1
|
Santoni M, Sagheddu C, Serra V, Mostallino R, Castelli MP, Pisano F, Scherma M, Fadda P, Muntoni AL, Zamberletti E, Rubino T, Melis M, Pistis M. Maternal immune activation impairs endocannabinoid signaling in the mesolimbic system of adolescent male offspring. Brain Behav Immun 2023; 109:271-284. [PMID: 36746342 DOI: 10.1016/j.bbi.2023.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/09/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
Prenatal infections can increase the risk of developing psychiatric disorders such as schizophrenia in the offspring, especially when combined with other postnatal insults. Here, we tested, in a rat model of prenatal immune challenge by the viral mimic polyriboinosinic-polyribocytidilic acid, whether maternal immune activation (MIA) affects the endocannabinoid system and endocannabinoid-mediated modulation of dopamine functions. Experiments were performed during adolescence to assess i) the behavioral endophenotype (locomotor activity, plus maze, prepulse inhibition of startle reflex); ii) the locomotor activity in response to Δ9-Tetrahydrocannabinol (THC) and iii) the properties of ventral tegmental area (VTA) dopamine neurons in vivo and their response to THC; iv) endocannabinoid-mediated synaptic plasticity in VTA dopamine neurons; v) the expression of cannabinoid receptors and enzymes involved in endocannabinoid synthesis and catabolism in mesolimbic structures and vi) MIA-induced neuroinflammatory scenario evaluated by measurements of levels of cytokine and neuroinflammation markers. We revealed that MIA offspring displayed an altered locomotor activity in response to THC, a higher bursting activity of VTA dopamine neurons and a lack of response to cumulative doses of THC. Consistently, MIA adolescence offspring showed an enhanced 2-arachidonoylglycerol-mediated synaptic plasticity and decreased monoacylglycerol lipase activity in mesolimbic structures. Moreover, they displayed a higher expression of cyclooxygenase 2 (COX-2) and ionized calcium-binding adaptor molecule 1 (IBA-1), associated with latent inflammation and persistent microglia activity. In conclusion, we unveiled neurobiological mechanisms whereby inflammation caused by MIA influences the proper development of endocannabinoid signaling that negatively impacts the dopamine system, eventually leading to psychotic-like symptoms in adulthood.
Collapse
Affiliation(s)
- Michele Santoni
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Claudia Sagheddu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Valeria Serra
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Maria Paola Castelli
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Francesco Pisano
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Maria Scherma
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy
| | - Erica Zamberletti
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy; Unit of Clinical Pharmacology, University Hospital, Cagliari, Italy.
| |
Collapse
|
2
|
Garcia-Partida JA, Torres-Sanchez S, MacDowell K, Fernández-Ponce MT, Casas L, Mantell C, Soto-Montenegro ML, Romero-Miguel D, Lamanna-Rama N, Leza JC, Desco M, Berrocoso E. The effects of mango leaf extract during adolescence and adulthood in a rat model of schizophrenia. Front Pharmacol 2022; 13:886514. [PMID: 35959428 PMCID: PMC9360613 DOI: 10.3389/fphar.2022.886514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
There is evidence that in schizophrenia, imbalances in inflammatory and oxidative processes occur during pregnancy and in the early postnatal period, generating interest in the potential therapeutic efficacy of anti-inflammatory and antioxidant compounds. Mangiferin is a polyphenolic compound abundant in the leaves of Mangifera indica L. that has robust antioxidant and anti-inflammatory properties, making it a potential candidate for preventive or co-adjuvant therapy in schizophrenia. Hence, this study set-out to evaluate the effect of mango leaf extract (MLE) in a model of schizophrenia based on maternal immune activation, in which Poly I:C (4 mg/kg) is administered intravenously to pregnant rats. Young adult (postnatal day 60-70) or adolescent (postnatal day 35-49) male offspring received MLE (50 mg/kg of mangiferin) daily, and the effects of MLE in adolescence were compared to those of risperidone, assessing behavior, brain magnetic resonance imaging (MRI), and oxidative/inflammatory and antioxidant mediators in the adult offspring. MLE treatment in adulthood reversed the deficit in prepulse inhibition (PPI) but it failed to attenuate the sensitivity to amphetamine and the deficit in novel object recognition (NOR) induced. By contrast, adolescent MLE treatment prevented the sensorimotor gating deficit in the PPI test, producing an effect similar to that of risperidone. This MLE treatment also produced a reduction in grooming behavior, but it had no effect on anxiety or novel object recognition memory. MRI studies revealed that adolescent MLE administration partially counteracted the cortical shrinkage, and cerebellum and ventricle enlargement. In addition, MLE administration in adolescence reduced iNOS mediated inflammatory activation and it promoted the expression of biomarkers of compensatory antioxidant activity in the prefrontal cortex and hippocampus, as witnessed through the reduction of Keap1 and the accumulation of NRF2 and HO1. Together, these findings suggest that MLE might be an alternative therapeutic or preventive add-on strategy to improve the clinical expression of schizophrenia in adulthood, while also modifying the time course of this disease at earlier stages in populations at high-risk.
