1
|
Fei C, Zhao C, Ma Y, Liu Y, Chen R, Zhang H. Factors influencing early recurrence of atrial fibrillation among elderly patients following radiofrequency catheter ablation and the impact of different antiarrhythmic regimens. Front Med (Lausanne) 2024; 11:1393208. [PMID: 38994337 PMCID: PMC11236554 DOI: 10.3389/fmed.2024.1393208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Background Patients with atrial fibrillation (AF) who undergo radiofrequency catheter ablation (RFCA) necessitate the administration of antiarrhythmic drugs to prevent early recurrence. The clinical outcomes among these patients may be influenced by varying antiarrhythmic regimens. Objectives To identify the risk factors associated with early recurrence and compare the clinical outcomes among different antiarrhythmic regimens in elderly patients with AF following radiofrequency catheter ablation (RFCA) during a 3-month period. Methods A retrospective observational study encompassed 420 elderly patients with AF following RFCA. Baseline data were collected during the initial postoperative visit and clinical outcomes were carefully monitored over a 3-month follow-up period. Logistic regression and Cox-proportional hazard regression analyses were performed to investigate the relationship between various antiarrhythmic regimens and the clinical outcomes. Results Multivariate logistic regression analysis revealed that age (p = 0.001), left atrial diameter (p < 0.001), left ventricular diameter (p = 0.015), reactive hyperemia index (RHI) (p < 0.001), antiarrhythmic drug (p < 0.001) and hs-cTnI (p = 0.017) were independent risk factors of early recurrence. Furthermore, in cox survival regression analysis model, survival rate of early recurrence in the amiodarone group was higher than in the propafenone group (HR 2.30, 95%CI 1.17-4.53, p = 0.016) and in the sotalol group (HR 3.60, 95%CI 2.17-5.95, p < 0.001). Compared to the amiodarone group, the incidence of liver dysfunction was lower in the dronedarone group (p = 0.046) and the propafenone group (p = 0.021). The incidence of bradyarrhythmia (p = 0.003), QT interval prolongation (p = 0.035) and atrioventricular transmission block (p = 0.021) were higher in the sotalol group than in the amiodarone group. Conclusion RHI was identified as an independent risk factor for early recurrence among elderly AF patients after RFCA. Compared to amiodarone, propafenone and sotalol exhibited an elevated risk of early recurrence. Although there was no significant difference in early recurrence between amiodarone and dronedarone, dronedarone emerged as the preferred option due to its lower frequency of adverse drug reactions than amiodarone.
Collapse
Affiliation(s)
- Changdong Fei
- Department of Health Management Center, The 967th Hospital of Joint Logistics Support Force of Chinese PLA, Dalian, China
| | - Caitong Zhao
- Department of Quality Control, General Hospital of Northern Theater Command, Shenyang, China
| | - Yan Ma
- National Clinical Research Center of Geriatric Diseases, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yupeng Liu
- Department of Critical Care Medicine, The 967th Hospital of Joint Logistics Support Force of Chinese PLA, Dalian, China
| | - Renzheng Chen
- National Clinical Research Center of Geriatric Diseases, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Emergency, The 967th Hospital of Joint Logistics Support Force of Chinese PLA, Dalian, China
| | - Hualin Zhang
- Department of Emergency, The 967th Hospital of Joint Logistics Support Force of Chinese PLA, Dalian, China
| |
Collapse
|
2
|
Jusup S, Douwes M, Purwanto B, Indarto D, Hartono H, Pamungkasari EP. Morning Exercise is More Effective in Ameliorating Oxidative Stress in Patients with Type 2 Diabetes Mellitus. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Introduction: Exercise has been believed to be an important step in treating and preventing Type 2 Diabetes Mellitus complications. The circadian rhythm influences systems in the body, including antioxidants in the human body. By synchronizing exercise with exercise time, it will maximize the benefits of exercise for health.
