stable upon tissue processing, providing unique opportunities to probe the tumor characteristics ex vivo. We also assessed the effect of local lung-delivered gemcitabine, which was well-tolerated and significantly reduced OSLM burden without causing pulmonary toxicity. However, treatment did not resolve metastatic disease. We also explored the effect of sex on tumor growth and response to therapy; while no difference was observed in tumor growth between male and female mice, females showed a better response to local gemcitabine administration. In sum, we established a robust and rigorous immunocompetent mouse model of OSLM that will facilitate exploring new pharmacotherapies for OSLM.
Collapse
Affiliation(s)
- Fatemah S Sunbul
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Rashed M Almuqbil
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Hanming Zhang
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Sulaiman S Alhudaithi
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Matthew E Fernandez
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Raneem R Aldaqqa
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Victoria A Garcia
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Valentina Robila
- Department of Pathology - School of Medicine, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Matthew S Halquist
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Sarah W Gordon
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Thomas JeffersonUniversity, Philadelphia, PA, the United States of America
| | - Paula D Bos
- Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Department of Pathology - School of Medicine, Virginia Commonwealth University, Richmond, VA, the United States of America; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Sandro R P da Rocha
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, the United States of America.
| |
Collapse
|
2
|
Petrescu DI, Yustein JT, Dasgupta A. Preclinical models for the study of pediatric solid tumors: focus on bone sarcomas. Front Oncol 2024; 14:1388484. [PMID: 39091911 PMCID: PMC11291195 DOI: 10.3389/fonc.2024.1388484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Sarcomas comprise between 10-15% of all pediatric malignancies. Osteosarcoma and Ewing sarcoma are the two most common pediatric bone tumors diagnosed in children and young adults. These tumors are commonly treated with surgery and/or radiation therapy and combination chemotherapy. However, there is a strong need for the development and utilization of targeted therapeutic methods to improve patient outcomes. Towards accomplishing this goal, pre-clinical models for these unique malignancies are of particular importance to design and test experimental therapeutic strategies prior to being introduced to patients due to their origination site and propensity to metastasize. Pre-clinical models offer several advantages for the study of pediatric sarcomas with unique benefits and shortcomings dependent on the type of model. This review addresses the types of pre-clinical models available for the study of pediatric solid tumors, with special attention to the bone sarcomas osteosarcoma and Ewing sarcoma.
Collapse
Affiliation(s)
- D. Isabel Petrescu
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Jason T. Yustein
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Atreyi Dasgupta
- The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Texas Children’s Cancer and Hematology Centers, Houston, TX, United States
| |
Collapse
|
3
|
Yao M, Lei Z, Peng F, Wang D, Li M, Zhong G, Shao H, Zhou J, Du C, Zhang Y. Establishment of orthotopic osteosarcoma animal models in immunocompetent rats through muti-rounds of in-vivo selection. BMC Cancer 2024; 24:703. [PMID: 38849717 PMCID: PMC11162025 DOI: 10.1186/s12885-024-12361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/09/2024] [Indexed: 06/09/2024] Open
Abstract
Immunodeficient murine models are usually used as the preclinical models of osteosarcoma. Such models do not effectively simulate the process of tumorigenesis and metastasis. Establishing a suitable animal model for understanding the mechanism of osteosarcoma and the clinical translation is indispensable. The UMR-106 cell suspension was injected into the marrow cavity of Balb/C nude mice. Tumor masses were harvested from nude mice and sectioned. The tumor fragments were transplanted into the marrow cavities of SD rats immunosuppressed with cyclosporine A. Through muti-rounds selection in SD rats, we constructed orthotopic osteosarcoma animal models using rats with intact immune systems. The primary tumor cells were cultured in-vitro to obtain the immune-tolerant cell line. VX2 tumor fragments were transplanted into the distal femur and parosteal radius of New Zealand white rabbit to construct orthotopic osteosarcoma animal models in rabbits. The rate of tumor formation in SD rats (P1 generation) was 30%. After four rounds of selection and six rounds of acclimatization in SD rats with intact immune systems, we obtained immune-tolerant cell lines and established the orthotopic osteosarcoma model of the distal femur in SD rats. Micro-CT images confirmed tumor-driven osteolysis and the bone destruction process. Moreover, the orthotopic model was also established in New Zealand white rabbits by implanting VX2 tumor fragments into rabbit radii and femurs. We constructed orthotopic osteosarcoma animal models in rats with intact immune systems through muti-rounds in-vivo selection and the rabbit osteosarcoma model.