Collapse
Affiliation(s)
- Jose Antonio Garcia-Partida
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Sonia Torres-Sanchez
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, University of Cádiz, Cádiz, Spain
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
| | - Karina MacDowell
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Health Research Institute Hospital 12 de Octubre (imas12), Institute of Research in Neurochemistry IUIN-UCM, Madrid, Spain
| | | | - Lourdes Casas
- Department of Chemical Engineering and Food Technology, Science Faculty, University of Cádiz, Cádiz, Spain
| | - Casimiro Mantell
- Department of Chemical Engineering and Food Technology, Science Faculty, University of Cádiz, Cádiz, Spain
| | - María Luisa Soto-Montenegro
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), Universidad Rey Juan Carlos, Madrid, Spain
| | - Diego Romero-Miguel
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Nicolás Lamanna-Rama
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Juan Carlos Leza
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Health Research Institute Hospital 12 de Octubre (imas12), Institute of Research in Neurochemistry IUIN-UCM, Madrid, Spain
| | - Manuel Desco
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Esther Berrocoso
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, University of Cádiz, Cádiz, Spain
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|
3
|
Chamera K, Kotarska K, Szuster-Głuszczak M, Trojan E, Skórkowska A, Pomierny B, Krzyżanowska W, Bryniarska N, Basta-Kaim A. The prenatal challenge with lipopolysaccharide and polyinosinic:polycytidylic acid disrupts CX3CL1-CX3CR1 and CD200-CD200R signalling in the brains of male rat offspring: a link to schizophrenia-like behaviours. J Neuroinflammation 2020; 17:247. [PMID: 32829711 PMCID: PMC7444338 DOI: 10.1186/s12974-020-01923-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/10/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The bidirectional communication between neurons and microglia is fundamental for the homeostasis and biological function of the central nervous system. Maternal immune activation (MIA) is considered to be one of the factors affecting these interactions. Accordingly, MIA has been suggested to be involved in several neuropsychiatric diseases, including schizophrenia. The crucial regulatory systems for neuron-microglia crosstalk are the CX3CL1-CX3CR1 and CD200-CD200R axes. METHODS We aimed to clarify the impact of MIA on CX3CL1-CX3CR1 and CD200-CD200R signalling pathways in the brains of male Wistar rats in early and adult life by employing two neurodevelopmental models of schizophrenia based on the prenatal challenge with lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (Poly I:C). We also examined the effect of MIA on the expression of microglial markers and the profile of cytokines released in the brains of young offspring, as well as the behaviour of adult animals. Moreover, we visualized the localization of ligand-receptor systems in the hippocampal regions (CA1, CA3 and DG) and the frontal cortex of young rats exposed to MIA. The differences between groups were analysed using Student's t test. RESULTS We observed that MIA altered developmental trajectories in neuron-microglia communication in the brains of young offspring, as evidenced by the disruption of CX3CL1-CX3CR1 and/or CD200-CD200R axes. Our data demonstrated the presence of abnormalities after LPS-induced MIA in levels of Cd40, Il-1β, Tnf-α, Arg1, Tgf-β and Il-10, as well as IBA1, IL-1β and IL-4, while after Poly I:C-generated MIA in levels of Cd40, iNos, Il-6, Tgf-β, Il-10, and IBA1, IL-1β, TNF-α, IL-6, TGF-β and IL-4 early in the life of male animals. In adult male rats that experienced prenatal exposure to MIA, we observed behavioural changes resembling a schizophrenia-like phenotype. CONCLUSIONS Our study provides evidence that altered CX3CL1-CX3CR1 and/or CD200-CD200R pathways, emerging after prenatal immune challenge with LPS and Poly I:C, might be involved in the aetiology of schizophrenia.