Aim: Examining the effect of morning and afternoon exercise on increasing antioxidants and improving oxidative stress in patients with T2DM.
Methods: Twenty-two T2DM patients were randomly assigned to morning and afternoon exercise groups. The exercise treatment in this study was in the form of diabetes Persadia gymnastic, for 10 weeks. All participants were taken venous blood before exercise and after the tenth week. The data examined consisted of GPx-1 (Glutathione Peroxidase-1) and MDA (malodialdehyde). The pre and post data were statistically processed using a comparative test.
Results: After 10 weeks of exercise, GPx-1 levels increased significantly in both groups (p<0.05). The increase in this enzyme was considerably greater (p<0.05) in the morning group than in the afternoon group (130.37 ± 2.4 h/ml VS 72.38 ± 3.93 h/ml). MDA levels decreased significantly in morning and afternoon groups (p<0.05). The decrease in MDA was significantly greater (p<0.05) in the morning than in the afternoon exercise group (8.22 ± 0.36 nmol/ml VS 5.2 ± 0.86 nmol/ml).
Conclusions: Exercise in the morning was more effective in improving oxidative stress by increasing glutathione peroxidase-1 enzyme and reducing malondialdehyde in patients with Type 2 Diabetes Mellitus.
Keywords: Exercise; Glutathione Peroxidase; Malondialdehyde, T2DM.
Collapse
|
3
|
Craven MD, Washabau RJ. Comparative pathophysiology and management of protein-losing enteropathy. J Vet Intern Med 2019; 33:383-402. [PMID: 30762910 PMCID: PMC6430879 DOI: 10.1111/jvim.15406] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022] Open
Abstract
Protein‐losing enteropathy, or PLE, is not a disease but a syndrome that develops in numerous disease states of differing etiologies and often involving the lymphatic system, such as lymphangiectasia and lymphangitis in dogs. The pathophysiology of lymphatic disease is incompletely understood, and the disease is challenging to manage. Understanding of PLE mechanisms requires knowledge of lymphatic system structure and function, which are reviewed here. The mechanisms of enteric protein loss in PLE are identical in dogs and people, irrespective of the underlying cause. In people, PLE is usually associated with primary intestinal lymphangiectasia, suspected to arise from genetic susceptibility, or “idiopathic” lymphatic vascular obstruction. In dogs, PLE is most often a feature of inflammatory bowel disease (IBD), and less frequently intestinal lymphangiectasia, although it is not proven which process is the true driving defect. In cats, PLE is relatively rare. Review of the veterinary literature (1977‐2018) reveals that PLE was life‐ending in 54.2% of dogs compared to published disease‐associated deaths in IBD of <20%, implying that PLE is not merely a continuum of IBD spectrum pathophysiology. In people, diet is the cornerstone of management, whereas dogs are often treated with immunosuppression for causes of PLE including lymphangiectasia, lymphangitis, and crypt disease. Currently, however, there is no scientific, extrapolated, or evidence‐based support for an autoimmune or immune‐mediated mechanism. Moreover, people with PLE have disease‐associated loss of immune function, including lymphopenia, severe CD4+ T‐cell depletion, and negative vaccinal titers. Comparison of PLE in people and dogs is undertaken here, and theories in treatment of PLE are presented.
