1
|
Pecora G, Mancini C, Mazzilli R, Zamponi V, Telese S, Scalera S, Maugeri-Saccà M, Ciuffreda L, De Nicola F, Fanciulli M, La Salvia A, Mancini M, Vecchione A, Siciliani A, Ibrahim M, Bellavia D, Isidori AM, Faggiano A, Mancini R, De Vitis C. Genetic insight into lung neuroendocrine tumors: Notch and Wnt signaling pathways as potential targets. J Transl Med 2025; 23:538. [PMID: 40361150 PMCID: PMC12076951 DOI: 10.1186/s12967-025-06442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND The molecular landscape of lung neuroendocrine neoplasms is still poorly characterized, making it difficult to develop a molecular classification and personalized therapeutic approaches. Significant clinical heterogeneity of these malignancies has been highlighted among poorly differentiated histotypes and within the subgroup of well-differentiated neuroendocrine tumors (NET). Currently, the main prognostic factors of lung NET include stage, histotype, grade, peripheral location, and demographic parameters. To gain deeper insights into the genomic underpinnings of lung NETs, we conducted a pilot investigation to uncover potential genetic mutations and copy number variations (CNVs) implicated in their pathogenesis. METHODS Formalin-fixed, paraffin-embedded intraoperative tumor biopsies and matched peripheral blood mononuclear cell samples were collected from six consecutive patients with lung NETs. The whole exome sequencing (WES) was performed to profile germline and somatic mutations, identify novel genetic alterations, and detect CNVs. Clinical and pathological data were systematically documented at diagnosis and during follow-up. RESULTS The WES analysis identified a subset of mutations shared between germline and somatic; some were of particular clinical interest as they were associated with tumor proliferation and potential therapeutic targets such as the genes KDM5C, ATR, COL7A1, NOTCH4, PTPRS, SMO, SPEN, SPTA1, TAF1. These mutations were predominantly linked to chromatin remodeling and were involved in critical oncogenic pathways such as Notch and Wnt signaling. CONCLUSIONS This pilot study highlights the potential role of NGS analysis on solid biopsy in the assessment of the mutational profile of lung NET. A comparison of germline and somatic mutations is critical to identifying putative tumor driver mutations. In perspective, the enrichment of a subpopulation of cancer cells in the blood, with one or more specific mutations, is information of enormous clinical relevance, either for prognosis or therapeutic decisions. Translational studies on large prospective series are required to establish the role of liquid biopsy in lung NET.
Collapse
Affiliation(s)
- Giulia Pecora
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, AOU Sant'Andrea, ENETS Center of Excellence, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Camilla Mancini
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, AOU Sant'Andrea, ENETS Center of Excellence, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rossella Mazzilli
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, AOU Sant'Andrea, ENETS Center of Excellence, Rome, Italy
| | - Virginia Zamponi
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, AOU Sant'Andrea, ENETS Center of Excellence, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefano Telese
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital-Sapienza University of Rome, Rome, Italy
| | - Stefano Scalera
- Clinical Trial Center, Biostatistics and Bioinformatics Division, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marcello Maugeri-Saccà
- Clinical Trial Center, Biostatistics and Bioinformatics Division, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ludovica Ciuffreda
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Francesca De Nicola
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Maurizio Fanciulli
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Anna La Salvia
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), Rome, Italy
| | - Massimiliano Mancini
- Morphologic and Molecular Pathology Unit, S. Andrea University Hospital, Rome, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital-Sapienza University of Rome, Rome, Italy
- Morphologic and Molecular Pathology Unit, S. Andrea University Hospital, Rome, Italy
| | | | - Mohsen Ibrahim
- Department of Thoracic Surgery, Sant'Andrea University Hospital, Rome, Italy
| | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Antongiulio Faggiano
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, AOU Sant'Andrea, ENETS Center of Excellence, Rome, Italy.
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital-Sapienza University of Rome, Rome, Italy
- Morphologic and Molecular Pathology Unit, S. Andrea University Hospital, Rome, Italy
| | - Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital-Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Al-Qaisi TS, Abumsimir B, Sughayer M, Kasmi Y. Actionable Mutations and Survival Rates in Non-Small Cell Lung Cancer. World J Oncol 2025; 16:161-172. [PMID: 40162105 PMCID: PMC11954605 DOI: 10.14740/wjon2531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
Background In Jordan, lung cancer ranks as the second most common tumor, and there is an urgent need to explore the genetic landscape of lung cancer. This study aimed to identify the actionable mutations in lung cancer samples in Jordanians by targeted next-generation sequencing (NGS) and to investigate the correlations with clinical and pathological parameters. Methods Totally, 121samples were prepared for NGS by DNA extractions from formalin-fixed paraffin-embedded (FFPE) blocks, followed by library preparation using the AmpliSeq Colon and Lung panel, which covers mutational hot spot regions for 22 cancer genes. Results Amongst 121 patients, 88% of those treated for non-small lung carcinoma were successfully analyzed; 35 (29%) carried one mutation or more in actionable genes (KRAS, EGFR, ALK, BRAF, and MET). There are no significant differences between actionable mutation carriers and non-carriers concerning histological tumor type, tumor stage, metastasis, smoking habits, and gender. However, the analysis of survival probabilities revealed lower survival times for females compared to males, as well as for those patients who had metastasis events, smoking, or relapse after treatment. Conclusions The type and rates of mutations detected for lung tumors in Jordan are relatively similar to those found in other populations previously studied, although some differences exist. However, lung tumors in Jordan require new customized treatment prescriptions based on prior genetic studies, as part of the hoped-for trend toward precision medicine.
Collapse
Affiliation(s)
- Talal S. Al-Qaisi
- Department of Medical Laboratory Sciences, Pharmacological and Diagnostic Research Centre (PDRC), Faculty of Allied Medical Sciences, Al-Ahliyya Amman University (AAU), Amman 19328, Jordan
| | - Berjas Abumsimir
- Department of Medical Laboratory Sciences, Pharmacological and Diagnostic Research Centre (PDRC), Faculty of Allied Medical Sciences, Al-Ahliyya Amman University (AAU), Amman 19328, Jordan
| | - Maher Sughayer
- Department of Pathology, King Hussein Cancer Center, Amman, Jordan
| | - Yassine Kasmi
- Johann Heinrich von Thunen Institute, Braunschweig 38116, Germany
| |
Collapse
|
3
|
Terrones M, Op de Beeck K, Van Camp G, Vandeweyer G, Mateiu L. Transcriptomic analysis of ROS1+ non-small cell lung cancer reveals an upregulation of nucleotide synthesis and cell adhesion pathways. Front Oncol 2024; 14:1408697. [PMID: 39737401 PMCID: PMC11683107 DOI: 10.3389/fonc.2024.1408697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction The transcriptomic characteristics of ROS1+ non-small cell lung cancer (NSCLC) represent a crucial aspect of its tumor biology. These features provide valuable insights into key dysregulated pathways, potentially leading to the discovery of novel targetable alterations or biomarkers. Methods From The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, all available ROS1+ (n = 10), ALK+ (n = 5) and RET+ (n = 5) NSCLC tumor and ROS1+ cell line (n = 7) RNA-sequencing files were collected. In addition, 10 healthy lung RNA-seq samples were included. Differential gene expression with DESeq2 (R package) and gene co-expression (WGCNA, R package) analyses were performed. Functional annotation was performed through Gene Set Enrichment Analysis (GSEA) using Webgestalt and RNAseqChef, Over-Representation Analysis (ORA) through Enrichr. iRegulon was used to identify enriched transcription factors that regulate a gene co-expression module. Results ROS1+ NSCLC samples were significantly enriched for the nucleotide synthesis and cell adhesion KEGG pathways compared to ALK+ and RET+ samples. Moreover, NOTCH1 was significantly downregulated in ROS1+ NSCLC and PD-L1 was weakly expressed. When comparing ROS1+ tumor versus cell line transcriptomes, an upregulation of MYC and MET was found in cell lines together with a significantly decreased expression of HER3, HER4 and BRAF. Within ROS1-tumors, GJB2 was overexpressed in the CD74- and CLTC-ROS1+ subgroups. The differential expression of IL20RB and GJB2 in cell lines was confirmed through RT-qPCR. Finally, the gene co-expression analysis unveils a gene cluster involving cell cycle-related genes which significantly correlates with the disease stage of patients. In addition, we propose TFDP1 and ISL1 as key ROS1-specific transcription factors. Conclusion This study highlights cell adhesion and nucleotide synthesis as crucial signatures in ROS1+ NSCLC. The upregulation of GJB2 may serve as a prognostic biomarker, along with IL20RB, a known mediator of bone metastases. Furthermore, TDFP1 and ISL1 were identified as relevant transcription factors that could potentially regulate the biological processes in ROS1-rearranged NSCLC.
Collapse
Affiliation(s)
- Marc Terrones
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Geert Vandeweyer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Ligia Mateiu
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
4
|
Montagner A, Arleo A, Suzzi F, D’Assoro AB, Piscaglia F, Gramantieri L, Giovannini C. Notch Signaling and PD-1/PD-L1 Interaction in Hepatocellular Carcinoma: Potentialities of Combined Therapies. Biomolecules 2024; 14:1581. [PMID: 39766289 PMCID: PMC11674819 DOI: 10.3390/biom14121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Immunotherapy has shown significant improvement in the survival of patients with hepatocellular carcinoma (HCC) compared to TKIs as first-line treatment. Unfortunately, approximately 30% of HCC exhibits intrinsic resistance to ICIs, making new therapeutic combinations urgently needed. The dysregulation of the Notch signaling pathway observed in HCC can affect immune cell response, reducing the efficacy of cancer immunotherapy. Here, we provide an overview of how Notch signaling regulates immune responses and present the therapeutic rationale for combining Notch signaling inhibition with ICIs to improve HCC treatment. Moreover, we propose using exosomes as non-invasive tools to assess Notch signaling activation in hepatic cancer cells, enabling accurate stratification of patients who can benefit from combined strategies.