Collapse
Affiliation(s)
- Katarzyna Chamera
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Katarzyna Kotarska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Magdalena Szuster-Głuszczak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Ewa Trojan
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Alicja Skórkowska
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna St, 30-688, Kraków, Poland
| | - Bartosz Pomierny
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna St, 30-688, Kraków, Poland
| | - Weronika Krzyżanowska
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna St, 30-688, Kraków, Poland
| | - Natalia Bryniarska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland.
| |
Collapse
|
4
|
Cheslack-Postava K, Cremers S, Bao Y, Shen L, Schaefer CA, Brown AS. Maternal serum cytokine levels and risk of bipolar disorder. Brain Behav Immun 2017; 63:108-114. [PMID: 27477922 PMCID: PMC5276795 DOI: 10.1016/j.bbi.2016.07.160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/23/2016] [Accepted: 07/28/2016] [Indexed: 02/09/2023] Open
Abstract
Prenatal exposure to influenza has previously been associated with increased risk of bipolar disorder (BD), an association that may be mediated by maternal cytokines. The objective of this study was to determine the association between maternal levels of cytokines measured during each trimester of pregnancy and the risk of BD in offspring. We conducted a case-control study nested in the Child Health and Development Study, a birth cohort that enrolled pregnant women in 1959-1966. Potential cases with DSM-IV-TR bipolar I disorder, bipolar II disorder, BD not otherwise specified, and BD with psychotic features were ascertained through electronic medical records, a public agency database, and a mailing to the cohort. Diagnoses were confirmed by clinical interview. Nine cytokines (IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IFN-γ, TNF-α and GM-CSF) were measured simultaneously by Luminex assays in archived prenatal maternal serum samples from 85 cases and 170 matched controls. Data were analyzed using conditional logistic regression. In the overall study sample, there were no significant associations between prenatal maternal cytokine levels and BD after adjustment for confounders. The risk of BD without psychotic features was decreased among subjects with higher maternal levels of first trimester log-transformed IL-4 (OR (95% CI)=0.76 (0.58, 0.98); p=0.04) and third trimester log-transformed IL-6 (OR (95% CI)=0.64 (0.42, 0.98); p=0.04). In conclusion, higher levels of prenatal maternal cytokines were not associated with increased risk for BD. Further studies with larger samples are necessary to confirm the finding.
Collapse
Affiliation(s)
- Keely Cheslack-Postava
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, United States.
| | - Serge Cremers
- Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| | - Yuanyuan Bao
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, United States
| | - Ling Shen
- KPNC Permanente Division of Research, Oakland, CA, United States
| | | | - Alan S. Brown
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, United States,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, United States
| |
Collapse
|
5
|
Malavia TA, Chaparala S, Wood J, Chowdari K, Prasad KM, McClain L, Jegga AG, Ganapathiraju MK, Nimgaonkar VL. Generating testable hypotheses for schizophrenia and rheumatoid arthritis pathogenesis by integrating epidemiological, genomic, and protein interaction data. NPJ SCHIZOPHRENIA 2017; 3:11. [PMID: 28560257 PMCID: PMC5441529 DOI: 10.1038/s41537-017-0010-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 02/04/2023]
Abstract
Patients with schizophrenia and their relatives have reduced prevalence of rheumatoid arthritis. Schizophrenia and rheumatoid arthritis genome-wide association studies also indicate negative genetic correlations, suggesting that there may be shared pathogenesis at the DNA level or downstream. A portion of the inverse prevalence could be attributed to pleiotropy, i.e., variants of a single nucleotide polymorphism that could confer differential risk for these disorders. To study the basis for such an interrelationship, we initially compared lists of single nucleotide polymorphisms with significant genetic associations (p < 1e-8) for schizophrenia or rheumatoid arthritis, evaluating patterns of linkage disequilibrium and apparent pleiotropic risk profiles. Single nucleotide polymorphisms that conferred risk for both schizophrenia and rheumatoid arthritis were localized solely to the extended HLA region. Among single nucleotide polymorphisms that conferred differential risk for schizophrenia and rheumatoid arthritis, the majority were localized to HLA-B, TNXB, NOTCH4, HLA-C, HCP5, MICB, PSORS1C1, and C6orf10; published functional data indicate that HLA-B and HLA-C have the most plausible pathogenic roles in both disorders. Interactomes of these eight genes were constructed from protein-protein interaction information using publicly available databases and novel computational predictions. The genes harboring apparently pleiotropic single nucleotide polymorphisms are closely connected to rheumatoid arthritis and schizophrenia associated genes through common interacting partners. A separate and independent analysis of the interactomes of rheumatoid arthritis and schizophrenia genes showed a significant overlap between the two interactomes and that they share several common pathways, motivating functional studies suggesting a relationship in the pathogenesis of schizophrenia/rheumatoid arthritis.