Collapse
Affiliation(s)
- Melanie D Craven
- Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Robert J Washabau
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
4
|
Hansen NW, Hansen AJ, Sams A. The endothelial border to health: Mechanistic evidence of the hyperglycemic culprit of inflammatory disease acceleration. IUBMB Life 2017; 69:148-161. [PMID: 28230336 DOI: 10.1002/iub.1610] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/21/2017] [Indexed: 02/06/2023]
Abstract
The endothelial cell (EC) layer constitutes a barrier that controls movements of fluid, solutes and cells between blood and tissue. Further, the endothelial layer regulates vascular tone and directs local humoral and cellular inflammatory processes. The strategic position makes it an important player for maintenance of health and for development of a number of diseases. Endothelial dysfunction is known to be an important component of type 2 diabetes, but is also assumed to be involved in many other diseases, for example, rheumatoid arthritis, inflammatory bowel disease, asthma, and cardiovascular diseases. We here suggest that the EC plays a pivotal role in disease pathophysiology through initiation, potentiation, and maintenance of several inflammatory mechanisms. Our contention is based on the observation that hyperglycemia-intermittent or sustained, local or systemic-is a major culprit for several endothelial dysfunctions. There is also mounting epidemiological evidence that dietary intake of refined sugars is important for the development of a number of diseases beyond obesity and type 2 diabetes. Various diseases involving inflammatory and immunological components are accelerated by hyperglycemic events because the endothelium transduces "high glucose" signaling into significant pathophysiological phenomena leading to reduced endothelial barrier function, compromised vascular tone regulation and inflammation (e.g., cytokine secretion and RAGE activation). In addition, endothelial extracellular proteins form epitopes for potential specific antibody formation upon interactions with reducing sugars. This paper reviews the endothelial metabolism, biology, inflammatory processes, physical barrier functions, and summarizes evidence that although stochastic in nature, endothelial responses to hyperglycemia are major contributors to disease pathophysiology. We present molecular and mechanistic evidence that both biological and physical barriers, protein function, specific immunity, and inflammatory processes are compromised by hyperglycemic events and thus, hyperglycemic events alone should be considered risk factors for numerous human diseases. © 2017 IUBMB Life, 69(3):148-161, 2017.
Collapse
Affiliation(s)
- Nina Waerling Hansen
- Department of Endocrinology (Diabetes and Metabolism), Rigshospitalet, Copenhagen, Denmark
| | - Anker Jon Hansen
- Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Anette Sams
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
5
|
Altabas V, Altabas K, Kirigin L. Endothelial progenitor cells (EPCs) in ageing and age-related diseases: How currently available treatment modalities affect EPC biology, atherosclerosis, and cardiovascular outcomes. Mech Ageing Dev 2016; 159:49-62. [PMID: 26919825 DOI: 10.1016/j.mad.2016.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/25/2016] [Accepted: 02/22/2016] [Indexed: 12/15/2022]
Abstract
Endothelial progenitor cells (EPCs) are mononuclear cells that circulate in the blood and are derived from different tissues, expressing cell surface markers that are similar to mature endothelial cells. The discovery of EPCs has lead to new insights in vascular repair and atherosclerosis and also a new theory for ageing. EPCs from the bone marrow and some other organs aid in vascular repair by migrating to distant vessels where they differentiate into mature endothelial cells and replace old and injured endothelial cells. The ability of EPCs to repair vascular damage depends on their number and functionality. Currently marketed drugs used in a variety of diseases can modulate these characteristics. In this review, the effect of currently available treatment options for cardiovascular and metabolic disorders on EPC biology will be discussed. The various EPC-based therapies that will be discussed include lipid-lowering agents, antihypertensive agents, antidiabetic drugs, phosphodiesteraze inhibitors, hormones, as well as EPC capturing stents.
Collapse
Affiliation(s)
- Velimir Altabas
- Department of Internal Medicine, University Clinical Hospital "Sestre milosrdnice", Zagreb, Croatia.
| | - Karmela Altabas
- Department of Internal Medicine, University Clinical Hospital "Sestre milosrdnice", Zagreb, Croatia.
| | - Lora Kirigin
- Department of Internal Medicine, University Clinical Hospital "Sestre milosrdnice", Zagreb, Croatia.
