1
|
Coskun ZM, Ersoz M, Adas M, Hancer VS, Boysan SN, Gonen MS, Acar A. Kruppel-Like Transcription Factor-4 Gene Expression and DNA Methylation Status in Type 2 Diabetes and Diabetic Nephropathy Patients. Arch Med Res 2019; 50:91-97. [PMID: 31495395 DOI: 10.1016/j.arcmed.2019.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/12/2019] [Accepted: 05/24/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND/AIM Diabetic nephropathy (DN) is one of the most serious microvascular complications in diabetic patients. The kruppel-like transcription factor-4 (KLF-4) affects the expression of genes involved in the pathogenesis of DN. The present study aims to identify the KLF-4 expression and DNA methylation (DNAMe) status in patients with type-2 diabetes (T2D) and DN and to reveal the contribution of the KLF-4 to the development of DN. MATERIAL AND METHODS The cohort study was performed with blood samples from 120 individuals; T2D group (n = 40), DN group (n = 40) and control group (n = 40). The expression level of the KLF-4 gene was analyzed using the real-time polymerase chain reaction (qRT-PCR) and the methylation profile detected using the methylation-specific PCR (MS-PCR) technique. RESULTS According to our findings, KLF-4 mRNA expression in the T2D group was 1.60 fold lower than in the control group (p = 0.001). In the DN group, the expression of KLF-4 mRNA was 2.92-fold less than that of the T2D group (p = 0.001). There was no significant alteration in the DNAMe status among the groups. CONCLUSION Our findings showed that regardless of the DNAMe status, KLF-4 gene expression may play a role in the development of T2D and DN. This suggests that the KLF-4 gene may be the target gene in understanding the mechanism of nephropathy, which is the most important complication of diabetes, and planning nephropathy-related treatments, but the data should be supported with more studies.
Collapse
Affiliation(s)
- Zeynep Mine Coskun
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey.
| | - Melike Ersoz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| | - Mine Adas
- Department of Endocrinology, Ministry of Health Okmeydani Research and Training Hospital, Health Sciences University, Istanbul, Turkey
| | - Veysel Sabri Hancer
- Department Medical Genetics, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Serife Nur Boysan
- Department of Endocrinology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Mustafa Sait Gonen
- Department of Endocrinology, Faculty of Cerrahpasa Medicine, Istanbul University, Istanbul, Turkey
| | - Aynur Acar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| |
Collapse
|
2
|
Nanda N, Mahmood S, Bhatia A, Mahmood A, Dhawan DK. Chemopreventive role of olive oil in colon carcinogenesis by targeting noncoding RNAs and methylation machinery. Int J Cancer 2018; 144:1180-1194. [PMID: 30155989 DOI: 10.1002/ijc.31837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/02/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Abstract
Epigenetic therapy induced by dietary components has become a strong interest in the field of cancer prevention. Olive oil, a potent dietary chemopreventive agent, control colon cancer, however, its role in epigenetic therapy remains unclear. Thus, we aimed to investigate the effect of olive oil in a preclinical model of colon cancer by targeting genetic and epigenetic mechanisms. DMH was used to induce colon cancer in rats; while olive oil was given to separate group of rats along with DMH treatment. Tumor burden and incidence in DMH and DMH + olive oil-treated rats was observed by macroscopic examination and histoarchitectural studies. Potent anti-inflammatory, anti-angiogenic and pro-apoptotic activity of olive oil was explored by gene expression and immunohistochemical studies. The effect of olive oil on epigenetic alterations was examined by detecting promoter methylation with MS-HRM and dysregulation of miRNA by TaqMan MicroRNA Assay. We observed that olive oil administration lowered tumor incidence and inhibited the development of tumors in DMH-treated rats. Olive oil markedly decreased the expression of inflammatory and angiogenic markers and restored the expression of pro-apoptotic markers in DMH-treated rats. Furthermore, the inverse relationship between gene expression and DNA methylation, deviant miRNA pattern and miRNA silencing mediated by aberrant DNA methylation was also seen in DMH-treated rats, which was potentially reversible upon olive oil treatment. Our study concludes that olive oil may play a role in the epigenetic therapy by altering NF-κB and apoptotic pathways via targeting noncoding RNAs and methylation machinery that affecting epigenome to prevent colon carcinogenesis.