Collapse
Affiliation(s)
- Tulsi A. Malavia
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | - Srilakshmi Chaparala
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Joel Wood
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | | | | | - Lora McClain
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Madhavi K. Ganapathiraju
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Vishwajit L. Nimgaonkar
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
6
|
Prasad KM, Burgess AM, Keshavan MS, Nimgaonkar VL, Stanley JA. Neuropil pruning in Early-Course Schizophrenia: Immunological, Clinical, and Neurocognitive Correlates. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:528-538. [PMID: 28255578 PMCID: PMC5328666 DOI: 10.1016/j.bpsc.2016.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Neuropathological studies suggest neuropil reduction in schizophrenia. Altered synaptic pruning is proposed to underlie neuropil reduction. Underlying factors and clinical correlates of synaptic pruning are poorly understood. Using phosphorus magnetic resonance spectroscopy (31P MRS), it is feasible to assess membrane phospholipid (MPL) metabolites in the brain that specifically and sensitively reflect neuropil expansion (elevated MPL precursors) or contraction (elevated MPL catabolites). METHODS We examined MPL metabolites and their cognitive, clinical and immunologic correlates among 28 early-course schizophrenia individuals (illness duration 1.99±1.33 years; antipsychotic-naïve=18) and 21 controls. We acquired whole-brain multi-voxel 31P MRS data from 12 unique brain regions. Interleukin-6 and C-reactive protein (CRP) were assayed in the serum. Generalized linear mixed models examined case-control differences in MPL metabolites in these regions correcting for multiple testing. Partial correlations accounting for multiple tests examined the relationship of Interleukin-6 and CRP levels with MPL metabolite levels. RESULTS MPL catabolite levels were increased in the thalamus in schizophrenia compared to controls. Interleukin-6 and CRP levels did not show case-control differences. Interleukin-6 levels positively correlated with MPL catabolite levels in the thalamus after correcting for multiple tests. The left thalamus MPL catabolite levels correlated negatively with sustained attention (corrected p=0.039). DISCUSSION Elevated MPL catabolites in the thalamus suggest increased neuropil contraction that may be related to excessive synaptic pruning. The thalamic neuropil contraction is associated with Interleukin-6 levels suggesting central pathogenic mechanisms for the inflammatory mediators. Correlation of increased thalamic MPL catabolite levels with cognitive impairments suggests clinical correlates of neuropil contraction.