Collapse
Affiliation(s)
- Annapaola Montagner
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA;
| | - Andrea Arleo
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
| | - Fabrizia Suzzi
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
| | - Antonino B. D’Assoro
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA;
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
5
|
Antar SA, ElMahdy MK, Darwish AG. Examining the contribution of Notch signaling to lung disease development. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6337-6349. [PMID: 38652281 DOI: 10.1007/s00210-024-03105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Notch pathway is a widely observed signaling system that holds pivotal functions in regulating various developmental cellular functions and operations. The Notch signaling mechanism is crucial for lung homeostasis, damage, and restoration. Based on increasing evidence, the Notch pathway has been identified, as critical for fibrosis and subsequently, the development of chronic fibroproliferative conditions in various organs and tissues. Recent research indicates that deregulation of Notch signaling correlates with the pathogenesis of significant pulmonary conditions, particularly chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, pulmonary arterial hypertension (PAH), lung carcinoma, and pulmonary abnormalities in some hereditary disorders. In various cellular and tissue environments, and across both physiological and pathological conditions, multiple consequences of Notch activation have been observed. Studies have ascertained that the Notch signaling cascade exhibits close associations with various other signaling systems. This study provides an updated overview of Notch signaling's role, especially its link to fibrosis and its potential therapeutic implications. This study sheds light on the latest findings regarding the mechanisms and outcomes of irregular or lacking Notch activity in the onset and development of pulmonary diseases. As our insight into this signaling mechanism suggests that modulating Notch signaling might hold potential as a valuable additional therapeutic approach in upcoming research.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, 24016, USA.
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt.
| | - Mohamed Kh ElMahdy
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ahmed G Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, 32308, USA
| |
Collapse
|
6
|
Roy SK, Srivastava S, McCance C, Shrivastava A, Morvant J, Shankar S, Srivastava RK. Clinical significance of PNO1 as a novel biomarker and therapeutic target of hepatocellular carcinoma. J Cell Mol Med 2024; 28:e18295. [PMID: 38722284 PMCID: PMC11081011 DOI: 10.1111/jcmm.18295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
The RNA-binding protein PNO1 plays an essential role in ribosome biogenesis. Recent studies have shown that it is involved in tumorigenesis; however, its role in hepatocellular carcinoma (HCC) is not well understood. The purpose of this study was to examine whether PNO1 can be used as a biomarker of HCC and also examine the therapeutic potential of PNO1 knockout for the treatment of HCC. PNO1 expression was upregulated in HCC and associated with poor prognosis. PNO1 expression was positively associated with tumour stage, lymph node metastasis and poor survival. PNO1 expression was significantly higher in HCC compared to that in fibrolamellar carcinoma or normal tissues. Furthermore, HCC tissues with mutant Tp53 expressed higher PNO1 than those with wild-type Tp53. PNO1 knockout suppressed cell viability, colony formation and EMT of HCC cells. Since activation of Notch signalling pathway promotes HCC, we measured the effects of PNO1 knockout on the components of Notch pathway and its targets. PNO1 knockout suppressed Notch signalling by modulating the expression of Notch ligands and their receptors, and downstream targets. PNO1 knockout also inhibited genes involved in surface adhesion, cell cycle, inflammation and chemotaxis. PNO1 knockout also inhibited colony and spheroid formation, cell migration and invasion, and markers of stem cells, pluripotency and EMT in CSCs. Overall, our data suggest that PNO1 can be used as a diagnostic and prognostic biomarker of HCC, and knockout of PNO1 by CRISPR/Cas9 can be beneficial for the management of HCC by targeting CSCs.
Collapse
Affiliation(s)
- Sanjit K. Roy
- Stanley S. Scott Cancer Center, School of MedicineLouisiana State University HealthNew OrleansLouisianaUSA
| | | | - Caroline McCance
- Department of Cellular and Molecular BiologyTulane UniversityNew OrleansLouisianaUSA
| | | | - Jason Morvant
- Department of SurgeryOchsner Health SystemGretnaLouisianaUSA
| | - Sharmila Shankar
- Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA
- John W. Deming Department of MedicineTulane University School of MedicineNew OrleansLouisianaUSA
| | - Rakesh K. Srivastava
- Stanley S. Scott Cancer Center, School of MedicineLouisiana State University HealthNew OrleansLouisianaUSA
- Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA
- Department of GeneticsLouisiana State University Health Sciences Center – New OrleansNew OrleansLouisianaUSA
- GLAXDoverDelawareUSA
| |
Collapse
|
7
|
Kumari L, Mishra L, Sharma Y, Chahar K, Kumar M, Patel P, Gupta GD, Kurmi BD. NOTCH Signaling Pathway: Occurrence, Mechanism, and NOTCH-Directed Therapy for the Management of Cancer. Cancer Biother Radiopharm 2024; 39:19-34. [PMID: 37797218 DOI: 10.1089/cbr.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
It is now well understood that many signaling pathways are vital in carrying out and controlling essential pro-survival and pro-growth cellular functions. The NOTCH signaling pathway, a highly conserved evolutionary signaling pathway, has been thoroughly studied since the discovery of NOTCH phenotypes about 100 years ago in Drosophila melanogaster. Abnormal NOTCH signaling has been linked to the pathophysiology of several diseases, notably cancer. In tumorigenesis, NOTCH plays the role of a "double-edged sword," that is, it may act as an oncogene or as a tumor suppressor gene depending on the nature of the context. However, its involvement in several cancers and inhibition of the same provides targeted therapy for the management of cancer. The use of gamma (γ)-secretase inhibitors and monoclonal antibodies for cancer treatment involved NOTCH receptors inhibition, leading to the possibility of a targeted approach for cancer treatment. Likewise, several natural compounds, including curcumin, resveratrol, diallyl sulfide, and genistein, also play a dynamic role in the management of cancer by inhibition of NOTCH receptors. This review outlines the functions and structure of NOTCH receptors and their associated ligands with the mechanism of the signaling pathway. In addition, it also emphasizes the role of NOTCH-targeted nanomedicine in various cancer treatment strategies.
Collapse
Affiliation(s)
- Lakshmi Kumari
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| | | | - Yash Sharma
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | - Kanak Chahar
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | - Mritunjay Kumar
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, Moga, India
| | | | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| |
Collapse
|
8
|
Paniri A, Hosseini MM, Amjadi-Moheb F, Tabaripour R, Soleimani E, Langroudi MP, Zafari P, Akhavan-Niaki H. The epigenetics orchestra of Notch signaling: a symphony for cancer therapy. Epigenomics 2023; 15:1337-1358. [PMID: 38112013 DOI: 10.2217/epi-2023-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
The aberrant regulation of the Notch signaling pathway, which is a fundamental developmental pathway, has been implicated in a wide range of human cancers. The Notch pathway can be activated by both canonical and noncanonical Notch ligands, and its role can switch between acting as an oncogene or a tumor suppressor depending on the context. Epigenetic modifications have the potential to modulate Notch and its ligands, thereby influencing Notch signal transduction. Consequently, the utilization of epigenetic regulatory mechanisms may present novel therapeutic opportunities for both single and combined therapeutics targeted at the Notch signaling pathway. This review offers insights into the mechanisms governing the regulation of Notch signaling and explores their therapeutic potential.
Collapse
Affiliation(s)
- Alireza Paniri
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, 4717647745,Iran
- Zoonoses Research Center, Pasteur Institute of Iran, 4619332976, Amol, Iran
| | | | - Fatemeh Amjadi-Moheb
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, 4717647745,Iran
| | - Reza Tabaripour
- Department of Cellular and Molecular Biology, Babol Branch, Islamic Azad University, Babol, 4747137381, Iran
| | - Elnaz Soleimani
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, 4717647745,Iran
| | | | - Parisa Zafari
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, 4691786953, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, 4717647745,Iran
- Zoonoses Research Center, Pasteur Institute of Iran, 4619332976, Amol, Iran
| |
Collapse
|
9
|
Zhang L, Shi L. The E2F1/MELTF axis fosters the progression of lung adenocarcinoma by regulating the Notch signaling pathway. Mutat Res 2023; 827:111837. [PMID: 37820570 DOI: 10.1016/j.mrfmmm.2023.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) represents the predominant subtype of lung cancer. MELTF, an oncogene, exhibits high expression in various cancer tissues. Nevertheless, the precise role of MELTF in the progression of LUAD remains enigmatic. This work was devised to investigate the effect of MELTF on LUAD progression and its underlying mechanism. METHODS mRNA expression data of LUAD were from The Cancer Genome Atlas database, and the enrichment pathway of MELTF was analyzed. The upstream transcription factors of MELTF were predicted, and the correlation between MELTF and E2F1 as well as the expression of the two in LUAD tissues were dissected by bioinformatics. The expression of MELTF and E2F1 in LUAD tissues and cells was assayed by qRT-PCR. Effects of MELTF/E2F1 on proliferation, migration, and invasion of LUAD cells were tested by CCK-8, colony formation, and Transwell assays. The binding relationship between E2F1 and MELTF was estimated by dual-luciferase reporter gene assay and ChIP assay. Western blot was utilized to assay the expression of Notch signaling pathway-related proteins in different treatment groups. RESULTS Bioinformatics analysis and qRT-PCR results exhibited high expression of E2F1 and MELTF in LUAD tissues and cells, respectively. Dual-luciferase reporter gene assay and ChIP assay ascertained the binding of E2F1 to MELTF. MELTF was ascertained to enrich the Notch signaling pathway by bioinformatics means. In cell experiments, MELTF was shown to foster the malignant progression of LUAD cells and promoted the expression of NOTCH1 and HES1 proteins, but RO4929097 offset the effect of MELTF on cells. Rescue assay confirmed that E2F1 activated MELTF to promote LUAD progression via the Notch signaling pathway. CONCLUSION Together, our outcomes demonstrated that E2F1 fostered LUAD progression by activating MELTF via the Notch signaling activity. Hence, MELTF emerged as a feasible target for treating LUAD.
Collapse
Affiliation(s)
- Lidan Zhang
- Department of Oncology and Hematology, The People's Hospital of Tongliang District, Chongqing 402560, China
| | - Lei Shi
- Department of Oncology and Hematology, The People's Hospital of Tongliang District, Chongqing 402560, China.
| |
Collapse
|
10
|
Nistal-Villan E, Rius-Rocabert S, Llinares-Pinel F. Oncolytic virotherapy in lung cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:221-239. [PMID: 37541725 DOI: 10.1016/bs.ircmb.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Lung tumors are one of the most aggressive threats affecting humans. Current therapeutic approaches have improved patients' survival; however, further efforts are required to increase effectiveness and protection against tumor relapse and metastasis. Immunotherapy presents an alternative to previous treatments that focuses on stimulating of the patient's immune system to destroy tumor cells. Viruses can be used as part of the immune therapeutic approach as agents that could selectively infect tumor cells, triggering an immune response against the infection and against the tumor cells. Some viruses have been selected for specifically infecting and destroying cancer cells, activating the immune response, enhancing access, amplifying the cytotoxicity against the tumor cells, and improving the long-term memory that can prevent tumor relapse. Oncolytic virotherapy can then be used as a strategy to target the destruction of transformed cells at the tumor site and act in locations distant from the primary targeted tumor site. Some of the current challenges in lung cancer treatment can be addressed using traditional therapies combined with oncolytic virotherapy. Defining the best combination, including the choice of the right settings will be at the next frontier in lung cancer treatment.