| |
Collapse
|
6
|
Altabas V. Diabetes, Endothelial Dysfunction, and Vascular Repair: What Should a Diabetologist Keep His Eye on? Int J Endocrinol 2015; 2015:848272. [PMID: 26089898 PMCID: PMC4452196 DOI: 10.1155/2015/848272] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/13/2015] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular complications are the most common complications of diabetes mellitus. A prominent attribute of diabetic cardiovascular complications is accelerated atherosclerosis, considered as a still incurable disease, at least at more advanced stages. The discovery of endothelial progenitor cells (EPCs), able to replace old and injured mature endothelial cells and capable of differentiating into healthy and functional endothelial cells, has offered the prospect of merging the traditional theories on the pathogenesis of atherosclerosis with evolving concepts of vascular biology. The literature supports the notion that EPC alterations are involved in the pathogenesis of vascular diseases in diabetics, but at present many questions remain unanswered. In this review the aspects linking endothelial progenitor cells to the altered vascular biology in diabetes mellitus are discussed.
Collapse
Affiliation(s)
- V. Altabas
- Department for Endocrinology, Diabetes and Metabolic Diseases “Mladen Sekso”, Clinic for Internal Medicine, University Hospital Center “Sestre Milosrdnice”, 10000 Zagreb, Croatia
- *V. Altabas:
| |
Collapse
|
7
|
Moderate-to-high-intensity training and a hypocaloric Mediterranean diet enhance endothelial progenitor cells and fitness in subjects with the metabolic syndrome. Clin Sci (Lond) 2012; 123:361-73. [DOI: 10.1042/cs20110477] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A reduction in EPC (endothelial progenitor cell) number could explain the development and progression of atherosclerosis in the MetS (metabolic syndrome). Although much research in recent years has focused on the Mediterranean dietary pattern and the MetS, the effect of this diet with/without moderate-to-high-intensity endurance training on EPCs levels and CrF (cardiorespiratory fitness) remains unclear. In the present study, the objective was to assess the effect of a Mediterranean diet hypocaloric model with and without moderate-to-high-intensity endurance training on EPC number and CrF of MetS patients. Thus 45 MetS patients (50–66 years) were randomized to a 12-week intervention with the hypocaloric MeD (Mediterranean diet) or the MeDE (MeD plus moderate-to-high-intensity endurance training). Training included two weekly supervised sessions [80% MaxHR (maximum heart rate); leg and arm pedalling] and one at-home session (65–75% MaxHR; walking controlled by heart rate monitors). Changes in: (i) EPC number [CD34+KDR+ (kinase insert domain-containing receptor)], (ii) CrF variables and (iii) MetS components and IRH (ischaemic reactive hyperaemia) were determined at the end of the study. A total of 40 subjects completed all 12 weeks of the study, with 20 in each group. The MeDE led to a greater increase in EPC numbers and CrF than did the MeD intervention (P≤0.001). In addition, a positive correlation was observed between the increase in EPCs and fitness in the MeDE group (r=0.72; r2=0.52; P≤0.001). Body weight loss, insulin sensitivity, TAGs (triacylglycerols) and blood pressure showed a greater decrease in the MeDE than MeD groups. Furthermore, IRH was only improved after the MeDE intervention. In conclusion, compliance with moderate-to-high-intensity endurance training enhances the positive effects of a model of MeD on the regenerative capacity of endothelium and on the fitness of MetS patients.