Collapse
|
7
|
Fatemi SH, Folsom TD, Liesch SB, Kneeland RE, Karkhane Yousefi M, Thuras PD. The effects of prenatal H1N1 infection at E16 on FMRP, glutamate, GABA, and reelin signaling systems in developing murine cerebellum. J Neurosci Res 2016; 95:1110-1122. [PMID: 27735078 DOI: 10.1002/jnr.23949] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 12/28/2022]
Abstract
Prenatal viral infection has been identified as a potential risk factor for the development of neurodevelopmental disorders such as schizophrenia and autism. Additionally, dysfunction in gamma-aminobutyric acid, Reelin, and fragile X mental retardation protein (FMRP)-metabotropic glutamate receptor 5 signaling systems has also been demonstrated in these two disorders. In the current report, we have characterized the developmental profiles of selected markers for these systems in cerebella of mice born to pregnant mice infected with human influenza (H1N1) virus on embryonic day 16 or sham-infected controls using SDS-PAGE and Western blotting techniques and evaluated the presence of abnormalities in the above-mentioned markers during brain development. The cerebellum was selected in light of emerging evidence that it plays roles in learning, memory, and emotional processing-all of which are disrupted in autism and schizophrenia. We identified unique patterns of gene and protein expression at birth (postnatal day 0 [P0]), childhood (P14), adolescence (P35), and young adulthood (P56) in both exposed and control mouse progeny. We also identified significant differences in protein expression for FMRP, very-low-density lipoprotein receptor, and glutamic acid decarboxylase 65 and 67 kDa proteins at specific postnatal time points in cerebella of the offspring of exposed mice. Our results provide evidence of disrupted FMRP, glutamatergic, and Reelin signaling in the exposed mouse offspring that explains the multiple brain abnormalities observed in this animal model. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota.,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Timothy D Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Stephanie B Liesch
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Rachel E Kneeland
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Mahtab Karkhane Yousefi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Paul D Thuras
- VA Medical Center, Department of Psychiatry, Minneapolis, Minnesota
| |
Collapse
|
8
|
Bagasrawala I, Zecevic N, Radonjić NV. N-Methyl D-Aspartate Receptor Antagonist Kynurenic Acid Affects Human Cortical Development. Front Neurosci 2016; 10:435. [PMID: 27746712 PMCID: PMC5043058 DOI: 10.3389/fnins.2016.00435] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/08/2016] [Indexed: 12/25/2022] Open
Abstract
Kynurenic acid (KYNA), a neuroactive metabolite of tryptophan degradation, acts as an endogenous N-methyl-D-aspartate receptor (NMDAR) antagonist. Elevated levels of KYNA have been observed in pregnant women after viral infections and are considered to play a role in neurodevelopmental disorders. However, the consequences of KYNA-induced NMDAR blockade in human cortical development still remain elusive. To study the potential impact of KYNA on human neurodevelopment, we used an in vitro system of multipotent cortical progenitors, i.e., radial glia cells (RGCs), enriched from human cerebral cortex at mid-gestation (16–19 gestational weeks). KYNA treatment significantly decreased RGCs proliferation and survival by antagonizing NMDAR. This alteration resulted in a reduced number of cortical progenitors and neurons while number and activation of astrocytes increased. KYNA treatment reduced differentiation of RGCs into GABAergic neurons, while differentiation into glutamatergic neurons was relatively spared. Furthermore, in mixed cortical cultures KYNA triggered an inflammatory response as evidenced by increased levels of the pro-inflammatory cytokine IL-6. In conclusion, elevated levels of KYNA play a significant role in human RGC fate determination by antagonizing NMDARs and by activating an inflammatory response. The altered cell composition observed in cell culture following exposure to elevated KYNA levels suggests a mechanism for impairment of cortical circuitry formation in the fetal brain after viral infection, as seen in neurodevelopmental disorders such as schizophrenia.