Collapse
Affiliation(s)
- Estanislao Nistal-Villan
- Microbiology Section, Departamento CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain; Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain.
| | - Sergio Rius-Rocabert
- Microbiology Section, Departamento CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain; Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Francisco Llinares-Pinel
- Microbiology Section, Departamento CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| |
Collapse
|
11
|
Sen P, Ghosh SS. The Intricate Notch Signaling Dynamics in Therapeutic Realms of Cancer. ACS Pharmacol Transl Sci 2023; 6:651-670. [PMID: 37200816 PMCID: PMC10186364 DOI: 10.1021/acsptsci.2c00239] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 05/20/2023]
Abstract
The Notch pathway is remarkably simple without the interventions of secondary messengers. It possesses a unique receptor-ligand interaction that imparts signaling upon cleavage of the receptor followed by the nuclear localization of its cleaved intracellular domain. It is found that the transcriptional regulator of the Notch pathway lies at the intersection of multiple signaling pathways that enhance the aggressiveness of cancer. The preclinical and clinical evidence supports the pro-oncogenic function of Notch signaling in various tumor subtypes. Owing to its oncogenic role, the Notch signaling pathway assists in enhanced tumorigenesis by facilitating angiogenesis, drug resistance, epithelial to mesenchymal transition, etc., which is also attributed to the poor outcome in patients. Therefore, it is extremely vital to discover a suitable inhibitor to downregulate the signal-transducing ability of Notch. The Notch inhibitory agents, such as receptor decoys, protease (ADAM and γ-secretase) inhibitors, and monoclonal/bispecific antibodies, are being investigated as candidate therapeutic agents. Studies conducted by our group exemplify the promising results in ablating tumorigenic aggressiveness by inhibiting the constituents of the Notch pathway. This review deals with the detailed mechanism of the Notch pathways and their implications in various malignancies. It also bestows us with the recent therapeutic advances concerning Notch signaling in the context of monotherapy and combination therapy.
Collapse
Affiliation(s)
- Plaboni Sen
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Siddhartha Sankar Ghosh
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
12
|
Petsri K, Yokoya M, Racha S, Thongsom S, Thepthanee C, Innets B, Ei ZZ, Hotta D, Zou H, Chanvorachote P. Novel Synthetic Derivative of Renieramycin T Right-Half Analog Induces Apoptosis and Inhibits Cancer Stem Cells via Targeting the Akt Signal in Lung Cancer Cells. Int J Mol Sci 2023; 24:ijms24065345. [PMID: 36982418 PMCID: PMC10049402 DOI: 10.3390/ijms24065345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Akt is a key regulatory protein of cancer stem cells (CSCs) and is responsible for cancer aggressiveness and metastasis. Targeting Akt is beneficial for the development of cancer drugs. renieramycin T (RT) has been reported to have Mcl-1 targeting activity, and the study of the structure-activity relationships (SARs) demonstrated that cyanide and the benzene ring are essential for its effects. In this study, novel derivatives of the RT right-half analog with cyanide and the modified ring were synthesized to further investigate the SARs for improving the anticancer effects of RT analogs and evaluate CSC-suppressing activity through Akt inhibition. Among the five derivatives, a compound with a substituted thiazole structure (DH_25) exerts the most potent anticancer activity in lung cancer cells. It has the ability to induce apoptosis, which is accompanied by an increase in PARP cleavage, a decrease in Bcl-2, and a diminishment of Mcl-1, suggesting that residual Mcl-1 inhibitory effects exist even after modifying the benzene ring to thiazole. Furthermore, DH_25 is found to induce CSC death, as well as a decrease in CSC marker CD133, CSC transcription factor Nanog, and CSC-related oncoprotein c-Myc. Notably, an upstream member of these proteins, Akt and p-Akt, are also downregulated, indicating that Akt can be a potential target of action. Computational molecular docking showing a high-affinity interaction between DH_25 and an Akt at the allosteric binding site supports that DH_25 can bind and inhibit Akt. This study has revealed a novel SAR and CSC inhibitory effect of DH_25 via Akt inhibition, which may encourage further development of RT compounds for cancer therapy.
Collapse
Affiliation(s)
- Korrakod Petsri
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Masashi Yokoya
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Satapat Racha
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Interdisciplinary Program in Pharmacology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunisa Thongsom
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chorpaka Thepthanee
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhurichaya Innets
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Zin Zin Ei
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Daiki Hotta
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-2188-344
| |
Collapse
|
13
|
Sen P, Kandasamy T, Ghosh SS. Multi-targeting TACE/ADAM17 and gamma-secretase of notch signalling pathway in TNBC via drug repurposing approach using Lomitapide. Cell Signal 2023; 102:110529. [PMID: 36423860 DOI: 10.1016/j.cellsig.2022.110529] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
The aberrant expression of the Notch signalling pathway genes aids in potentiating the belligerent characteristics of numerous malignancies. Besides imparting abnormal proliferation and metastasis, the Notch also aids in the metabolic reprogramming of tumor cells. Since the activation of the Notch pathway is mediated via TACE/ADAM protease and the γ-secretase complex, hence it is crucial in determining a multi-targeted therapeutic approach to target these major proteases to downregulate the aberrant Notch signalling pathway. In this study, Lomitapide was chosen based on its binding score (-305.108 kJ/mol and - 173.174 kJ/mol) against the crucial proteases, TACE and γ-secretase, respectively. Further, the remarkable antitumor properties of Lomitapide were established on the TNBC cell lines (MDA-MB-231 and MDA-MB-468), along with the EMT-induced MDA-MB-468 cells. Apart from inducing ∼2 to 2.5-fold increase in the cellular ROS levels, Lomitapide treatment induced significant apoptosis, arrested cell cycle progression and reduced sphere and colony forming abilities of the TNBC cells. Differentiated epithelial phenotype with diminished CD44-stem cell marker was also observed upon treatment. Furthermore, reduction of migration potential, decrease in the gene expression profile of the EMT markers, along with downregulation of the Notch signalling genes were evident in the treated TNBC cells. Altogether, the present study attributes the repurposing of Lomitapide as an effective therapeutic agent against the major proteases of the Notch pathway to combat TNBC progression and dissemination.
Collapse
Affiliation(s)
- Plaboni Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India
| | - Thirukumaran Kandasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India.
| |
Collapse
|
14
|
Roy SK, Srivastava S, Hancock A, Shrivastava A, Morvant J, Shankar S, Srivastava RK. Inhibition of ribosome assembly factor PNO1 by CRISPR/Cas9 technique suppresses lung adenocarcinoma and Notch pathway: Clinical application. J Cell Mol Med 2023; 27:365-378. [PMID: 36625087 PMCID: PMC9889701 DOI: 10.1111/jcmm.17657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Growth is crucially controlled by the functional ribosomes available in cells. To meet the enhanced energy demand, cancer cells re-wire and increase their ribosome biogenesis. The RNA-binding protein PNO1, a ribosome assembly factor, plays an essential role in ribosome biogenesis. The purpose of this study was to examine whether PNO1 can be used as a biomarker for lung adenocarcinoma and also examine the molecular mechanisms by which PNO1 knockdown by CRISPR/Cas9 inhibited growth and epithelial-mesenchymal transition (EMT). The expression of PNO1 was significantly higher in lung adenocarcinoma compared to normal lung tissues. PNO1 expression in lung adenocarcinoma patients increased with stage, nodal metastasis, and smoking. Lung adenocarcinoma tissues from males expressed higher PNO1 than those from females. Furthermore, lung adenocarcinoma tissues with mutant Tp53 expressed higher PNO1 than those with wild-type Tp53, suggesting the influence of Tp53 status on PNO1 expression. PNO1 knockdown inhibited cell viability, colony formation, and EMT, and induced apoptosis. Since dysregulated signalling through the Notch receptors promotes lung adenocarcinoma, we measured the effects of PNO1 inhibition on the Notch pathway. PNO1 knockdown inhibited Notch signalling by suppressing the expression of Notch receptors, their ligands, and downstream targets. PNO1 knockdown also suppressed CCND1, p21, PTGS-2, IL-1α, IL-8, and CXCL-8 genes. Overall, our data suggest that PNO1 can be used as a diagnostic biomarker, and also can be an attractive therapeutic target for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Sanjit K. Roy
- Louisiana State University Health‐New Orleans, School of MedicineStanley S. Scott Cancer CenterNew OrleansLouisianaUSA,Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA
| | | | - Andrew Hancock
- Department of Molecular and Cellular BiologyTulane UniversityNew OrleansLouisianaUSA
| | | | - Jason Morvant
- Department of SurgeryOchsner Health SystemGretnaLouisianaUSA
| | - Sharmila Shankar
- Louisiana State University Health‐New Orleans, School of MedicineStanley S. Scott Cancer CenterNew OrleansLouisianaUSA,Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA,Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA,John W. Deming Department of MedicineTulane University School of MedicineNew OrleansLouisianaUSA,Kansas City VA Medical CenterKansas CityMissouriUSA
| | - Rakesh K. Srivastava
- Louisiana State University Health‐New Orleans, School of MedicineStanley S. Scott Cancer CenterNew OrleansLouisianaUSA,Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA,Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA,Kansas City VA Medical CenterKansas CityMissouriUSA
| |
Collapse
|
15
|
Song Y, Kelava L, Zhang L, Kiss I. Microarray data analysis to identify miRNA biomarkers and construct the lncRNA-miRNA-mRNA network in lung adenocarcinoma. Medicine (Baltimore) 2022; 101:e30393. [PMID: 36086747 PMCID: PMC10980501 DOI: 10.1097/md.0000000000030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/25/2022] [Indexed: 12/09/2022] Open
Abstract
MicroRNAs (miRNAs), regulatory noncoding RNAs, are involved in gene regulation and may play a role in cancer development. The aim of this study was to identify miRNAs involved in lung adenocarcinoma (LUAD) using bioinformatics analysis. MiRNA (GSE135918), mRNA (GSE136043) and lncRNA (GSE130779) microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed miRNAs (DEMis), mRNAs (DEMs), and lncRNA (DELs) in LUAD. We used DEMs for functional enrichment analysis. MiRNA expression quantification from The Cancer Genome Atlas (TCGA) was used to validate DEMis. LncBase Predicted v.2, Targetscan, and MiRBase were used to predict lncRNAs and mRNAs. The LUAD data in TCGA were used for overall survival (OS) analysis. We screened the downregulation of 8 DEMis and upregulation of 6 DEMis, and found that 70 signal pathways changed. We chose 3 relevant signaling pathways in lung cancer development, WNT, PI3K-Akt, and Notch, and scanned for mRNAs involved in them that are potential targets of these miRNAs. Then a lncRNA-miRNA-mRNA network was constructed. We also found 7 miRNAs that were associated with poor OS in LUAD. Low expression level of hsa-miR-30a was highly associated with poor OS in LUAD (P < .001) and the target genes of hsa-miR-30a-3p were abundant in the Wnt and AKT signaling pathways. In addition, our results reported for the first time that hsa-miR-3944 and hsa-miR-3652 were highly expressed in LUAD. And the high expression level of hsa-miR-3944 was associated with poor OS (P < .05). Hsa-miR-30a-3p may suppress the occurrence and progression of lung cancer through Wnt and AKT signaling pathways and become a good biomarker in LUAD. Hsa-miR-3944 and hsa-miR-3652 may serve as new biomarkers in LUAD.