Collapse
Affiliation(s)
- Mengyu Yao
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- GuangDong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou, 510080, China
| | - Zehua Lei
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- GuangDong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou, 510080, China
| | - Feng Peng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- GuangDong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou, 510080, China
| | - Donghui Wang
- Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Mei Li
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- GuangDong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou, 510080, China
| | - Guoqing Zhong
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- GuangDong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou, 510080, China
| | - Hongwei Shao
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Jielong Zhou
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- GuangDong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou, 510080, China
| | - Chang Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- GuangDong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Pu F, Guo H, Shi D, Chen F, Peng Y, Huang X, Liu J, Zhang Z, Shao Z. The generation and use of animal models of osteosarcoma in cancer research. Genes Dis 2024; 11:664-674. [PMID: 37692517 PMCID: PMC10491873 DOI: 10.1016/j.gendis.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 12/16/2022] [Indexed: 09/12/2023] Open
Abstract
Osteosarcoma is the most common malignant bone tumor affecting children and adolescents. Currently, the most common treatment is surgery combined with neoadjuvant chemotherapy. Although the survival rate of patients with osteosarcoma has improved in recent years, it remains poor when the tumor(s) progress and distant metastases develop. Therefore, better animal models that more accurately replicate the natural progression of the disease are needed to develop improved prognostic and diagnostic markers, as well as targeted therapies for both primary and metastatic osteosarcoma. The present review described animal models currently being used in research investigating osteosarcoma, and their characteristics, advantages, and disadvantages. These models may help elucidate the pathogenic mechanism(s) of osteosarcoma and provide evidence to support and develop clinical treatment strategies.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Haoyu Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xin Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jianxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
5
|
Zhou Y, Jin Q, Chang J, Zhao Z, Sun C. Long non-coding RNA ZMIZ1-AS1 promotes osteosarcoma progression by stabilization of ZMIZ1. Cell Biol Toxicol 2022; 38:1013-1026. [PMID: 34508303 DOI: 10.1007/s10565-021-09641-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/09/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Osteosarcomas (OS) are frequent primary sarcomas of the bone in children and adolescents. The long non-coding RNAs (lncRNAs) can affect the progression of many cancers by their sense transcripts. The present study was designed to probe the role of ZMIZ1-AS1 and the downstream pathway in OS progression. METHODS Cell proliferation, invasion, and migration were detected by colony formation, transwell, and wound healing assays. The binding of SOX2 or MYC protein with ZMIZ1-AS1 promoter was explored by ChIP assay and dual-luciferase reporter assay. Interaction between PTBP1 protein and ZMIZ1-AS1 (or ZMIZ1 mRNA) was detected by RIP assay. RESULTS SOX2 and MYC are the downstream effectors of the Hippo pathway and transcriptionally activated ZMIZ1-AS1. Compared to the controls, OS tissues and cells contained higher ZMIZ1-AS1 expression. Silencing of ZMIZ1-AS1 repressed OS cell viability, proliferation, migration, and invasion. Our findings further showed that ZMIZ1-AS1 recruits RNA-binding protein PTBP1 to stabilize ZMIZ1 mRNA. PTBP1 or ZMIZ1 overexpression rescues the suppressive effects of silenced ZMIZ1-AS1 on OS cellular processes. Importantly, ZMIZ1-AS1 promotes OS growth in vivo by stabilization of ZMIZ1. CONCLUSIONS Long non-coding RNA ZMIZ1-AS1 promotes OS progression by stabilization of ZMIZ1. The Hippo pathway is inactivated in osteosarcoma. Transcriptional factors SOX2 and MYC downstream the Hippo pathway induce the upregulation of ZMIZ1-AS1 in osteosarcoma. ZMIZ1-AS1 recruits RNA binding protein PTBP1 that stabilizes ZMIZ1, the sense transcript of ZMIZ1-AS1. ZMIZ1-AS1 promotes osteosarcoma cell viability, proliferation, migration, and invasion by ZMIZ1 in a PTBP1 dependent manner.
Collapse
Affiliation(s)
- Yichi Zhou
- Department of Orthopedics, CR & WISCO General Hospital, Wuhan, 430000, Hubei, China
| | - Qi Jin
- Department of Orthopedics, CR & WISCO General Hospital, Wuhan, 430000, Hubei, China
| | - Jianzhong Chang
- Department of Orthopedics, CR & WISCO General Hospital, Wuhan, 430000, Hubei, China
| | - Zufa Zhao
- Department of Orthopedics, CR & WISCO General Hospital, Wuhan, 430000, Hubei, China
| | - Chengjun Sun
- Department of Orthopedics, CR & WISCO General Hospital, Wuhan, 430000, Hubei, China.