Collapse
Affiliation(s)
- Neha Nanda
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.,Department of Biophysics, Panjab University, Chandigarh, India
| | - Safrun Mahmood
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Akhtar Mahmood
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | |
Collapse
|
3
|
Yu L, Chen J, Liu Y, Zhang Z, Duan S. MicroRNA-937 inhibits cell proliferation and metastasis in gastric cancer cells by downregulating FOXL2. Cancer Biomark 2017; 21:105-116. [DOI: 10.3233/cbm-170310] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This article has been retracted, and the online PDF replaced with this retraction notice.
Collapse
|
4
|
Epigenetic silencing of tumor suppressor miR-3151 contributes to Chinese chronic lymphocytic leukemia by constitutive activation of MADD/ERK and PIK3R2/AKT signaling pathways. Oncotarget 2016; 6:44422-36. [PMID: 26517243 PMCID: PMC4792566 DOI: 10.18632/oncotarget.6251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/14/2015] [Indexed: 01/24/2023] Open
Abstract
We hypothesize that miR-3151, localized to a GWAS-identified chronic lymphocytic leukemia (CLL) risk locus (8q22.3), is a tumor suppressor miRNA silenced by promoter DNA methylation in CLL. The promoter of miR-3151 was methylated in 5/7 (71%) CLL cell lines, 30/98 (31%) diagnostic primary samples, but not normal controls. Methylation of miR-3151 correlated inversely with expression. Treatment with 5-Aza-2′-deoxycytidine led to promoter demethylation and miR-3151 re-expression. Luciferase assay confirmed MAP-kinase activating death domain (MADD) and phosphoinositide-3-kinase, regulatory subunit 2 (PIK3R2) as direct targets of miR-3151. Moreover, restoration of miR-3151 resulted in inhibition of cellular proliferation and enhanced apoptosis, repression of MADD and PIK3R2, downregulation of MEK/ERK and PI3K/AKT signaling, and repression of MCL1. Lastly, miR-3151 methylation was significantly associated with methylation of miR-203 and miR-34b/c in primary CLL samples. Therefore, this study showed that miR-3151 is a tumor suppressive miRNA frequently hypermethylated and hence silenced in CLL. miR-3151 silencing by DNA methylation protected CLL cells from apoptosis through over-expression of its direct targets MADD and PIK3R2, hence constitutive activation of MEK/ERK and PI3K/AKT signaling respectively, and consequently over-expression of MCL1.