Collapse
Affiliation(s)
- Yongan Song
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti str 12, Pécs 7624, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Szigeti str 12, Pécs 7624, Hungary
| | - Lu Zhang
- Department of Health Science, Doctoral School of Health Science, University of Pécs, Vasvári Pál utca 4, Pécs 7622, Hungary
| | - István Kiss
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti str 12, Pécs 7624, Hungary
| |
Collapse
|
16
|
Zhang Y, Zhang K, Jia H, Xia B, Zang C, Liu Y, Qian L, Dong J. IVIM-DWI and MRI-based radiomics in cervical cancer: Prediction of concurrent chemoradiotherapy sensitivity in combination with clinical prognostic factors. Magn Reson Imaging 2022; 91:37-44. [PMID: 35568271 DOI: 10.1016/j.mri.2022.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE To identify the feasibility and value of intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI) and magnetic resonance imaging (MRI)-based radiomics combined with clinical prognostic factors (CPF) in predicting concurrent chemoradiotherapy (CCRT) sensitivity of locally advanced cervical cancer (LACC). METHODS A retrospective analysis of 163 patients (assigned to training or test groups) who underwent conventional MRI and IVIM-DWI before CCRT were divided into sensitive and resistant groups according to their efficacy at 6 months after CCRT. Per-treatment IVIM-DWI parameters (ADC, D, D⁎ and f value), 3D texture features (from axial T2WI) and CPF were measured, analyzed and screened. The prediction model and its nomogram were developed by combining screened parameters and then validated internally and externally. RESULTS Clinical stage, f value, D value, InverseVariance, SizeZoneNonUniformity, and Minimum were selected to construct prediction model. All parameters except D value showed independent diagnostic value in multivariate Logistic regression analysis and composed prediction model, with AUCs of 0.987 and 0.984 for training and test groups, respectively. The calibration curve (Brier score of 0.042, C-index of 0.987), decision curve and clinical impact curve further demonstrated the reliability and clinical value of prediction model. CONCLUSION IVIM-DWI, MRI-based radiomics and CPF showed high clinical value in predicting CCRT sensitivity for LACC with better predictive performance when combined.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Anhui 230001, China
| | - Kaiyue Zhang
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Anhui 230001, China
| | - Haodong Jia
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Anhui 230001, China; Department of Radiology, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Cancer Hospital, 107 Huanhu East Road, Hefei, Anhui 230031, China
| | - Bairong Xia
- Department of Radiology, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Cancer Hospital, 107 Huanhu East Road, Hefei, Anhui 230031, China; Department of Radiation Oncology, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Cancer Hospital, 107 Huanhu East Road, Hefei, Anhui 230031, China
| | - Chunbao Zang
- Department of Radiation Oncology, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Cancer Hospital, 107 Huanhu East Road, Hefei, Anhui 230031, China
| | - Yunqin Liu
- Department of Radiation Oncology, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Cancer Hospital, 107 Huanhu East Road, Hefei, Anhui 230031, China
| | - Liting Qian
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Anhui 230001, China; Department of Radiation Oncology, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Cancer Hospital, 107 Huanhu East Road, Hefei, Anhui 230031, China.
| | - Jiangning Dong
- Department of Radiology, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Cancer Hospital, 107 Huanhu East Road, Hefei, Anhui 230031, China.
| |
Collapse
|
17
|
Raniszewska A, Kwiecień I, Rutkowska E, Rzepecki P, Domagała-Kulawik J. Lung Cancer Stem Cells-Origin, Diagnostic Techniques and Perspective for Therapies. Cancers (Basel) 2021; 13:2996. [PMID: 34203877 PMCID: PMC8232709 DOI: 10.3390/cancers13122996] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Lung cancer remains one of the most aggressive solid tumors with an overall poor prognosis. Molecular studies carried out on lung tumors during treatment have shown the phenomenon of clonal evolution, thereby promoting the occurrence of a temporal heterogeneity of the tumor. Therefore, the biology of lung cancer is interesting. Cancer stem cells (CSCs) are involved in tumor initiation and metastasis. Aging is still the most important risk factor for lung cancer development. Spontaneously occurring mutations accumulate in normal stem cells or/and progenitor cells by human life resulting in the formation of CSCs. Deepening knowledge of these complex processes and improving early recognition and markers of predictive value are of utmost importance. In this paper, we discuss the CSC hypothesis with an emphasis on age-related changes that initiate carcinogenesis. We analyze the current literature in the field, describe our own experience in CSC investigation and discuss the technical challenges with special emphasis on liquid biopsy.
Collapse
Affiliation(s)
- Agata Raniszewska
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland; (I.K.); (E.R.)
| | - Iwona Kwiecień
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland; (I.K.); (E.R.)
| | - Elżbieta Rutkowska
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland; (I.K.); (E.R.)
| | - Piotr Rzepecki
- Department of Internal Medicine and Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | - Joanna Domagała-Kulawik
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a Street, 02-097 Warsaw, Poland;
| |
Collapse
|
18
|
Zheng S, Wang X, Fu Y, Li B, Xu J, Wang H, Huang Z, Xu H, Qiu Y, Shi Y, Li K. Targeted next-generation sequencing for cancer-associated gene mutation and copy number detection in 206 patients with non-small-cell lung cancer. Bioengineered 2021; 12:791-802. [PMID: 33629637 PMCID: PMC8291840 DOI: 10.1080/21655979.2021.1890382] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The knowledge of genetic variation in Chinese patients with non–small-cell lung cancer (NSCLC) is still limited. We aimed to profile this genetic variation in 206 Chinese patients with NSCLC using next-generation sequencing. Tumor tissues or whole-blood samples were collected and subjected to whole-exome targeted next-generation sequencing, which included 565 tumor-associated genes, for somatic gene mutation screening and copy number variation (CNV) detection. Potential functions of most commonly mutated genes and genes with CNV were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Atotal of 18,749 mutations were identified using targeted next-generation sequencing, and 85.3% of them were missense mutations. Among the mutation, conversions between pyrimidine and purine were predominant, and C> T/G > A was the most common substitution type. High frequencies of mutations were noted in TP53 (47.6%), EGFR (41.7%), CREBBP (23.1%), KMT2C (16.9%), MUC2 (16.6%), DNMT3A (15.5%), LRP1B (15.5%), MUC4 (15.5%), CDC27 (15.2%), and KRAS (12.8%). EGFR and KRAS mutations were mutually exclusive. The tumor mutation load showed differences depending on gender and tumor type. CNV analysis showed that BCORL1 and ARAF have the highest copy number amplification, whereas KDM6A and RBM10 showed the highest copy number deletion. GO and KEGG analyses indicated that high-frequency mutations and CNV genes were concentrated in tumor-related PI3K-Akt, FoxO, and Ras signaling pathway. Cumulatively, we studied somatic gene mutations involved in NSCLC and predicted their clinical significance in Chinese population. These findings may provide clues for etiology and drug target of NSCLC.
Collapse
Affiliation(s)
- Songbai Zheng
- Translational Medicine Research Institute, Guangzhou Huayin Medical Laboratory Center Co., Ltd., Guangzhou, China
| | - Xiaodan Wang
- Translational Medicine Research Institute, Guangzhou Huayin Medical Laboratory Center Co., Ltd., Guangzhou, China
| | - Ying Fu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Research and Development Institute, Sinotech Genomics, Shanghai, China
| | - Beibei Li
- Laboratory Medicine Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory Medicine Center, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhua Xu
- Laboratory Medicine Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haifang Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Huang
- Translational Medicine Research Institute, Guangzhou Huayin Medical Laboratory Center Co., Ltd., Guangzhou, China
| | - Hui Xu
- Technical Service Department, Guangzhou Huayin Medical Research Institute Co., Ltd., Guangzhou, China
| | - Yurong Qiu
- Translational Medicine Research Institute, Guangzhou Huayin Medical Laboratory Center Co., Ltd., Guangzhou, China
| | - Yaozhou Shi
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kui Li
- Translational Medicine Research Institute, Guangzhou Huayin Medical Laboratory Center Co., Ltd., Guangzhou, China.,Technical Service Department, Guangzhou Huayin Medical Research Institute Co., Ltd., Guangzhou, China
| |
Collapse
|
19
|
Zhu B, V M, Finch-Edmondson M, Lee Y, Wan Y, Sudol M, DasGupta R. miR-582-5p Is a Tumor Suppressor microRNA Targeting the Hippo-YAP/TAZ Signaling Pathway in Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13040756. [PMID: 33670427 PMCID: PMC7918774 DOI: 10.3390/cancers13040756] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Lung cancers lead cancer-related mortalities, with Non-Small Cell Lung Cancer (NSCLC) representing a substantial proportion of these cases. Perturbation of Hippo-YAP/TAZ signaling in NSCLC could be mainly attributed to post-transcriptional regulators since genetic alterations to the signaling pathway are known to be rare. In this study, we identified miR-582-5p as a novel, post-transcriptional regulator of Hippo-YAP/TAZ signaling. Our work revealed an inhibitory function of miR-582-5p on YAP/TAZ signaling in NSCLC cells, whereby the tumorigenic potential is diminished upon the overexpression of miR-582-5p. We also uncovered the regulation of miR-582-5p expression by YAP/TAZ, suggesting a potential feedback loop of YAP/TAZ signaling mediated by miR-582-5p. Mechanistically, we discovered NCKAP1 and PIP5K1C, regulators of actin polymerization, as novel and direct targets of miR-582-5p. Restoring miR-582-5p expression in NSCLC cells resulted in deficient F-actin, which potentially mediates the miR-582-5p-driven tumor suppression in a YAP/TAZ-dependent manner. Our findings underscore the anti-tumor function of miR-582-5p in NSCLC, positing its therapeutic potential in YAP/TAZ-driven lung cancers. Abstract The Hippo-YAP/TAZ signaling pathway is an evolutionarily conserved signaling pathway involved in a broad spectrum of biological processes, including tumorigenesis. Whilst aberrant Hippo-YAP/TAZ signaling is frequently reported in various cancers, the genetic alterations of this pathway are relatively rare, suggesting regulation at the post-transcriptional level. MicroRNAs play key role in tumorigenesis by regulating gene expression post-transcriptionally. Amongst the cancer-relevant microRNAs, miR-582-5p suppresses cell growth and tumorigenesis by inhibiting the expression of oncogenes, including AKT3, MAP3K2 and NOTCH1. Given the oncogenic role of YAP/TAZ in solid tumors, we scrutinized the possible interplay between miR-582-5p and Hippo-YAP/TAZ signaling. Correlation analysis in NSCLC cells revealed a positive relationship between the expression of mature miR-582-5p and the proportion of phosphorylated YAP/TAZ. Intriguingly, YAP/TAZ knockdown reduced the expression of mature miR-582-5p but increased that of primary miR-582. Overexpression of miR-582-5p resulted in increased phosphorylation of YAP/TAZ with a concomitant reduction in cell proliferation and enhanced apoptosis. Mechanistically, we find that miR-582-5p targets actin regulators NCKAP1 and PIP5K1C, which may be responsible for the observed alteration in F-actin, known to modulate YAP/TAZ. We postulate that regulation of the actin cytoskeleton by miR-582-5p may attenuate YAP/TAZ activity. Altogether, this study reveals a novel mechanism of YAP/TAZ regulation by miR-582-5p in a cytoskeleton-dependent manner and suggests a negative feedback loop, highlighting the therapeutic potential of restoring miR-582-5p expression in treating NSCLC.