| |
Collapse
|
6
|
Yin J, Pan S, Guo X, Gao Y, Zhu D, Yang Q, Gao J, Zhang C, Chen Y. Nb 2C MXene-Functionalized Scaffolds Enables Osteosarcoma Phototherapy and Angiogenesis/Osteogenesis of Bone Defects. NANO-MICRO LETTERS 2021; 13:30. [PMID: 34138204 PMCID: PMC8187678 DOI: 10.1007/s40820-020-00547-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/30/2020] [Indexed: 05/25/2023]
Abstract
Early surgical resection and chemotherapy of bone cancer are commonly used in the treatment of bone tumor, but it is still highly challenging to prevent recurrence and fill the bone defect caused by the resection site. In this work, we report a rational integration of photonic-responsive two-dimensional (2D) ultrathin niobium carbide (Nb2C) MXene nanosheets (NSs) into the 3D-printed bone-mimetic scaffolds (NBGS) for osteosarcoma treatment. The integrated 2D Nb2C-MXene NSs feature specific photonic response in the second near-infrared (NIR-II) biowindow with high tissue-penetrating depth, making it highly efficient in killing bone cancer cells. Importantly, Nb-based species released by the biodegradation of Nb2C MXene can obviously promote the neogenesis and migration of blood vessels in the defect site, which can transport more oxygen, vitamins and energy around the bone defect for the reparative process, and gather more immune cells around the defect site to accelerate the degradation of NBGS. The degradation of NBGS provides sufficient space for the bone remodeling. Besides, calcium and phosphate released during the degradation of the scaffold can promote the mineralization of new bone tissue. The intrinsic multifunctionality of killing bone tumor cell and promoting angiogenesis and bone regeneration makes the engineered Nb2C MXene-integrated composite scaffolds a distinctive implanting biomaterial on the efficient treatment of bone tumor.
Collapse
Affiliation(s)
- Junhui Yin
- Institute of Microsurgery On Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Shanshan Pan
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Xiang Guo
- Department of Orthopedics, The Second Affiliated Hospital, The Navy Medical University, Shanghai, 200003, People's Republic of China
| | - Youshui Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Daoyu Zhu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Qianhao Yang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Junjie Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Changqing Zhang
- Institute of Microsurgery On Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
| |
Collapse
|
7
|
Harris MA, Hons BB, Shekhar TM, Coupland LA, Miles MA, Hawkins CJ. Transient NK Cell Depletion Facilitates Pulmonary Osteosarcoma Metastases After Intravenous Inoculation in Athymic Mice. J Adolesc Young Adult Oncol 2020; 9:667-671. [DOI: 10.1089/jayao.2019.0172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
| | - BBioMed Hons
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Tanmay M. Shekhar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Lucy A. Coupland
- The ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Mark A. Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Christine J. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| |
Collapse
|
8
|
Zhou Z, Li Y, Kuang M, Wang X, Jia Q, Cao J, Hu J, Wu S, Wang Z, Xiao J. The CD24 + cell subset promotes invasion and metastasis in human osteosarcoma. EBioMedicine 2020; 51:102598. [PMID: 31901872 PMCID: PMC6948162 DOI: 10.1016/j.ebiom.2019.102598] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Osteosarcoma is the most common primary aggressive bone tumor affecting children and young adolescents. Metastases are often resistant to conventional chemotherapy and mean short-term survival. Development of valuable diagnostic indicators and targeting agents will have important implications for clinical diagnosis by the identification and characterization of molecules that contribute to its aggressive behavior. METHODS We examined differential expression levels of common stem cell markers in osteosarcoma parental and sphere cells. In addition, we further analyzed the changes of candidate common stem cell markers before and after in vitro chemotherapy of osteosarcoma cells. The biological functions of CD24+ subpopulation in osteosarcoma such as proliferation, migration, invasion, tumorigenesis and metastasis were systematically investigated, and the correlations of CD24 levels with prognosis in patients with osteosarcoma were analyzed. FINDINGS CD24+ Cells presented characteristics of TICs and resist drug-induced apoptosis. The prevention of tumor formation and metastasis by CD24 knockdown highlights the potential of CD24 as a therapeutic target for osteosarcoma. Moreover, the levels of CD24 in osteosarcoma samples were significantly correlated with the prognosis of patients. INTERPRETATION CD24+ cell subset played an important role in osteosarcoma invasion and metastasis. FUNDING National Natural Science Foundation of China (No.81772857); Shanghai Science and Technology Commission (18140902000); Shanghai Municipal Health Commission (2017ZZ01017; 17411950301).