Collapse
|
5
|
Hoareau-Aveilla C, Valentin T, Daugrois C, Quelen C, Mitou G, Quentin S, Jia J, Spicuglia S, Ferrier P, Ceccon M, Giuriato S, Gambacorti-Passerini C, Brousset P, Lamant L, Meggetto F. Reversal of microRNA-150 silencing disadvantages crizotinib-resistant NPM-ALK(+) cell growth. J Clin Invest 2015; 125:3505-18. [PMID: 26258416 DOI: 10.1172/jci78488] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 06/23/2015] [Indexed: 01/20/2023] Open
Abstract
The regulatory microRNA miR-150 is involved in the development of hemopathies and is downregulated in T-lymphomas, such as anaplastic large-cell lymphoma (ALCL) tumors. ALCL is defined by the presence or absence of translocations that activate the anaplastic lymphoma kinase (ALK), with nucleophosmin-ALK (NPM-ALK) fusions being the most common. Here, we compared samples of primary NPM-ALK(+) and NPM-ALK(-) ALCL to investigate the role of miR-150 downstream of NPM-ALK. Methylation of the MIR150 gene was substantially elevated in NPM-ALK(+) biopsies and correlated with reduced miR-150 expression. In NPM-ALK(+) cell lines, DNA hypermethylation-mediated miR-150 repression required ALK-dependent pathways, as ALK inhibition restored miR-150 expression. Moreover, epigenetic silencing of miR-150 was due to the activation of STAT3, a major downstream substrate of NPM-ALK, in cooperation with DNA methyltransferase 1 (DNMT1). Accordingly, miR-150 repression was turned off following treatment with the DNMT inhibitor, decitabine. In murine NPM-ALK(+) xenograft models, miR-150 upregulation induced antineoplastic activity. Treatment of crizotinib-resistant NPM-ALK(+) KARPAS-299-CR06 cells with decitabine or ectopic miR-150 expression reduced viability and growth. Altogether, our results suggest that hypomethylating drugs, alone or in combination with other agents, may benefit ALK(+) patients harboring tumors resistant to crizotinib and other anti-ALK tyrosine kinase inhibitors (TKIs). Moreover, these results support further work on miR-150 in these and other ALK(+) malignancies.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Crizotinib
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Humans
- Lymphoma, Large-Cell, Anaplastic/drug therapy
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Male
- Mice
- Mice, Transgenic
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Pyrazoles/pharmacology
- Pyridines/pharmacology
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
Collapse
|
6
|
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, 18-23 nucleotides long, which act as post-transcriptional regulators of gene expression. miRNAs are strongly implicated in the pathogenesis of many common diseases, including IBDs. This review aims to outline the history, biogenesis and regulation of miRNAs. The role of miRNAs in the development and regulation of the innate and adaptive immune system is discussed, with a particular focus on mechanisms pertinent to IBD and the potential translational applications.
Collapse
Affiliation(s)
- R Kalla
- Gastrointestinal Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - N T Ventham
- Gastrointestinal Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - N A Kennedy
- Gastrointestinal Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - J F Quintana
- Centre for Immunity, Infection and Evolution, Ashworth laboratories, University of Edinburgh, Edinburgh, UK
| | - E R Nimmo
- Gastrointestinal Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - A H Buck
- Centre for Immunity, Infection and Evolution, Ashworth laboratories, University of Edinburgh, Edinburgh, UK
| | - J Satsangi
- Gastrointestinal Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| |
Collapse
|
7
|
Wu L, Li Y, Fan JM, Zhang ZM, Ouyang JL, Ni TT, Wu HX, Li H. MicroRNA-204 targets signal transducer and activator of transcription 5 expression and inhibits proliferation of B-cell lymphoma cells. Mol Med Rep 2015; 11:4567-72. [PMID: 25651400 DOI: 10.3892/mmr.2015.3298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 10/23/2014] [Indexed: 11/05/2022] Open
Abstract
The function of microRNAs (miRNAs) in tumorigenesis has been extensively investigated. In the present study, the aim was to investigate the expression and role of miR‑204 in B‑cell lymphoma. The present study demonstrated that miR‑204 is downregulated in B‑cell lymphoma. Using in vitro studies, overexpression of miR‑204 was shown to inhibit growth in Daudi and Raji B‑cell lymphoma cell lines. Furthermore, miR‑204 could bind the 3'‑untranslated region of signal transducer activator of transcription 5 (STAT5), a transcription factor that promotes B‑cell lymphoma oncogenesis. Re‑introduction of STAT5 reversed the antiproliferative roles of miR‑204, confirming the specific importance of STAT5 for miR‑204 action in cell proliferation. The present study suggests a novel mechanism for dysregulated miRNAs in the progression of B‑cell lymphoma.