Collapse
Affiliation(s)
- Bowen Zhu
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore;
- Department of Physiology, NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore;
- Correspondence: (B.Z.); (R.D.)
| | - Mitheera V
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore;
- Department of Physiology, NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
| | - Megan Finch-Edmondson
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; (M.F.-E.); (Y.L.)
| | - Yaelim Lee
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; (M.F.-E.); (Y.L.)
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore;
| | - Marius Sudol
- Department of Physiology, NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; (M.F.-E.); (Y.L.)
| | - Ramanuj DasGupta
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore;
- Correspondence: (B.Z.); (R.D.)
| |
Collapse
|
20
|
Lung squamous cell carcinoma and lung adenocarcinoma differential gene expression regulation through pathways of Notch, Hedgehog, Wnt, and ErbB signalling. Sci Rep 2020; 10:21128. [PMID: 33273537 PMCID: PMC7713208 DOI: 10.1038/s41598-020-77284-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
Lung malignancies comprise lethal and aggressive tumours that remain the leading cancer-related death cause worldwide. Regarding histological classification, lung squamous cell carcinoma (LUSC) and adenocarcinoma (LUAD) account for the majority of cases. Surgical resection and various combinations of chemo- and radiation therapies are the golden standards in the treatment of lung cancers, although the five-year survival rate remains very poor. Notch, Hedgehog, Wnt and Erbb signalling are evolutionarily conserved pathways regulating pivotal cellular processes such as differentiation, proliferation, and angiogenesis during embryogenesis and post-natal life. However, to date, there is no study comprehensively revealing signalling networks of these four pathways in LUSC and LUAD. Therefore, the aim of the present study was the investigation profiles of downstream target genes of pathways that differ between LUSC and LUAD biology. Our results showed a few co-expression modules, identified through weighted gene co-expression network analysis (WGCNA), which significantly differentiated downstream signaling of Notch, ErbB, Hedgehog, and Wnt in LUSC and LUAD. Among co-expressed genes essential regulators of the cell cycle, DNA damage response, apoptosis, and proliferation have been found. Most of them were upregulated in LUSC compared to LUAD. In conclusion, identified downstream networks revealed distinct biological mechanisms underlying cancer development and progression in LUSC and LUAD that may diversify the clinical outcome of the disease.
Collapse
|
21
|
Fahim Y, Yousefi M, Izadpanah MH, Forghanifard MM. TWIST1 correlates with Notch signaling pathway to develop esophageal squamous cell carcinoma. Mol Cell Biochem 2020; 474:181-188. [PMID: 32712748 DOI: 10.1007/s11010-020-03843-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023]
Abstract
Notch signaling pathway mediates different biological processes including stem cell self-renewal, progenitor cell fate decision, and terminal differentiation. TWIST1 plays a key role in tumor development and metastasis through inducing epithelial-mesenchymal transition (EMT). Expression of the core transcriptional complex of Notch pathway and its target genes, as well as TWIST1 overexpression, are closely related to the aggressive clinicopathological variables of esophageal squamous cell carcinoma (ESCC). Here we aimed to functionally elucidate probable crosstalk between TWIST1 and Notch pathway in ESCCs. Correlation between TWIST1 and Notch target genes was analyzed in 50 ESCCs and corresponding normal tissues. Using retroviral system, enforced expression of TWIST1 was established in ESCC line KYSE-30 cells and expression of Notch signaling genes was assessed. Significant correlation between TWIST1 and HEY1/HEY2 expression was found in different pathological variable of ESCC poor prognosis. Induced expression of TWIST1 in KYSE-30 cells caused a noteworthy increase of Notch pathway genes expression revealing regulatory role of TWIST1 on Notch signaling genes in the cells. Based on existed correlations between expression of TWIST1 and Notch pathway genes in different pathological features of ESCC patients, as well as KYSE-30 cell line, we may extrapolate that TWIST1 is involved in aggressiveness of the disease through regulation of Notch signaling genes. To the best of knowledge, this is the first report describing the impact of TWIST1 on Notch cascade genes in ESCC.
Collapse
Affiliation(s)
- Yasaman Fahim
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mozhgan Yousefi
- Department of Biology, Damghan Branch, Islamic Azad University, Cheshmeh-Ali Boulevard, Sa'dei Square, Damghan, Iran
| | | | - Mohammad Mahdi Forghanifard
- Department of Biology, Damghan Branch, Islamic Azad University, Cheshmeh-Ali Boulevard, Sa'dei Square, Damghan, Iran.
| |
Collapse
|
22
|
Hua CB, Song SB, Ma HL, Li XZ. MiR-1-5p is down-regulated in gallbladder carcinoma and suppresses cell proliferation, migration and invasion by targeting Notch2. Pathol Res Pract 2018; 215:200-208. [PMID: 30497876 DOI: 10.1016/j.prp.2018.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/26/2018] [Accepted: 10/18/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Numerous studies have demonstrated that aberrant microRNAs (miRNAs) are involved in tumorigenesis and tumor progression. Nevertheless, the precise role of miR-1-5p in gallbladder carcinoma cell growth and metastasis remains not fully revealed. MATERIAL AND METHODS The levels of miR-1-5p were detected in gallbladder carcinoma tissues and cell lines using qRT-PCR method. A series of functional assays, including cell proliferation, colony formation, wound healing and Transwell invasion were conducted using miR-1-5p or miR-1-5p inhibitor transfected cells. RESULTS MiR-1-5p was remarkably down-regulated in gallbladder carcinoma tissues and cell lines compared to normal. In addition, over-expression of miR-1-5p markedly suppressed the growth, migration and invasion of gallbladder carcinoma cell. Conversely, down-expression of miR-1-5p facilitated gallbladder carcinoma cell proliferation and aggressiveness. Mechanistic investigations demonstrated that neurogenic locus notch homolog protein 2 (Notch2) was the directly target of miR-1-5p and Notch2 mediated the inhibitory effect of miR-1-5p in gallbladder carcinoma cell growth and aggressiveness. CONCLUSION Our findings demonstrated that miR-1-5p acted as a suppressive miRNA and played vital roles in the growth, migration and invasion of gallbladder carcinoma cell through targeting Notch2.
Collapse
Affiliation(s)
- Chun Bo Hua
- General Surgery Ward One, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| | - Sheng Bo Song
- Iron Man Hospital of Daqing Oilfield, Daqing, Heilongjiang, 163413, China
| | - Hui Li Ma
- Neurology, BinZhou Medical University Hospital, Binzhou, Shandong, 256600, China.
| | - Xi Zhi Li
- Emergency Trauma Surgery, BinZhou Medical University Hospital, Binzhou, Shandong, 256600, China.
| |
Collapse
|
23
|
Sui C, Zhuang C, Sun D, Yang L, Zhang L, Song L. Notch1 regulates the JNK signaling pathway and increases apoptosis in hepatocellular carcinoma. Oncotarget 2018; 8:45837-45847. [PMID: 28507277 PMCID: PMC5542231 DOI: 10.18632/oncotarget.17434] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Notch1-induced pathways are involved in cell growth, apoptosis, motility, and invasion in many cancers. In the present study, the expression of Notch1 and NICD1 was detected in hepatocellular carcinoma (HCC) tissues using in-vitro assays. And then, we explored cell biology and signaling pathways using Notch1 siRNA or plasmids. Here, the expression of Notch1 and NICD1 was significantly decreased in HCC tissues. In-vitro, Notch1 plasmids inhibited cell proliferation, migration and invasion, but enhanced apoptosis of HepG2 and Hep3B cells. Conversely, si-Notch1 enhanced cell proliferation, migration and invasion, but inhibited apoptosis of HepG2 and Hep3B cells. Mechanically, Notch1 decreased the expression of cyclin D1, MMP-9 and Bcl-2, but increased the expression of p-JNK, Bax and cleaved caspase 3 in HepG2 and Hep3B cells. Besides, si-JNK or JNK inhibitor SP600125 affected the activation of Notch1 signaling pathway, and prevents cell apoptosis. In conclusion, Notch1 regulates the JNK signaling pathway and increases apoptosis in HCC. Because patients with HCC have a poor prognosis, Notch1 pathway may provide a novel treatment strategy.