Collapse
Affiliation(s)
- Zhenhua Zhou
- Department of Orthopaedic Oncology, Changzheng Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200003,China
| | - Yan Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032,China
| | - Muyu Kuang
- Huadong Hospital, Fudan University, Shanghai,200040, China
| | - Xudong Wang
- Department of Orthopaedic Oncology, Changzheng Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200003,China
| | - Qi Jia
- Department of Orthopaedic Oncology, Changzheng Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200003,China
| | - Jiashi Cao
- Department of Orthopaedic Oncology, Changzheng Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200003,China
| | - Jingjing Hu
- Clinical Research Center, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai 200433, China
| | - Sujia Wu
- Department of Orthopedics, Nanjing General Hospital of Nanjing Military Region, Nanjing, Jiangsu, 210002, China
| | - Zhiwei Wang
- Department of Orthopedics, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200433, China.
| | - Jianru Xiao
- Department of Orthopaedic Oncology, Changzheng Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200003,China.
| |
Collapse
|
9
|
Pan S, Yin J, Yu L, Zhang C, Zhu Y, Gao Y, Chen Y. 2D MXene-Integrated 3D-Printing Scaffolds for Augmented Osteosarcoma Phototherapy and Accelerated Tissue Reconstruction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901511. [PMID: 31993282 PMCID: PMC6974945 DOI: 10.1002/advs.201901511] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/21/2019] [Indexed: 05/09/2023]
Abstract
The residual of malignant tumor cells and lack of bone-tissue integration are the two critical concerns of bone-tumor recurrence and surgical failure. In this work, the rational integration of 2D Ti3C2 MXene is reported with 3D-printing bioactive glass (BG) scaffolds for achieving concurrent bone-tumor killing by photonic hyperthermia and bone-tissue regeneration by bioactive scaffolds. The designed composite scaffolds take the unique feature of high photothermal conversion of integrated 2D Ti3C2 MXene for inducing bone-tumor ablation by near infrared-triggered photothermal hyperthermia, which has achieved the complete tumor eradication on in vivo bone-tumor xenografts. Importantly, the rational integration of 2D Ti3C2 MXene is demonstrated to efficiently accelerate the in vivo growth of newborn bone tissue of the composite BG scaffolds. The dual functionality of bone-tumor killing and bone-tissue regeneration makes these Ti3C2 MXene-integrated composite scaffolds highly promising for the treatment of bone tumors, which also substantially broadens the biomedical applications of 2D MXenes in tissue engineering, especially on the treatment of bone tumors.
Collapse
Affiliation(s)
- Shanshan Pan
- State Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghai200093P. R. China
| | - Junhui Yin
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233P. R. China
| | - Luodan Yu
- State Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Changqing Zhang
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233P. R. China
| | - Yufang Zhu
- State Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghai200093P. R. China
| | - Youshui Gao
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233P. R. China
| | - Yu Chen
- State Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| |
Collapse
|
10
|
Shao XJ, Xiang SF, Chen YQ, Zhang N, Cao J, Zhu H, Yang B, Zhou Q, Ying MD, He QJ. Inhibition of M2-like macrophages by all-trans retinoic acid prevents cancer initiation and stemness in osteosarcoma cells. Acta Pharmacol Sin 2019; 40:1343-1350. [PMID: 31296953 DOI: 10.1038/s41401-019-0262-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
Emerging evidence indicates that M2-polarized tumor-associated macrophages (TAMs) directly participate in tumor initiation, progression and metastasis. However, to date, few studies have investigated novel strategies for inhibiting TAMs in order to overcome osteosarcoma. In this study, we reported that M2 macrophages were enriched in osteosarcoma tissues from patients, and M2-polarized TAMs enhanced cancer initiation and stemness of osteosarcoma cells, thereby establishing M2-polarized TAMs as a therapeutic target for blocking osteosarcoma formation. We also found that all-trans retinoic acid (ATRA) weakened TAM-induced osteosarcoma tumor formation by inhibiting M2 polarization of TAMs in vivo, and inhibited the colony formation, as well as sphere-formation capacity of osteosarcoma cells promoted by M2-type macrophages in vitro. Furthermore, M2-type macrophages enhanced cancer stem cells (CSCs) properties as assessed by increasing the numbers of CD117+Stro-1+ cells accompanied by the upregulation of CSC markers (CD133, CXCR4, Nanog, and Oct4), which could clearly be reduced by ATRA. Taken together, the results of this study demonstrated the role of M2-polarized TAMs in osteosarcoma initiation and stemness by activating CSCs, and indicated that ATRA treatment is a promising approach for treating osteosarcoma by preventing M2 polarization of TAMs.