Collapse
Affiliation(s)
- Li Wu
- Department of Oncology, People's Hospital of Guizhou Province, Guiyang, Guizhou 550002, P.R. China
| | - Yong Li
- Department of Oncology, People's Hospital of Guizhou Province, Guiyang, Guizhou 550002, P.R. China
| | - Jian-Min Fan
- Department of Hematology, Guiyang College of Medicine, Guiyang, Guizhou 550004, P.R. China
| | - Zhi-Min Zhang
- Department of Hematology, Guiyang College of Medicine, Guiyang, Guizhou 550004, P.R. China
| | - Jin-Ling Ouyang
- Department of Oncology, People's Hospital of Guizhou Province, Guiyang, Guizhou 550002, P.R. China
| | - Ting-Ting Ni
- Department of Oncology, People's Hospital of Guizhou Province, Guiyang, Guizhou 550002, P.R. China
| | - Hai-Xia Wu
- Department of Oncology, People's Hospital of Guizhou Province, Guiyang, Guizhou 550002, P.R. China
| | - Hang Li
- Department of Oncology, People's Hospital of Guizhou Province, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
8
|
Wang LQ, Chim CS. DNA methylation of tumor-suppressor miRNA genes in chronic lymphocytic leukemia. Epigenomics 2015; 7:461-73. [PMID: 25650645 DOI: 10.2217/epi.15.6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is one of the most important epigenetic modifications of the genome involved in the regulation of numerous cellular processes through gene silencing without altering DNA sequences. miRNAs, a class of single-stranded noncoding RNAs of 19-25 nucleotides in length, function as post-transcriptional regulators of gene expression leading to mRNA cleavage or translational repression of their corresponding target protein-coding genes. Recently, dysregulation of tumor suppressor miRNAs mediated by promoter DNA hypermethylation is implicated in human cancers, including B-cell chronic lymphocytic leukemia (CLL). Moreover, it appears that methylated miRNA genes could be potential biomarkers for CLL diagnosis or therapy. This review will highlight the role of aberrant methylation of miRNA genes in the pathogenesis of CLL.
Collapse
Affiliation(s)
- Lu Qian Wang
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| |
Collapse
|
9
|
Wang S, Zhang R, Claret FX, Yang H. Involvement of microRNA-24 and DNA methylation in resistance of nasopharyngeal carcinoma to ionizing radiation. Mol Cancer Ther 2014; 13:3163-74. [PMID: 25319395 DOI: 10.1158/1535-7163.mct-14-0317] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating in the epithelium. Radiotherapy is the standard therapy, but tumor resistance to this treatment reduces the 5-year patient survival rate dramatically. Studies are urgently needed to elucidate the mechanism of NPC radioresistance. Epigenetics--particularly microRNAs (miRNA) and DNA methylation--plays an important role in carcinogenesis and oncotherapy. We used qRT-PCR analysis and identified an miRNA signature from differentially expressed miRNAs. Our objectives were to identify the role of miR24 in NPC tumorigenesis and radioresistance and to identify the mechanisms by which miR24 is regulated. We found that miR24 inhibited NPC cell growth, promoted cell apoptosis, and suppressed the growth of NPC xenografts. We showed that miR24 was significantly downregulated in recurrent NPC tissues. When combined with irradiation, miR24 acted as a radiosensitizer in NPC cells. One of the miR24 precursors was embedded in a CpG island. Aberrant DNA methylation was involved in NPC response to radiotherapy, which linked inactivation of miR24 through hypermethylation of its precursor promoter with NPC radioresistance. Treating NPC cells with the DNA-hypomethylating agent 5-aza-2'-deoxycytidine compensated for the reduced miR24 expression. Together, our findings showed that miR24 was negatively regulated by hypermethylation of its precursor promoter in NPC radioresistance. Our findings defined a central role for miR24 as a tumor-suppressive miRNA in NPC and suggested its use in novel strategies for treatment of this cancer.