Collapse
Affiliation(s)
- Chengxu Sui
- Department of Interventional Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Chengjun Zhuang
- Department of Intensive Care Unit, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Deguang Sun
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Li Yang
- Department of Intensive Care Unit, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Liang Zhang
- Department of Interventional Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Lei Song
- Department of Interventional Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China
| |
Collapse
|
24
|
Xiong J, Zhang X, Chen X, Wei Y, Lu DG, Han YW, Xu J, Yu D. Prognostic roles of mRNA expression of notch receptors in non-small cell lung cancer. Oncotarget 2017; 8:13157-13165. [PMID: 28061457 PMCID: PMC5355084 DOI: 10.18632/oncotarget.14483] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022] Open
Abstract
Notch signalling is aberrantly activated in human non-small cell lung cancer (NSCLC). Nevertheless, the prognostic roles of mRNA expression of four Notch receptors in NSCLC patients remain elusive. In this report, we reported the prognostic roles of Notch receptors in a total of 1,926 NSCLC patients through “The Kaplan-Meier plotter” (KM plotter) database which is capable to assess the effect of 22,277 genes on survival of NSCLC patients. We found that mRNA high expression level of Notch1 was associated with better overall survival (OS) for all NSCLC patients, hazard ratio (HR) 0.78 (0.69-0.89), p=0.00019, better OS in adenocarcinoma (Ade) patients, HR 0.59 (0.46-0.75), p=1.5e-05, as well as in squamous cell carcinoma (SCC) patients, HR 0.78 (0.62-0.99), p=0.044. mRNA high expression levels of Notch2 and Notch3 were associated with worsen OS for all NSCLC patients, as well as in Ade, but not in SCC patients. mRNA high expression level of Notch4 was not found to be associated with to OS for all NSCLC patients. In addition, mRNA high expression levels of Notch2, Notch3, but Notch4 are significantly associated with the NSCLC patients who have different smoking status. Our results indicate that mRNA expression of Notch receptors may have distinct prognostic values in NSCLC patients. These results will benefit for developing tools to accurately predict the prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Jianwen Xiong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P. R. China
| | - Xiaoqiang Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P. R. China
| | - Xianglai Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P. R. China
| | - Yiping Wei
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P. R. China
| | - De-Guo Lu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yun-Wei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianjun Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P. R. China
| | - Dongliang Yu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P. R. China
| |
Collapse
|
25
|
Ma Z, Cai H, Zhang Y, Chang L, Cui Y. MiR-129-5p inhibits non-small cell lung cancer cell stemness and chemoresistance through targeting DLK1. Biochem Biophys Res Commun 2017; 490:309-316. [DOI: 10.1016/j.bbrc.2017.06.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/11/2017] [Indexed: 11/26/2022]
|
26
|
Chen CY, Chen YY, Hsieh MS, Ho CC, Chen KY, Shih JY, Yu CJ. Expression of Notch Gene and Its Impact on Survival of Patients with Resectable Non-small Cell Lung Cancer. J Cancer 2017; 8:1292-1300. [PMID: 28607605 PMCID: PMC5463445 DOI: 10.7150/jca.17741] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/08/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND: Notch signaling has been demonstrated to frequently participate in the process of lung carcinogenesis. This study aimed to search Notch expression in non-small cell lung cancer (NSCLC) and its impact on survival. METHODS: From 2001 to 2011, patients with diagnosis of NSCLC who received surgical resection were included. The expression of Notch gene was assessed by real-time polymerase chain reaction (RT-PCR). Clinical characteristics, histological types, disease stages, and outcomes were analyzed. RESULTS: Ninety-seven patients with NSCLC being explored the expression of Notch gene (Notch1 - 4). Seventy-five patients (77.3%) were adenocarcinoma. Patients with adenocarcinoma had higher expression of Notch2 than other histology types (p < 0.001). Otherwise, patients with squamous cell carcinoma had relative higher expression of Notch1 and Notch3 expression (p = 0.014 and p = 0.032, respectively). Notch2 expression increased associated with patients with more advanced lung cancer stage. Patients who had cancer recurrence also had higher Notch2 expression (p = 0.008). The patient group with lung adenocarcinoma of both high Notch1 and Notch3 expression had a shorter median disease-free survival (DFS) (both high v.s both low: DFS, median, 7.2 v.s 25.3 months, p = 0.03). However, the expression of Notch gene had no impact on overall survival. CONCLUSIONS: Patients with lung adenocarcinoma had higher Notch2 expression. Patients with higher Notch2 expression also had higher rate of cancer recurrence. Both higher Notch1 and Notch3 expression was associated with poor prognosis in lung adenocarcinoma.
Collapse
Affiliation(s)
- Chung-Yu Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County, Taiwan
| | - Ying-Yin Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology and Graduate Institute of Pathology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Chi Ho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuan-Yu Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jin-Yuan Shih
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chong-Jen Yu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
27
|
Abstract
The Notch signalling cascade is an evolutionarily conserved pathway that has a crucial role in regulating development and homeostasis in various tissues. The cellular processes and events that it controls are diverse, and continued investigation over recent decades has revealed how the role of Notch signalling is multifaceted and highly context dependent. Consistent with the far-reaching impact that Notch has on development and homeostasis, aberrant activity of the pathway is also linked to the initiation and progression of several malignancies, and Notch can in fact be either oncogenic or tumour suppressive depending on the tissue and cellular context. The Notch pathway therefore represents an important target for therapeutic agents designed to treat many types of cancer. In this Review, we focus on the latest developments relating specifically to the tumour-suppressor activity of Notch signalling and discuss the potential mechanisms by which Notch can inhibit carcinogenesis in various tissues. Potential therapeutic strategies aimed at restoring or augmenting Notch-mediated tumour suppression will also be highlighted.
Collapse
Affiliation(s)
- Craig S Nowell
- CMU, Department for Pathology and Immunology, University of Geneva, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Vaud 1015, Switzerland
| |
Collapse
|
28
|
Liu ZY, Wu T, Li Q, Wang MC, Jing L, Ruan ZP, Yao Y, Nan KJ, Guo H. Notch Signaling Components: Diverging Prognostic Indicators in Lung Adenocarcinoma. Medicine (Baltimore) 2016; 95:e3715. [PMID: 27196489 PMCID: PMC4902431 DOI: 10.1097/md.0000000000003715] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a lethal and aggressive malignancy. Currently, the identities of prognostic and predictive makers of NSCLC have not been fully established. Dysregulated Notch signaling has been implicated in many human malignancies, including NSCLC. However, the prognostic value of measuring Notch signaling and the utility of developing Notch-targeted therapies in NSCLC remain inconclusive. The present study investigated the association of individual Notch receptor and ligand levels with lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) prognosis using the Kaplan-Meier plotte database. This online database encompasses 2437 lung cancer samples. Hazard ratios with 95% confidence intervals were calculated. The results showed that higher Notch1, Notch2, JAG1, and DLL1 mRNA expression predicted better overall survival (OS) in lung ADC, but showed no significance in SCC patients. Elevated Notch3, JAG2, and DLL3 mRNA expression was associated with poor OS of ADC patients, but not in SCC patients. There was no association between Notch4 and OS in either lung ADC or SCC patients. In conclusion, the set of Notch1, Notch2, JAG1, DLL1 and that of Notch3, JAG2, DLL3 played opposing prognostic roles in lung ADC patients. Neither set of Notch receptors and ligands was indicative of lung SCC prognosis. Notch signaling could serve as promising marker to predict outcomes in lung ADC patients. The distinct features of lung cancer subtypes and Notch components should be considered when developing future Notch-targeted therapies.
Collapse
Affiliation(s)
- Zhi-Yan Liu
- From the Department of Medical Oncology, the First Affiliated Hospital of Xi'an JiaoTong University (Z-YL, TW, QL, M-CW, LJ, Z-PR, YY, K-JN, HG); and Department of Respiratory Medicine, Xi'an central Hospital (Z-YL), Xi'an, Shaanxi, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kong R, Feng J, Ma Y, Zhou B, Li S, Zhang W, Jiang J, Zhang J, Qiao Z, Zhang T, Zang Q, He X. Silencing NACK by siRNA inhibits tumorigenesis in non-small cell lung cancer via targeting Notch1 signaling pathway. Oncol Rep 2016; 35:2306-14. [PMID: 26782286 DOI: 10.3892/or.2016.4552] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/08/2015] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung tumor with poor prognosis, in which the Notch signaling pathway plays an important role. Notch activation complex kinase (NACK) has been reported both as a co-activator and a target gene of the Notch pathway. However, the molecular mechanism of NACK in NSCLC still remains unknown. In this study, the expression of NACK was analyzed in 35 paired NSCLC tumor samples and 2 NSCLC cell lines. MTT assay, cell migration assay, cell invasion assay, flow cytometry assay, and xenograft model were employed to detect the effect of NACK knockdown on the cell proliferation, metastasis, invasion and apoptosis of NSCLC. The relationship between NACK and Notch1 signaling pathway in NSCLC cells was assessed by western blot and luciferase reporter assay. We found that the expression of NACK in the NSCLC tissues and lung cancer cells were significantly increased. High level of NACK expression is remarkable associated with tumor differentiation, lymphatic metastasis, clinical stage and poor survival prognosis. The interference of NACK significantly inhibited cell proliferation, invasion and metastasis through inducing apoptosis in NSCLC cells. The transcriptional activity of related Notch1 target genes were significantly suppressed resulting from NACK knockdown. This study demonstrates that interference of NACK inhibits NSCLC progression through Notch1 signaling pathway and targeting NACK may be an effective approach for NSCLC therapy.
Collapse
Affiliation(s)
- Ranran Kong
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jie Feng
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuefeng Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Bin Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shaomin Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wei Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jiantao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhe Qiao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ting Zhang
- Second Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Quanjin Zang
- Second Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xijing He
- Second Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
30
|
Identification of Gene Biomarkers for Distinguishing Small-Cell Lung Cancer from Non-Small-Cell Lung Cancer Using a Network-Based Approach. BIOMED RESEARCH INTERNATIONAL 2015; 2015:685303. [PMID: 26290870 PMCID: PMC4531169 DOI: 10.1155/2015/685303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/10/2015] [Accepted: 03/17/2015] [Indexed: 11/18/2022]
Abstract
Lung cancer consists of two main subtypes: small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) that are classified according to their physiological phenotypes. In this study, we have developed a network-based approach to identify molecular biomarkers that can distinguish SCLC from NSCLC. By identifying positive and negative coexpression gene pairs in normal lung tissues, SCLC, or NSCLC samples and using functional association information from the STRING network, we first construct a lung cancer-specific gene association network. From the network, we obtain gene modules in which genes are highly functionally associated with each other and are either positively or negatively coexpressed in the three conditions. Then, we identify gene modules that not only are differentially expressed between cancer and normal samples, but also show distinctive expression patterns between SCLC and NSCLC. Finally, we select genes inside those modules with discriminating coexpression patterns between the two lung cancer subtypes and predict them as candidate biomarkers that are of diagnostic use.