Collapse
|
11
|
Lopez CM, Yu PY, Zhang X, Yilmaz AS, London CA, Fenger JM. MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines. PLoS One 2018; 13:e0190086. [PMID: 29293555 PMCID: PMC5749745 DOI: 10.1371/journal.pone.0190086] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Osteosarcoma (OSA) is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease. METHODOLOGY AND PRINCIPAL FINDINGS RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes. CONCLUSIONS These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA.
Collapse
Affiliation(s)
- Cecilia M. Lopez
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Peter Y. Yu
- Medical Student Research Program, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Xiaoli Zhang
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - Ayse Selen Yilmaz
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - Cheryl A. London
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Veterinary Biosciences, College of Veterinary Medicine, Tufts University, New Grafton, Massachusetts, United States of America
| | - Joelle M. Fenger
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
12
|
Zhou Z, Li Y, Yan X, Wang X, Yang C, Wei H, Yang X, Xiao J. Does rarity mean imparity? Biological characteristics of osteosarcoma cells originating from the spine. J Cancer Res Clin Oncol 2017; 143:1959-1969. [PMID: 28551767 DOI: 10.1007/s00432-017-2448-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE Osteosarcoma is one of the most common malignancies in bones and is often found in limbs. Until now, it is not clear why osteosarcoma is rare in the spine. On the other hand, previous biological characteristics study about osteosarcoma of spine was also rare because of its low incidence. To explore the biology of spinal osteosarcoma, a stable osteosarcoma cell line derived from spine is necessary. METHODS A novel osteosarcoma cell line named NEO217 was established from spinal osteosarcoma tissues obtained from a Chinese male patient. We performed a series of experiments to investigate the biological properties of NEO217, including cell morphology, the kinetics of cell growth, biomarkers and tumorigenicity. RESULTS The cell line NEO217 was passaged in vitro for more than 50 generations. Ultramicroscopic structural features of these cells were consistent with the pleomorphism characteristic of cancer cells. The average cell doubling time was 26 h. The chromosomal morphology was that of a human karyotype, with the number of chromosomes more than 80. NEO217 cells and available osteosarcoma cell lines such as MG-63 and MNNG/HOS were all CD29+CD59+ phenotype as detected by flow cytometry. Inoculation of NEO217 cells to immunodeficient mice led to tumor formation. The biological and molecular properties of NEO217 cell line are not exactly the same as some human osteosarcoma cell lines derived from the extremities. CONCLUSION We have established a novel osteosarcoma cell line NEO217 derived from the spine, which will provide a useful model for biological or therapeutical studies of spinal osteosarcoma.
Collapse
Affiliation(s)
- Zhenhua Zhou
- Department of Orthopaedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415, Fengyang Road, Shanghai, 200003, China
| | - Yan Li
- Department of Oncology, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xu Yan
- Department of Orthopaedics, The 455th Hospital of PLA, Shanghai, China
| | - Xudong Wang
- Department of Orthopaedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415, Fengyang Road, Shanghai, 200003, China
| | - Cheng Yang
- Department of Orthopaedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415, Fengyang Road, Shanghai, 200003, China
| | - Haifeng Wei
- Department of Orthopaedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415, Fengyang Road, Shanghai, 200003, China
| | - Xinghai Yang
- Department of Orthopaedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415, Fengyang Road, Shanghai, 200003, China
| | - Jianru Xiao
- Department of Orthopaedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415, Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
13
|
Abstract
Osteosarcoma is the predominant form of bone cancer, affecting mostly adolescents. Recent progress made in molecular genetic studies of osteosarcoma has changed our view on the cause of the disease and ongoing therapeutic approaches for patients. As we draw closer to gaining more complete catalogs of candidate cancer driver genes in common forms of cancer, the landscape of somatic mutations in osteosarcoma is emerging from its first phase. In this review, we summarize recent whole genome and/or whole exome genomic studies, and then put these findings in the context of genetic hallmarks of somatic mutations and mutational processes in human osteosarcoma. One of the lessons learned here is that the extent of somatic mutations and complexity of the osteosarcoma genome are similar to that of common forms of adult cancer. Thus, a much higher number of samples than those currently obtained are needed to complete the catalog of driver mutations in human osteosarcoma. In parallel, genetic studies in other species have revealed candidate driver genes and their roles in the genesis of osteosarcoma. This review also summarizes newly identified drivers in genetically engineered mouse models (GEMMs) and discusses our understanding of the impact of nature and number of drivers on tumor latency, subtypes, and metastatic potentials of osteosarcoma. It is becoming apparent that a synergistic team composed of three drivers (one 'first driver' and two 'synergistic drivers') may be required to generate an animal model that recapitulates aggressive osteosarcoma with a short latency. Finally, new cancer therapies are urgently needed to improve survival rate and quality of life for osteosarcoma patients. Several vulnerabilities in osteosarcoma are illustrated in this review to exemplify the opportunities for next generation molecularly targeted therapies. However, much work remains in order to complete our understanding of the somatic mutation basis of osteosarcoma, to develop reliable animal models of human disease, and to apply this information to guide new therapeutic approaches for reducing morbidity and mortality of this rare disease.