Collapse
Affiliation(s)
- Inseyah Bagasrawala
- Department of Neuroscience, University of Connecticut Health Farmington, CT, USA
| | - Nada Zecevic
- Department of Neuroscience, University of Connecticut Health Farmington, CT, USA
| | - Nevena V Radonjić
- Department of Psychiatry, University of Connecticut Health Farmington, CT, USA
| |
Collapse
|
9
|
Watkins CC, Andrews SR. Clinical studies of neuroinflammatory mechanisms in schizophrenia. Schizophr Res 2016; 176:14-22. [PMID: 26235751 DOI: 10.1016/j.schres.2015.07.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/08/2015] [Accepted: 07/08/2015] [Indexed: 12/27/2022]
Abstract
Schizophrenia is a pervasive neurodevelopmental disorder that appears to result from genetic and environmental factors. Although the dopamine hypothesis is the driving theory behind the majority of translation research in schizophrenia, emerging evidence suggests that aberrant immune mechanisms in the peripheral and central nervous system influence the etiology of schizophrenia and the pathophysiology of psychotic symptoms that define the illness. The initial interest in inflammatory processes comes from epidemiological data and historical observations, dating back several decades. A growing body of research on developmental exposure to infection, stress-induced inflammatory response, glial cell signaling, structural and functional brain changes and therapeutic trials demonstrates the impact that inflammation has on the onset and progression of schizophrenia. Research in animal models of psychosis has helped to advance clinical and basic science investigations of the immune mechanisms disrupted in schizophrenia. However, they are limited by the inability to recapitulate the human experience of hallucinations, delusions and thought disorder that define psychosis. To date, translational studies of inflammatory mechanisms in human subjects have not been reviewed in great detail. Here, we critically review clinical studies that focus on inflammatory mechanisms in schizophrenia. Understanding the neuroinflammatory mechanisms involved in schizophrenia may be essential in identifying potential therapeutic targets to minimize the morbidity and mortality of schizophrenia by interrupting disease development.
Collapse
Affiliation(s)
- Crystal C Watkins
- Memory Center in Neuropsychiatry, Sheppard Pratt Health Systems, Baltimore, MD, United States; Department of Psychiatry, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, United States.
| | - Sarah Ramsay Andrews
- Department of Psychiatry, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, United States
| |
Collapse
|
10
|
Cadenhead KS, Mirzakhanian H. A Case of Attenuated Psychosis Syndrome: A Broad Differential Diagnosis Requires Broad-Spectrum Treatment. Am J Psychiatry 2016; 173:321-9. [PMID: 27035531 PMCID: PMC6984191 DOI: 10.1176/appi.ajp.2015.15060789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Ballendine SA, Greba Q, Dawicki W, Zhang X, Gordon JR, Howland JG. Behavioral alterations in rat offspring following maternal immune activation and ELR-CXC chemokine receptor antagonism during pregnancy: implications for neurodevelopmental psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:155-65. [PMID: 25445065 PMCID: PMC4464825 DOI: 10.1016/j.pnpbp.2014.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 02/08/2023]
Abstract
Research suggests that maternal immune activation (MIA) during pregnancy increases the risk of neurodevelopmental disorders including schizophrenia and autism in the offspring. Current theories suggest that inflammatory mediators including cytokines and chemokines may underlie the increased risk of these disorders in humans. For example, elevated maternal interleukin-8 (IL-8) during pregnancy is associated with increased risk of schizophrenia in the offspring. Given this association, the present experiments examined ELR-CXC chemokines CXCL1 and CXCL2, rodent homologues of human IL-8, and activation of their receptors (CXCR1 and CXCR2) in an established rodent model of MIA. Pregnant Long Evans rats were treated with the viral mimetic polyinosinic-polycytidylic acid (polyI:C; 4 mg/kg, i.v.) on gestational day 15. Protein analysis using multiplex assays and ELISA showed that polyI:C significantly increased maternal serum concentrations of interleukin-1β, tumor necrosis factor, and CXCL1 3h after administration. Subsequent experiments tested the role of elevated maternal CXCL1 on behavior of the offspring by administering a CXCR1/CXCR2 antagonist (G31P; 500 μg/kg, i.p.; 1h before, 48 and 96 h after polyI:C treatment). The male offspring of dams treated with polyI:C demonstrated subtle impairments in prepulse inhibition (PPI), impaired associative and crossmodal recognition memory, and altered behavioral flexibility in an operant test battery. While G31P did not completely reverse the behavioral impairments caused by polyI:C, it enhanced PPI during adolescence and strategy set-shifting and reversal learning during young adulthood. These results suggest that while polyI:C treatment significantly increases maternal CXCL1, elevations of this chemokine are not solely responsible for the effects of polyI:C on the behavior of the offspring.