Collapse
|
31
|
Barse L, Bocchetta M. Non-small-cell lung carcinoma: role of the Notch signaling pathway. LUNG CANCER (AUCKLAND, N.Z.) 2015; 6:43-53. [PMID: 28210150 PMCID: PMC5217522 DOI: 10.2147/lctt.s60329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Notch signaling plays a pivotal role during embryogenesis. It regulates three fundamental processes: lateral inhibition, boundary formation, and lineage specification. During post-natal life, Notch receptors and ligands control critical cell fate decisions both in compartments that are undergoing differentiation and in pluripotent progenitor cells. First recognized as a potent oncogene in certain lymphoblastic leukemias and mesothelium-derived tissue, the role of Notch signaling in epithelial, solid tumors has been far more controversial. The overall consequence of Notch signaling and which form of the Notch receptor drives malignancy in humans is deeply debated. Most likely, this is due to the high degree of context-dependent effects of Notch signaling. More recently, it has been discovered that Notch (especially Notch-1) can exert different, even opposite effects in the same tissue under differing microenvironmental conditions. Further complicating the understanding of Notch receptors is the recently discovered role for non-canonical Notch signaling. Additionally, the most frequent Notch signaling antagonists used in biological systems have been inhibitors of the transmembrane protease complex γ-secretase, which itself processes a plethora of class one transmembrane proteins and thus cannot be considered a Notch-specific upstream regulator. Here we review the available empirical evidence gathered in recent years concerning Notch receptors and ligands in non-small-cell lung carcinoma (NSCLC). Although an overview of the field reveals seemingly contradicting results, we propose that Notch signaling can be exploited as a therapeutic target in NSCLC and represents a promising complement to the current arsenal utilized to combat this malignancy, particularly in targeting NSCLC tissues under specific environmental conditions, such as hypoxia.
Collapse
Affiliation(s)
- Levi Barse
- Department of Pathology, Oncology Institute, Loyola University Chicago, Maywood, IL, USA
| | - Maurizio Bocchetta
- Department of Pathology, Oncology Institute, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
32
|
Cheng Z, Tan Q, Tan W, Zhang LI. Cigarette smoke induces the expression of Notch3, not Notch1, protein in lung adenocarcinoma. Oncol Lett 2015; 10:641-646. [PMID: 26622547 DOI: 10.3892/ol.2015.3329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/26/2015] [Indexed: 01/14/2023] Open
Abstract
The aim of the present study was to determine the effect of cigarette smoke on the expression of Notch proteins in lung adenocarcinoma (LAC). Protein expression levels of Notch1 and Notch3 were analyzed using immunohistochemistry in 102 human LAC specimens. Of these, 52 were obtained from smokers and 50 from non-smokers. In addition, cigarette smoke extract (CSE) at varying concentrations (1, 2.5 and 5%) was administered to A549 cells. The expression of Notch1 and Notch3 protein was then detected by western blot analysis at different time points (0, 8, 24 and 48 h). Of the 102 LAC specimens, 42 (41.2%) were positive for Notch1 and 63 (61.8%) were positive for Notch3. There was no significant difference in the level of Notch1 expression between smokers and non-smokers with LAC (P>0.05). The positive rate and staining intensity of Notch3 expression were increased in the smokers compared with the non-smokers (P<0.05). The expression of Notch3 protein in A549 cells increased in a time- and dose-dependent manner following treatment with CSE, whilst the expression of Notch1 protein appeared stable. The results suggested that cigarette smoke was able to induce the expression of Notch3, not Notch1, protein in LAC. The data revealed an upregulation of Notch3 in LAC following cigarette smoke exposure. Such findings may provide a novel therapeutic target for the treatment of LAC.
Collapse
Affiliation(s)
- Zhenshun Cheng
- Department of Respiratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430070, P.R. China
| | - Qiuyue Tan
- Department of Respiratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430070, P.R. China
| | - Weijun Tan
- Department of Respiratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430070, P.R. China
| | - L I Zhang
- Department of Respiratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
33
|
Yang YL, Jablons D, You L. An alternative way to initiate Notch1 signaling in non-small cell lung cancer. Transl Lung Cancer Res 2015; 3:238-41. [PMID: 25806306 DOI: 10.3978/j.issn.2218-6751.2013.12.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 12/31/2013] [Indexed: 01/09/2023]
Abstract
Non-small cell lung cancer (NSCLC) cells activate Notch1 signaling to promote cell proliferation and facilitate their survival. It now emerges that endothelial Delta-like ligand 4 (Dll4) may mediate Notch1 activation and inhibit tumor cell growth.
Collapse
Affiliation(s)
- Yi-Lin Yang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - David Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
34
|
Azizidoost S, Bavarsad MS, Bavarsad MS, Shahrabi S, Jaseb K, Rahim F, Shahjahani M, Saba F, Ghorbani M, Saki N. The role of notch signaling in bone marrow niche. Hematology 2015; 20:93-103. [PMID: 24724873 DOI: 10.1179/1607845414y.0000000167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
OBJECTIVE Bone marrow (BM) niche is a three-dimensional structure composed of a series of cells and it is one of the most controversial topics in hematological malignancies, leukemia, and even metastasis. Here, we review the relationship between Notch signaling and different fates of stem cells and other BM niche cells. METHODS Relevant English-language literature were searched and retrieved from PubMed (2000-2013) using the terms Notch signaling, BM niche, and microRNAs (miRNAs). DISCUSSION Notch signaling pathway is a signaling system involved in cellular processes such as proliferation, differentiation, and apoptosis. The notch signaling pathway components are associated with interaction between leukemic, metastatic, and normal cells and their microenvironment. miRNAs play an important role in expression and regulation of signaling molecules. It is necessary to evaluate the relationship between aberrant miRNA expression and notch signaling such as miR-128 and miR-30 in glioma and angiogenesis with notch signaling, respectively. CONCLUSIONS Characterizing malignant cells and future studies focus on better understanding the variety of cancers and apoptosis with activated Notch signaling pathway, may remain promising this signaling system as a safe and effective therapeutic target.
Collapse
|
35
|
Nguyen D, Rubinstein L, Takebe N, Miele L, Tomaszewski JE, Ivy P, Doroshow JH, Yang SX. Notch1 phenotype and clinical stage progression in non-small cell lung cancer. J Hematol Oncol 2015; 8:9. [PMID: 25653136 PMCID: PMC4343190 DOI: 10.1186/s13045-014-0104-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/30/2014] [Indexed: 02/06/2023] Open
Abstract
Background Notch1 transmembrane receptor is activated through ligand-binding- triggered proteolytic cleavages and, upon release, the intracellular domain (N1-ICD) translocates into the nucleus and modulates target gene transcriptions. Notch activation has been implicated in tumorigenesis in an increasing number of human malignancies including non-small cell lung cancer (NSCLC). However, Notch1 in distinct expression patterns and activation status with tumor progression remains to be defined in NSCLC. Methods Notch1 and activated Notch1, N1-ICD, were examined by immunohistochemistry in 58 cases of stage I to IV NSCLC tumors. Association between Notch1 or N1-ICD expression and clinicopathological factors was assessed via correlation coefficient r statistics. P-values are two-sided. Results Detectable tumor Notch1, predominantly localized to the membrane and cytoplasm, was observed in 29 cases (50%, 95% Blyth-Still-Casella confidence interval 37 – 63%). It was negatively associated with stage (r = - 0.43, P < 0.001) and nodal status (r = - 0.33, P = 0.01), but not tumor size. In contrast, nuclear N1-ICD expression level was low and found in 12% of NSCLC patients, neither significantly associated with stage nor nodal status. Upon Notch1 activation in vitro, a mostly extra-nuclear staining was substantially turned into the nuclear signal in cancer cells. Conclusions Notch1 in the largely inactivated phenotype is inversely associated with clinical stage progression in NSCLC. Notch1, rather than activated N1-ICD, may be a context-dependent restrictive factor to nodal metastasis.
Collapse
Affiliation(s)
- Dat Nguyen
- National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Larry Rubinstein
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Naoko Takebe
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Lucio Miele
- Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, New Orleans, LA, USA.
| | - Joseph E Tomaszewski
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Percy Ivy
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Sherry X Yang
- National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
36
|
Arnold KM, Opdenaker LM, Flynn D, Sims-Mourtada J. Wound healing and cancer stem cells: inflammation as a driver of treatment resistance in breast cancer. CANCER GROWTH AND METASTASIS 2015; 8:1-13. [PMID: 25674014 PMCID: PMC4315129 DOI: 10.4137/cgm.s11286] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/01/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022]
Abstract
The relationship between wound healing and cancer has long been recognized. The mechanisms that regulate wound healing have been shown to promote transformation and growth of malignant cells. In addition, chronic inflammation has been associated with malignant transformation in many tissues. Recently, pathways involved in inflammation and wound healing have been reported to enhance cancer stem cell (CSC) populations. These cells, which are highly resistant to current treatments, are capable of repopulating the tumor after treatment, causing local and systemic recurrences. In this review, we highlight proinflammatory cytokines and developmental pathways involved in tissue repair, whose deregulation in the tumor microenvironment may promote growth and survival of CSCs. We propose that the addition of anti-inflammatory agents to current treatment regimens may slow the growth of CSCs and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Kimberly M Arnold
- Center for Translational Cancer Research, Helen F. Graham Cancer Center, Christiana Care Health Services, Inc., Newark, DE, USA. ; Department of Medical Laboratory Sciences, University of Delaware, Newark, DE, USA
| | - Lynn M Opdenaker
- Center for Translational Cancer Research, Helen F. Graham Cancer Center, Christiana Care Health Services, Inc., Newark, DE, USA. ; Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Daniel Flynn
- Center for Translational Cancer Research, Helen F. Graham Cancer Center, Christiana Care Health Services, Inc., Newark, DE, USA. ; Department of Medical Laboratory Sciences, University of Delaware, Newark, DE, USA
| | - Jennifer Sims-Mourtada
- Center for Translational Cancer Research, Helen F. Graham Cancer Center, Christiana Care Health Services, Inc., Newark, DE, USA. ; Department of Medical Laboratory Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
37
|
RBPJ inhibition impairs the growth of lung cancer. Tumour Biol 2015; 36:3751-6. [PMID: 25589461 DOI: 10.1007/s13277-014-3015-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022] Open
Abstract
The exact effects of the modulation of Notch signaling pathway on cell growth have been shown to depend on tumor cell type. Recombination signal-binding protein Jκ (RBPJ) is a key transcription factor downstream of receptor activation in Notch signaling pathway. Here, we evaluated the effects of RBPJ inhibition on the growth of lung cancer cells. We found that a short hairpin interfering RNA (shRNA) for RBPJ efficiently inhibited RBPJ expression in lung cancer cells, resulting in a significant decrease in the cell growth. Further analyses showed that RBPJ inhibition altered the levels of its downstream targets, including p21, p27, CDK2, Hes1, Bcl-2, and SKP2, to prevent the cells from growing. Our data thus suggest that shRNA intervention of RBPJ expression could be a promising therapeutic approach for treating human lung cancer.