Collapse
|
8
|
Myers J, Dalman R, Hill B. Exercise, Vascular Health, and Abdominal Aortic Aneurysms. ACTA ACUST UNITED AC 2012. [DOI: 10.31189/2165-6193-1.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Deshpande DD, Janero DR, Amiji MM. Therapeutic strategies for endothelial dysfunction. Expert Opin Biol Ther 2011; 11:1637-54. [DOI: 10.1517/14712598.2011.625007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Kaliman P, Párrizas M, Lalanza JF, Camins A, Escorihuela RM, Pallàs M. Neurophysiological and epigenetic effects of physical exercise on the aging process. Ageing Res Rev 2011; 10:475-86. [PMID: 21624506 DOI: 10.1016/j.arr.2011.05.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/29/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
Abstract
Aging is a gradual process during which molecular and cellular processes deteriorate progressively, often leading to such pathological conditions as vascular and metabolic disorders and cognitive decline. Although the mechanisms of aging are not yet fully understood, inflammation, oxidative damage, mitochondrial dysfunction, functional alterations in specific neuronal circuits and a restricted degree of apoptosis are involved. Physical exercise improves the efficiency of the capillary system and increases the oxygen supply to the brain, thus enhancing metabolic activity and oxygen intake in neurons, and increases neurotrophin levels and resistance to stress. Regular exercise and an active lifestyle during adulthood have been associated with reduced risk and protective effects for mild cognitive impairment and Alzheimer's disease. Similarly, studies in animal models show that physical activity has positive physiological and cognitive effects that correlate with changes in transcriptional profiles. According to numerous studies, epigenetic events that include changes in DNA methylation patterns, histone modification and alterations in microRNA profiles seem to be a signature of aging. Hence, insight into the epigenetic mechanisms involved in the aging process and their modulation through lifestyle interventions such as physical exercise might open new avenues for the development of preventive and therapeutic strategies to treat aging-related diseases.
Collapse
|
11
|
Ramírez JH, Arce RM, Contreras A. Periodontal treatment effects on endothelial function and cardiovascular disease biomarkers in subjects with chronic periodontitis: protocol for a randomized clinical trial. Trials 2011; 12:46. [PMID: 21324167 PMCID: PMC3049125 DOI: 10.1186/1745-6215-12-46] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 02/16/2011] [Indexed: 01/22/2023] Open
Abstract
Background Periodontal disease (PD) is an infectious clinical entity characterized by the destruction of supporting tissues of the teeth as the result of a chronic inflammatory response in a susceptible host. It has been proposed that PD as subclinical infection may contribute to the etiology and to the pathogenesis of several systemic diseases including Atherosclerosis. A number of epidemiological studies link periodontal disease/edentulism as independent risk factor for acute myocardial infarction, peripheral vascular disease, and cerebrovascular disease. Moreover, new randomized controlled clinical trials have shown an improvement on cardiovascular surrogate markers (endothelial function, sICAM, hsPCR level, fibrinogen) after periodontal treatment. Nonetheless, such trials are still limited in terms of external validity, periodontal treatment strategies, CONSORT-based design and results consistency/extrapolation. The current study is designed to evaluate if periodontal treatment with scaling and root planning plus local delivered chlorhexidine improves endothelial function and other biomarkers of cardiovascular disease in subjects with moderate to severe periodontitis. Methods/Design This randomized, single-blind clinical trial will be performed at two health centers and will include two periodontal treatment strategies. After medical/periodontal screening, a baseline endothelium-dependent brachial artery flow-mediated dilatation (FMD) and other systemic surrogate markers will be obtained from all recruited subjects. Patients then will be randomized to receive either supragingival/subgingival plaque cleaning and calculus removal plus chlorhexidine (treatment group) or supragingival plaque removal only (control group). A second and third FMD will be obtained after 24 hours and 12 weeks in both treatment arms. Each group will consist of 49 patients (n = 98) and all patients will be followed-up for secondary outcomes and will be monitored through a coordinating center. The primary outcomes are FMD differences baseline, 24 hours and 3 months after treatment. The secondary outcomes are differences in C-reactive protein (hs-CRP), glucose serum levels, blood lipid profile, and HOMA index. Discussion This RCT is expected to provide more evidence on the effects of different periodontal treatment modalities on FMD values, as well as to correlate such findings with different surrogate markers of systemic inflammation with cardiovascular effects. Trial registration number ClinicalTrials.gov Identifier: NCT00681564.