Collapse
Affiliation(s)
- Kirby Rickel
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Fang Fang
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jianning Tao
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| |
Collapse
|
14
|
Identification of Synergistic, Clinically Achievable, Combination Therapies for Osteosarcoma. Sci Rep 2015; 5:16991. [PMID: 26601688 PMCID: PMC4658502 DOI: 10.1038/srep16991] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023] Open
Abstract
Systemic therapy has improved osteosarcoma event-free and overall survival, but 30–50% of patients originally diagnosed will have progressive or recurrent disease, which is difficult to cure. Osteosarcoma has a complex karyotype, with loss of p53 in the vast majority of cases and an absence of recurrent, targetable pathways. In this study, we explored 54 agents that are clinically approved for other oncologic indications, agents in active clinical development, and others with promising preclinical data in osteosarcoma at clinically achievable concentrations in 5 osteosarcoma cell lines. We found significant single-agent activity of multiple agents and tested 10 drugs in all permutations of two-drug combinations to define synergistic combinations by Chou and Talalay analysis. We then evaluated order of addition to choose the combinations that may be best to translate to the clinic. We conclude that the repurposing of chemotherapeutics in osteosarcoma by using an in vitro system may define novel drug combinations with significant in vivo activity. In particular, combinations of proteasome inhibitors with histone deacetylase inhibitors and ixabepilone and MK1775 demonstrated excellent activity in our assays.
Collapse
|
15
|
Sottnik JL, Campbell B, Mehra R, Behbahani-Nejad O, Hall CL, Keller ET. Osteocytes serve as a progenitor cell of osteosarcoma. J Cell Biochem 2015; 115:1420-9. [PMID: 24700678 DOI: 10.1002/jcb.24793] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 01/20/2023]
Abstract
Osteosarcoma (OSA) is the most common primary bone tumor in humans. However, the cell of origin of OSA is not clearly defined although there is evidence that osteoblasts may serve as OSA progenitors. The role of osteocytes, terminally differentiated osteoblasts, as OSA progenitors has yet to be described. Analysis of patient cDNA from publicly available microarray data revealed that patients with OSA have increased expression of dentin matrix phosphoprotein 1 (DMP1), a marker of osteocytes. Analysis of multiple murine, human, and canine OSA cell lines revealed DMP1 expression. To test the tumorigenic potential of osteocytes, MLO-Y4, a SV-40 immortalized murine osteocyte cell line, was injected into subcutaneous and orthotopic (intratibial) sites of mice. Tumor growth occurred in both locations. Orthotopic MLO-Y4 tumors produced mixed osteoblastic/osteolytic radiographic lesions; a hallmark of OSA. Together, these data demonstrate for the first time that osteocytes can serve as OSA progenitors.
Collapse
Affiliation(s)
- Joseph L Sottnik
- Department of Urology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | | | | | | | | |
Collapse
|
16
|
Pang LY, Gatenby EL, Kamida A, Whitelaw BA, Hupp TR, Argyle DJ. Global gene expression analysis of canine osteosarcoma stem cells reveals a novel role for COX-2 in tumour initiation. PLoS One 2014; 9:e83144. [PMID: 24416158 PMCID: PMC3885401 DOI: 10.1371/journal.pone.0083144] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/30/2013] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumour of both children and dogs. It is an aggressive tumour in both species with a rapid clinical course leading ultimately to metastasis. In dogs and children distant metastasis occurs in >80% of individuals treated by surgery alone. Both canine and human osteosarcoma has been shown to contain a sub-population of cancer stem cells (CSCs), which may drive tumour growth, recurrence and metastasis, suggesting that naturally occurring canine osteosarcoma could act as a preclinical model for the human disease. Here we report the successful isolation of CSCs from primary canine osteosarcoma, as well as established cell lines. We show that these cells can form tumourspheres, and demonstrate relative resistance to chemotherapy. We demonstrate similar results for the human osteosarcma cell lines, U2OS and SAOS2. Utilizing the Affymetrix canine microarray, we are able to definitively show that there are significant differences in global gene expression profiles of isolated osteosarcoma stem cells and the daughter adherent cells. We identified 13,221 significant differences (p = 0.05), and significantly, COX-2 was expressed 141-fold more in CSC spheres than daughter adherent cells. To study the role of COX-2 expression in CSCs we utilized the COX-2 inhibitors meloxicam and mavacoxib. We found that COX-2 inhibition had no effect on CSC growth, or resistance to chemotherapy. However inhibition of COX-2 in daughter cells prevented sphere formation, indicating a potential significant role for COX-2 in tumour initiation.