Collapse
|
38
|
Kobet RA, Pan X, Zhang B, Pak SC, Asch AS, Lee MH. Caenorhabditis elegans: A Model System for Anti-Cancer Drug Discovery and Therapeutic Target Identification. Biomol Ther (Seoul) 2014; 22:371-83. [PMID: 25414766 PMCID: PMC4201220 DOI: 10.4062/biomolther.2014.084] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 01/27/2023] Open
Abstract
The nematode Caenorhabditis elegans (C. elegans) offers a unique opportunity for biological and basic medical researches due to its genetic tractability and well-defined developmental lineage. It also provides an exceptional model for genetic, molecular, and cellular analysis of human disease-related genes. Recently, C. elegans has been used as an ideal model for the identification and functional analysis of drugs (or small-molecules) in vivo. In this review, we describe conserved oncogenic signaling pathways (Wnt, Notch, and Ras) and their potential roles in the development of cancer stem cells. During C. elegans germline development, these signaling pathways regulate multiple cellular processes such as germline stem cell niche specification, germline stem cell maintenance, and germ cell fate specification. Therefore, the aberrant regulations of these signaling pathways can cause either loss of germline stem cells or overproliferation of a specific cell type, resulting in sterility. This sterility phenotype allows us to identify drugs that can modulate the oncogenic signaling pathways directly or indirectly through a high-throughput screening. Current in vivo or in vitro screening methods are largely focused on the specific core signaling components. However, this phenotype-based screening will identify drugs that possibly target upstream or downstream of core signaling pathways as well as exclude toxic effects. Although phenotype-based drug screening is ideal, the identification of drug targets is a major challenge. We here introduce a new technique, called Drug Affinity Responsive Target Stability (DARTS). This innovative method is able to identify the target of the identified drug. Importantly, signaling pathways and their regulators in C. elegans are highly conserved in most vertebrates, including humans. Therefore, C. elegans will provide a great opportunity to identify therapeutic drugs and their targets, as well as to understand mechanisms underlying the formation of cancer.
Collapse
Affiliation(s)
- Robert A Kobet
- Department of Medicine, Department of Oncology, Division of Hematology/Oncology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Stephen C Pak
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224
| | - Adam S Asch
- Department of Medicine, Department of Oncology, Division of Hematology/Oncology, Brody School of Medicine, East Carolina University, Greenville, NC 27834 ; Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 ; Current address: Department of Medicine, Division of Hematology/Oncology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Myon-Hee Lee
- Department of Medicine, Department of Oncology, Division of Hematology/Oncology, Brody School of Medicine, East Carolina University, Greenville, NC 27834 ; Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
39
|
Luo J, Zhou X, Yakisich JS. Stemness and plasticity of lung cancer cells: paving the road for better therapy. Onco Targets Ther 2014; 7:1129-34. [PMID: 25018639 PMCID: PMC4075950 DOI: 10.2147/ott.s62345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is a devastating disease that is responsible for around 160,000 deaths each year in United States. The discovery that lung cancer, like most other solid tumors, contains a subpopulation of cancer stem cells or cancer stem-like cells (CSCs/CS-LCs) that if eliminated could lead to a cure has brought new hope. However, the exact nature of the putative lung CSCs/CS-LCs is not known and therefore therapies to eliminate this subpopulation have been elusive. A limited knowledge and understanding of cancer stem cell properties and tumor biology may be responsible for the limited clinical success. In this review we discuss the stemness and plasticity properties of lung cancer cells that are critical aspects in terms of developing effective therapies. We suggest that the available experimental evidence obtained from lung cancer cell lines and patients’ derived primary cultures does not support a tumor model consistent with the classical CSC model. Instead, all lung cancer cells may be extremely versatile and new models of cancer stem cells may be better working models.
Collapse
Affiliation(s)
- Judong Luo
- Changzhou Tumor Hospital, Soochow University, Changzhou, People's Republic of China ; School of Radiation Medicine and Protection, Jiangsu Province Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Xifa Zhou
- Changzhou Tumor Hospital, Soochow University, Changzhou, People's Republic of China
| | | |
Collapse
|
40
|
Stem cells and cell therapies in lung biology and diseases: conference report. Ann Am Thorac Soc 2014; 10:S25-44. [PMID: 23869447 DOI: 10.1513/annalsats.201304-089aw] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
41
|
Cao R, Ding Q, Li P, Xue J, Zou Z, Huang J, Peng G. SHP1-mediated cell cycle redistribution inhibits radiosensitivity of non-small cell lung cancer. Radiat Oncol 2013; 8:178. [PMID: 23842094 PMCID: PMC3723552 DOI: 10.1186/1748-717x-8-178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/02/2013] [Indexed: 12/25/2022] Open
Abstract
Background Radioresistance is the common cause for radiotherapy failure in non-small cell lung cancer (NSCLC), and the degree of radiosensitivity of tumor cells is different during different cell cycle phases. The objective of the present study was to investigate the effects of cell cycle redistribution in the establishment of radioresistance in NSCLC, as well as the signaling pathway of SH2 containing Tyrosine Phosphatase (SHP1). Methods A NSCLC subtype cell line, radioresistant A549 (A549S1), was induced by high-dose hypofractionated ionizing radiations. Radiosensitivity-related parameters, cell cycle distribution and expression of cell cycle-related proteins and SHP1 were investigated. siRNA was designed to down-regulate SHP1expression. Results Compared with native A549 cells, the proportion of cells in the S phase was increased, and cells in the G0/G1 phase were consequently decreased, however, the proportion of cells in the G2/M phase did not change in A549S1 cells. Moreover, the expression of SHP1, CDK4 and CylinD1 were significantly increased, while p16 was significantly down-regulated in A549S1 cells compared with native A549 cells. Furthermore, inhibition of SHP1 by siRNA increased the radiosensitivity of A549S1 cells, induced a G0/G1 phase arrest, down-regulated CDK4 and CylinD1expressions, and up-regulated p16 expression. Conclusions SHP1 decreases the radiosensitivity of NSCLC cells through affecting cell cycle distribution. This finding could unravel the molecular mechanism involved in NSCLC radioresistance.
Collapse
Affiliation(s)
- Rubo Cao
- Cancer Center of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No, 1227 Jiefang Dadao, Wuhan 430022, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Zhao J, Ma MZ, Ren H, Liu Z, Edelman MJ, Pan H, Mao L. Anti-HDGF targets cancer and cancer stromal stem cells resistant to chemotherapy. Clin Cancer Res 2013; 19:3567-76. [PMID: 23695169 DOI: 10.1158/1078-0432.ccr-12-3478] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Approximately one third of the patients with advanced non-small cell lung carcinoma (NSCLC) will initially respond to platinum-based chemotherapy, but virtually all tumors will progress (acquired resistance). The remainder will progress during initial treatment (primary resistance). In this study, we test whether the treatment can be improved by inhibiting hepatoma-derived growth factor (HDGF). EXPERIMENTAL DESIGN Thirteen primary NSCLC heterotransplant models were used to test four treatment regimens, including platinum-based chemotherapy with and without bevacizumab (VEGF-neutralizing antibody) or HDGF-H3 (HDGF-neutralizing antibody) and chemotherapy with bevacizumab and HDGF-H3. Expression of stem cell-related genes was measured using quantitative reverse transcription PCR (qRT-PCR) and immunohistochemistry. RESULTS Among 13 primary NSCLC heterotransplant models, three (23%) responded to chemotherapy but all relapsed within 20 days. The residual tumors after response to the chemotherapy exhibited an increased expression in 51 (61%) of 84 genes related with stem cell proliferation and maintenance, particularly those in Notch and Wnt pathways, suggesting enrichment for stem cell populations in the residual tumors. Interestingly, tumors from two of three models treated with HDGF-H3, bevacizumab, and chemotherapy combination did not relapse during 6 months of posttreatment observation. Importantly, this treatment combination substantially downregulated expression levels in 57 (68%) of 84 stem cell-related genes, including 34 (67%) of 51 genes upregulated after the chemotherapy. CONCLUSION These data support the hypothesis that cancer stem cells (CSC) are a mechanism for chemotherapy resistance and suggest HDGF may be a target for repressing CSCs to prevent relapse of NSCLC sensitive to chemotherapy.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Zhang S, Long H, Yang YL, Wang Y, Hsieh D, Li W, Au A, Stoppler HJ, Xu Z, Jablons DM, You L. Inhibition of CK2α down-regulates Notch1 signalling in lung cancer cells. J Cell Mol Med 2013; 17:854-62. [PMID: 23651443 PMCID: PMC3729857 DOI: 10.1111/jcmm.12068] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 03/24/2013] [Indexed: 12/14/2022] Open
Abstract
Protein kinase CK2 is frequently elevated in a variety of human cancers. The Notch1 signalling pathway has been implicated in stem cell maintenance and its aberrant activation has been shown in several types of cancer including lung cancer. Here, we show, for the first time, that CK2α is a positive regulator of Notch1 signalling in lung cancer cell lines A549 and H1299. We found that Notch1 protein level was reduced after CK2α silencing. Down-regulation of Notch1 transcriptional activity was demonstrated after the silencing of CK2α in lung cancer cells. Furthermore, small-molecule CK2α inhibitor CX-4945 led to a dose-dependent inhibition of Notch1 transcriptional activity. Conversely, forced overexpression of CK2α resulted in an increase in Notch1 transcriptional activity. Finally, the inhibition of CK2α led to a reduced proportion of stem-like CD44 + /CD24− cell population. Thus, we report that the inhibition of CK2α down-regulates Notch1 signalling and subsequently reduces a cancer stem-like cell population in human lung cancer cells. Our data suggest that CK2α inhibitors may be beneficial to the lung cancer patients with activated Notch1 signalling.
Collapse
Affiliation(s)
- Shulin Zhang
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
GUO JIANLI, HE LEI, YUAN PING, WANG PENG, LU YANJUN, TONG FANGLI, WANG YU, YIN YANHUA, TIAN JUN, SUN JUN. ADAM10 overexpression in human non-small cell lung cancer correlates with cell migration and invasion through the activation of the Notch1 signaling pathway. Oncol Rep 2012; 28:1709-18. [DOI: 10.3892/or.2012.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/06/2012] [Indexed: 11/06/2022] Open
|