Collapse
Affiliation(s)
- Sumei Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China. Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rong Zhang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China. State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Francois X Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Experimental Therapeutics Academic Program and Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas.
| | - Huiling Yang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
10
|
Ishiguro H, Kimura M, Takeyama H. Role of microRNAs in gastric cancer. World J Gastroenterol 2014; 20:5694-5699. [PMID: 24914330 PMCID: PMC4024779 DOI: 10.3748/wjg.v20.i19.5694] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/11/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Although gastric cancer (GC) is one of the leading causes of cancer-related death, major therapeutic advances have not been made, and patients with GC still face poor outcomes. The prognosis of GC also remains poor because the molecular mechanisms of GC progression are incompletely understood. MicroRNAs (miRNAs) are noncoding RNAs that are associated with gastric carcinogenesis. Studies investigating the regulation of gene expression by miRNAs have made considerable progress in recent years, and abnormalities in miRNA expression have been shown to be associated with the occurrence and progression of GC. miRNAs contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors, affecting cell proliferation, apoptosis, motility, and invasion. Moreover, a number of miRNAs have been shown to be associated with tumor type, tumor stage, and patient survival and therefore may be developed as novel diagnostic or prognostic markers. In this review, we discuss the involvement of miRNAs in GC and the mechanisms through which they regulate gene expression and biological functions. Then, we review recent research on the involvement of miRNAs in GC prognosis, their potential use in chemotherapy, and their effects on Helicobacter pylori infections in GC. A greater understanding of the roles of miRNAs in gastric carcinogenesis could provide insights into the mechanisms of tumor development and could help to identify novel therapeutic targets.
Collapse
|
11
|
Wang LQ, Kwong YL, Kho CSB, Wong KF, Wong KY, Ferracin M, Calin GA, Chim CS. Epigenetic inactivation of miR-9 family microRNAs in chronic lymphocytic leukemia--implications on constitutive activation of NFκB pathway. Mol Cancer 2013; 12:173. [PMID: 24373626 PMCID: PMC3877874 DOI: 10.1186/1476-4598-12-173] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/20/2013] [Indexed: 01/12/2023] Open
Abstract
Background The miR-9 family microRNAs have been identified as a tumor suppressor miRNA in cancers. We postulated that miR-9-1, miR-9-2 and miR-9-3 might be inactivated by DNA hypermethylation in chronic lymphocytic leukemia (CLL). Methods Methylation of miR-9-1, miR-9-2 and miR-9-3 was studied in eight normal controls including normal bone marrow, buffy coat, and CD19-sorted peripheral blood B-cells from healthy individuals, seven CLL cell lines, and seventy-eight diagnostic CLL samples by methylation-specific polymerase chain reaction. Results The promoters of miR-9-3 and miR-9-1 were both unmethylated in normal controls, but methylated in five (71.4%) and one of seven CLL cell lines respectively. However, miR-9-2 promoter was methylated in normal controls including CD19 + ve B-cells, hence suggestive of a tissue-specific but not tumor-specific methylation, and thus not further studied. Different MSP statuses of miR-9-3, including complete methylation, partial methylation, and complete unmethylation, were verified by quantitative bisulfite methylation analysis. 5-Aza-2′-deoxycytidine treatment resulted in miR-9-3 promoter demethylation and re-expression of pri-miR-9-3 in I83-E95 and WAC3CD5+ cells, which were homozygously methylated for miR-9-3. Moreover, overexpression of miR-9 led to suppressed cell proliferation and enhanced apoptosis together with downregulation of NFκB1 in I83-E95 cells, supporting a tumor suppressor role of miR-9-3 in CLL. In primary CLL samples, miR-9-3 was detected in 17% and miR-9-1 methylation in none of the patients at diagnosis. Moreover, miR-9-3 methylation was associated with advanced Rai stage (≥ stage 2) (P = 0.04). Conclusions Of the miR-9 family, miR-9-3 is a tumor suppressor miRNA relatively frequently methylated, and hence silenced in CLL; whereas miR-9-1 methylation is rare in CLL. The role of miR-9-3 methylation in the constitutive activation of NFκB signaling pathway in CLL warrants further study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Zhang MY, Fung TK, Chen FY, Chim CS. Methylation profiling of SOCS1, SOCS2, SOCS3, CISH and SHP1 in Philadelphia-negative myeloproliferative neoplasm. J Cell Mol Med 2013; 17:1282-90. [PMID: 24131863 PMCID: PMC4159021 DOI: 10.1111/jcmm.12103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/05/2013] [Accepted: 06/07/2013] [Indexed: 11/30/2022] Open