Collapse
Affiliation(s)
- Lisa Y. Pang
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Emma L. Gatenby
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Ayako Kamida
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Bruce A. Whitelaw
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Ted R. Hupp
- Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - David J. Argyle
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
17
|
Szigetvari N, Imai DM, Piskun CM, Rodrigues LCS, Chon E, Stein TJ. Wnt5a expression in canine osteosarcoma. Vet Comp Oncol 2013. [DOI: 10.1111/vco.12073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- N. Szigetvari
- Deparment of Medical Sciences; School of Veterinary Medicine, University of Wisconsin-Madison; Madison WI USA
| | - D. M. Imai
- Deparment of Pathobiological Sciences; School of Veterinary Medicine, University of Wisconsin-Madison; Madison WI USA
| | - C. M. Piskun
- Deparment of Medical Sciences; School of Veterinary Medicine, University of Wisconsin-Madison; Madison WI USA
| | - L. C. S. Rodrigues
- Deparment of Medical Sciences; School of Veterinary Medicine, University of Wisconsin-Madison; Madison WI USA
| | - E. Chon
- Deparment of Medical Sciences; School of Veterinary Medicine, University of Wisconsin-Madison; Madison WI USA
| | - T. J. Stein
- Deparment of Medical Sciences; School of Veterinary Medicine, University of Wisconsin-Madison; Madison WI USA
- Institute for Clinical & Translational Research; University of Wisconsin-Madison; Madison WI USA
- Carbone Cancer Center; University of Wisconsin-Madison; Madison WI USA
| |
Collapse
|
18
|
Ng AJ, Mutsaers AJ, Baker EK, Walkley CR. Genetically engineered mouse models and human osteosarcoma. Clin Sarcoma Res 2012; 2:19. [PMID: 23036272 PMCID: PMC3523007 DOI: 10.1186/2045-3329-2-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/30/2011] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma is the most common form of bone cancer. Pivotal insight into the genes involved in human osteosarcoma has been provided by the study of rare familial cancer predisposition syndromes. Three kindreds stand out as predisposing to the development of osteosarcoma: Li-Fraumeni syndrome, familial retinoblastoma and RecQ helicase disorders, which include Rothmund-Thomson Syndrome in particular. These disorders have highlighted the important roles of P53 and RB respectively, in the development of osteosarcoma. The association of OS with RECQL4 mutations is apparent but the relevance of this to OS is uncertain as mutations in RECQL4 are not found in sporadic OS. Application of the knowledge or mutations of P53 and RB in familial and sporadic OS has enabled the development of tractable, highly penetrant murine models of OS. These models share many of the cardinal features associated with human osteosarcoma including, importantly, a high incidence of spontaneous metastasis. The recent development of these models has been a significant advance for efforts to improve our understanding of the genetics of human OS and, more critically, to provide a high-throughput genetically modifiable platform for preclinical evaluation of new therapeutics.
Collapse
Affiliation(s)
- Alvin Jm Ng
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC, 3065, Australia
| | - Anthony J Mutsaers
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC, 3065, Australia.,Ontario Veterinary College, University of Guelph, 50 Stone Road, Guelph, ON, N1G 2W1, Canada
| | - Emma K Baker
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC, 3065, Australia
| | - Carl R Walkley
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC, 3065, Australia
| |
Collapse
|
19
|
Saini V, Hose CD, Monks A, Nagashima K, Han B, Newton DL, Millione A, Shah J, Hollingshead MG, Hite KM, Burkett MW, Delosh RM, Silvers TE, Scudiero DA, Shoemaker RH. Identification of CBX3 and ABCA5 as putative biomarkers for tumor stem cells in osteosarcoma. PLoS One 2012; 7:e41401. [PMID: 22870217 PMCID: PMC3411700 DOI: 10.1371/journal.pone.0041401] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
Recently, there has been renewed interest in the role of tumor stem cells (TSCs) in tumorigenesis, chemoresistance, and relapse of malignant tumors including osteosarcoma. The potential exists to improve osteosarcoma treatment through characterization of TSCs and identification of therapeutic targets. Using transcriptome, proteome, immunophenotyping for cell-surface markers, and bioinformatic analyses, heterogeneous expression of previously reported TSC or osteosarcoma markers, such as CD133, nestin, POU5F1 (OCT3/4), NANOG, SOX2, and aldehyde dehydrogenase, among others, was observed in vitro. However, consistently significantly lower CD326, CD24, CD44, and higher ABCG2 expression in TSC-enriched as compared with un-enriched osteosarcoma cultures was observed. In addition, consistently higher CBX3 expression in TSC-enriched osteosarcoma cultures was identified. ABCA5 was identified as a putative biomarker of TSCs and/or osteosarcoma. Lastly, in a high-throughput screen we identified epigenetic (5-azacytidine), anti-microtubule (vincristine), and anti-telomerase (3,11-difluoro-6,8,13-trimethyl- 8H-quino [4,3,2-kl] acridinium methosulfate; RHPS4)-targeted therapeutic agents as candidates for TSC ablation in osteosarcoma.