Collapse
Affiliation(s)
- Jorge H Ramírez
- Periodontal Medicine Research Group, Department of Periodontology, School of Dentistry, Universidad del Valle, Calle 4B 36-00, Cali, Colombia.
| | | | | |
Collapse
|
12
|
Gatta L, Armani A, Iellamo F, Consoli C, Molinari F, Caminiti G, Volterrani M, Rosano GMC. Effects of a short-term exercise training on serum factors involved in ventricular remodelling in chronic heart failure patients. Int J Cardiol 2010; 155:409-13. [PMID: 21094549 DOI: 10.1016/j.ijcard.2010.10.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 10/23/2010] [Indexed: 12/22/2022]
Abstract
OBJECTIVES We studied the effect of a short-term (3 weeks) exercise training program on the number of circulating CD34/KDR(+) endothelial progenitor cells (EPCs) and on serum levels of matrix metalloproteinases (MMPs) in chronic heart failure (CHF) patients as well as on serum capacity to foster colony forming units-endothelial cells (CFU-ECs) in vitro. METHODS Effectiveness of training was assessed by the 6-minute walking test (6MWT). Peripheral blood and serum were obtained from fourteen patients with CHF due to coronary artery disease before and after an inpatient aerobic exercise training program. At admission and at discharge we analysed circulating EPC number and serum levels of MMPs, TIMP-1 and TNF-α. The number and function of CFU-EC colonies were evaluated in cultures performed with serum obtained before and after training. RESULTS After training, distance walked at 6MWT and number of circulating CD34/KDR(+) cells increased (from 154 ± 27 to 233 ± 48 m; P<0.0001 and from 5 ± 3 to 9 ± 6 cells/ml P<0.05, respectively). Conversely, serum concentrations of MMP-1 and TIMP-1 decreased significantly (from 11.4 ± 2.4 to 6.3 ± 1.1 ng/ml, and from 320.4 ± 41.2 to 167.2 ± 12.6 ng/ml, respectively, both P<0.01), while MMP2/TIMP-1 and MMP-9/TIMP-1 ratios increased. Interestingly, we found increased CFU-EC proliferation in cultures performed with serum obtained after training. CONCLUSIONS Considering that both EPCs and MMPs might play a role in vascular remodeling, the increased number of EPCs and MMP activities observed in this study, suggest that the selected short-term exercise training could be a potential therapeutic strategy to rescue cardiac function in CHF patients.
Collapse
Affiliation(s)
- Lucia Gatta
- Centre for Clinical and Basic Research, Istituto San Raffaele, Sulmona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kränkel N, Spinetti G, Amadesi S, Madeddu P. Targeting stem cell niches and trafficking for cardiovascular therapy. Pharmacol Ther 2010; 129:62-81. [PMID: 20965213 DOI: 10.1016/j.pharmthera.2010.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 12/12/2022]
Abstract
Regenerative cardiovascular medicine is the frontline of 21st-century health care. Cell therapy trials using bone marrow progenitor cells documented that the approach is feasible, safe and potentially beneficial in patients with ischemic disease. However, cardiovascular prevention and rehabilitation strategies should aim to conserve the pristine healing capacity of a healthy organism as well as reactivate it under disease conditions. This requires an increased understanding of stem cell microenvironment and trafficking mechanisms. Engagement and disengagement of stem cells of the osteoblastic niche is a dynamic process, finely tuned to allow low amounts of cells move out of the bone marrow and into the circulation on a regular basis. The balance is altered under stress situations, like tissue injury or ischemia, leading to remarkably increased cell egression. Individual populations of circulating progenitor cells could give rise to mature tissue cells (e.g. endothelial cells or cardiomyocytes), while the majority may differentiate to leukocytes, affecting the environment of homing sites in a paracrine way, e.g. promoting endothelial survival, proliferation and function, as well as attenuating or enhancing inflammation. This review focuses on the dynamics of the stem cell niche in healthy and disease conditions and on therapeutic means to direct stem cell/progenitor cell mobilization and recruitment into improved tissue repair.
Collapse
Affiliation(s)
- Nicolle Kränkel
- Institute of Physiology/Cardiovascular Research, University of Zürich, and Cardiovascular Center, Cardiology, University Hospital Zurich, Zürich, Switzerland.
| | | | | | | |
Collapse
|