Abstract
Janus kinase-signal transducer and activator of transcription (JAK/STAT) signalling, pivotal in Philadelphia-negative (Ph-ve) myeloproliferative neoplasm (MPN), is negatively regulated by molecules including SOCSs, CISH and SHP1. SOCS1, SOCS2 and SOCS3 methylation have been studied in MPN with discordant results. Herein, we studied the methylation status of SOCS1, SOCS2 and SOCS3, CISH and SHP1 by methylation-specific polymerase chain reaction (MSP) in cell lines and 45 diagnostic marrow samples of Ph-ve MPN. Moreover, we attempted to explain the discordance of methylation frequency by mapping the studied MSP primers to the respective genes. Methylation was detected in normal controls using SOCS2 MSP primers in the 3′translated exonic sequence, but not primers around the transcription start site in the 5′ untranslated regions (5′UTR). SOCS1, SOCS2, SOCS3 and CISH were completely unmethylated in primary MPN samples and cell lines. In contrast, methylation of SHP1 was detected in 8.9% primary marrow samples. Moreover, SHP1 was completely methylated in K562 cell line, leading to reversible SHP1 silencing. A review of methylation studies of SOCS1 and SOCS3 showed that spuriously high rates of SOCS methylation had been reported using MSP primers targeting CpG sites in the 3′translated exonic sequence, which is also methylated in normal controls. However, using MSP primers localized to the 5′UTR, methylation of SOCS1, SOCS2 and SOCS3 is infrequent across all studies. In summary, methylation of SOCS1, SOCS2, SOCS3 and CISH is infrequent in Ph-ve MPN. Appropriate MSP primers are important for accurate estimation of the methylation frequency. The role of SHP1 methylation in the pathogenesis of MPN warrants further investigation.
Collapse
Affiliation(s)
- Min Yue Zhang
- Department of Hematology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|
13
|
New advances of microRNAs in the pathogenesis of rheumatoid arthritis, with a focus on the crosstalk between DNA methylation and the microRNA machinery. Cell Signal 2013; 25:1118-25. [PMID: 23385088 DOI: 10.1016/j.cellsig.2013.01.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/25/2013] [Indexed: 12/28/2022]
Abstract
Rheumatoid arthritis (RA) is a symmetrical polyarticular disease of unknown aetiology that affects primarily the articular cartilage and bone. Characteristic features of RA pathogenesis are persistent inflammation, synovium hyperplasia and cartilage erosion accompanied by joint swelling and joint destruction. Several lines of evidence have showed a crucial role of activated fibroblast-like synoviocytes (FLS) in the pathogenesis of RA. MicroRNAs (miRNAs) are endogenous, single-stranded, non-coding RNAs with about 21 nucleotides in length and have been detected in a variety of sources, including tissues, serum, and other body fluids, such as saliva. In light of key roles of miRNAs in the regulation of gene expression, miRNAs influence a wide range of physiological and pathological processes. For example, miRNAs are evident in various malignant and nonmalignant diseases, and accumulating evidence also shows that miRNAs have important roles in the pathogenesis of RA. It has been demonstrated that miRNAs can be aberrantly expressed even in the different stages of RA progression, allowing miRNAs to help understand the pathogenesis of the disease, to act as important biomarkers, and to monitor the disease severity and the effects of drug treatment. In addition, miRNAs are emerging as potential targets for new therapeutic strategies of this kind of autoimmune disorders. The ultimate goal is the identification of miRNA targets that could be manipulated through specific therapies, aiming at activation or inhibition of specific miRNAs responsible for the RA development. In this review, the importance of miRNAs in the pathogenesis of RA is discussed systematically, with particular emphasis on the role of the crosstalk between DNA methylation and the microRNA machinery.
Collapse
|