Collapse
Affiliation(s)
- Vaibhav Saini
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Curtis D. Hose
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Anne Monks
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Kunio Nagashima
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Bingnan Han
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Dianne L. Newton
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Angelena Millione
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Jalpa Shah
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Melinda G. Hollingshead
- Biological Testing Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Karen M. Hite
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Mark W. Burkett
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Rene M. Delosh
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Thomas E. Silvers
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Dominic A. Scudiero
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Robert H. Shoemaker
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
20
|
Osborne TS, Khanna C. A review of the association between osteosarcoma metastasis and protein translation. J Comp Pathol 2012; 146:132-42. [PMID: 22297074 PMCID: PMC3496179 DOI: 10.1016/j.jcpa.2011.12.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/01/2011] [Accepted: 12/19/2011] [Indexed: 01/10/2023]
Abstract
The malignant transformation of mesenchymal cells within the bone leads to the development of osteosarcoma (OS), but the genetic underpinnings of these events are not understood. From a clinical perspective, primary tumour management can be achieved successfully in most patients. However, the development of metastasis to the lungs represents the most common cause of death in OS patients. A clearer understanding of metastasis biology is required to improve cancer mortality and improve outcomes. Modelling the genetics, biology and therapy of OS can be accomplished through research involving a number of species. Most notable is the naturally occurring form of OS that develops in dogs. Through a cross-species and comparative approach important questions can be asked within specific and suitable models to advance our understanding of this disease and its common metastatic outcome. A comparative perspective on the problem of OS metastasis that utilizes a cross-species approach may offer unique opportunities to assist in this prioritization and generate new hypotheses related to this important clinical problem.
Collapse
Affiliation(s)
- T S Osborne
- Tumor and Metastasis Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
21
|
Pahl JH, Ruslan SEN, Buddingh EP, Santos SJ, Szuhai K, Serra M, Gelderblom H, Hogendoorn PC, Egeler RM, Schilham MW, Lankester AC. Anti-EGFR Antibody Cetuximab Enhances the Cytolytic Activity of Natural Killer Cells toward Osteosarcoma. Clin Cancer Res 2011; 18:432-41. [DOI: 10.1158/1078-0432.ccr-11-2277] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Hua Y, Qiu Y, Zhao A, Wang X, Chen T, Zhang Z, Chi Y, Li Q, Sun W, Li G, Cai Z, Zhou Z, Jia W. Dynamic metabolic transformation in tumor invasion and metastasis in mice with LM-8 osteosarcoma cell transplantation. J Proteome Res 2011; 10:3513-21. [PMID: 21661735 DOI: 10.1021/pr200147g] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
While extensive evidence indicates that tumor cells shift their global metabolic programs, the molecular details of the metabolic transformation in tumor invasion, progression, and metastasis remain largely unknown. Characterization of the time-dependent metabolic shift during the tumor invasion, development, and metastasis will describe an important aspect of tumor phenotypes and potentially allow us to design therapies that inhibit tumor cell movement. In this study, a metabonomic study was performed to characterize the global metabolic changes during the process of tumor invasion and metastasis to lung in a mouse model with subcutaneous transplantation of murine osteosarcoma cell line (LM8). The serum metabolic profiling revealed that many key metabolites in glycolysis and tricarboxylic acid (TCA) cycle, as well as most of the amino acids were elevated at rapidly growing stage of tumor, presumably resulting from a high energy demand and turnover of anabolic metabolism during the tumor cell proliferation. Serum levels of succinic acid and proline significantly increased (with fold change FC = 10.75 and 4.43, relative to controls) among all the metabolites in the third week. The serum metabolic profile of lung metastasis at week 4 was different from that at week 3, in that most of previously increased serum metabolites were found decreased, except for cholesterol and several free fatty acids, suggesting lowered carbohydrate and amino acids metabolism, but an elevated lipid metabolism associated with tumor metastasis.
Collapse
Affiliation(s)
- Yingqi Hua
- Musculoskeletal Oncology Center, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|