Collapse
Affiliation(s)
- Stephanie A. Ballendine
- Dept. of Physiology, University of Saskatchewan, GB33, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK S7N5E5, Canada
| | - Quentin Greba
- Dept. of Physiology, University of Saskatchewan, GB33, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK S7N5E5, Canada
| | - Wojciech Dawicki
- Dept. of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiaobei Zhang
- Dept. of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John R. Gordon
- Dept. of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John G. Howland
- Dept. of Physiology, University of Saskatchewan, GB33, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK S7N5E5, Canada,Corresponding author. Tel.: +1 306 966 2032; fax: +1 306 966 4298. (J.G. Howland)
| |
Collapse
|
12
|
Debnath M, Berk M. Th17 pathway-mediated immunopathogenesis of schizophrenia: mechanisms and implications. Schizophr Bull 2014; 40:1412-21. [PMID: 24711545 PMCID: PMC4193719 DOI: 10.1093/schbul/sbu049] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Schizophrenia is a highly complex and severe neuropsychiatric disorder with an unknown etiopathology. Evidence for a dysregulated immune system in both the risk for and progression of schizophrenia has recently been overwhelming. Importantly, chronic low-grade inflammation both in the periphery and central nervous system has been shown to contribute predominantly to the pathogenesis of schizophrenia in a subset of individuals. Inflammation in the central nervous system is mediated by a range of proinflammatory cytokines, resident immune cells such as microglia, and brain infiltrating peripheral immunocompetent cells, such as T lymphocytes. Recently, Th17 cells, a subset of T helper cells have emerged as crucial players in mucosal defense against infections. It is linked to atopic, inflammatory, and autoimmune disorders. The risk factors/mechanisms leading to low-grade inflammation in schizophrenia are diverse and include infectious agents, stress, trauma, environmental toxins, genetic vulnerability, physical inactivity, obesity, poor diet, and sleep disruption. Herein, we propose that fetal programming of cellular immune components driven by intrauterine adversity can lead to the generation of long-lasting effector/memory Th17 cells. Th17 cells can disrupt the blood-brain barrier, infiltrate the central nervous system, and, along with other cytokines and microglia, lead to neuroprogression through neuroinflammation in schizophrenia.
Collapse
Affiliation(s)
- Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health & Neurosciences, Bangalore, Karnataka, India;
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia;,Department of Psychiatry, Florey Institute of Neuroscience and Mental Health, Orygen Youth Health Research Centre, University of Melbourne, Parkville, Australia
| |
Collapse
|
13
|
Kodavali CV, Watson AM, Prasad KM, Celik C, Mansour H, Yolken RH, Nimgaonkar VL. HLA associations in schizophrenia: are we re-discovering the wheel? Am J Med Genet B Neuropsychiatr Genet 2014; 165B:19-27. [PMID: 24142843 DOI: 10.1002/ajmg.b.32195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 08/02/2013] [Indexed: 01/18/2023]
Abstract
Associations between human leukocyte antigen (HLA) polymorphisms on chromosome 6p and schizophrenia (SZ) risk have been evaluated for over five decades. Numerous case-control studies from the candidate gene era analyzed moderately sized samples and reported nominally significant associations with several loci in the HLA region (sample sizes, n = 100-400). The risk conferred by individual alleles was modest (odds ratios < 2.0). The basis for the associations could not be determined, though connections with known immune and auto-immune abnormalities in SZ were postulated. Interest in the HLA associations has re-emerged following several recent genome-wide association studies (GWAS); which utilized 10- to 100-fold larger samples and also identified associations on the short arm of chromosome 6. Unlike the earlier candidate gene studies, the associations are statistically significant following correction for multiple comparisons. Like the earlier studies; they have modest effect sizes, raising questions about their utility in risk prediction or pathogenesis research. In this review, we summarize the GWAS and reflect on possible bases for the associations. Suggestions for future research are discussed. We favor, in particular; efforts to evaluate local population sub-structure as well as further evaluation of immune-related variables in future studies.
Collapse
Affiliation(s)
- Chowdari V Kodavali
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | |
Collapse
|
14
|
Developmental neuroinflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:20-34. [PMID: 22122877 DOI: 10.1016/j.pnpbp.2011.11.003] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/18/2011] [Accepted: 11/09/2011] [Indexed: 12/27/2022]
Abstract
There is increasing interest in and evidence for altered immune factors in the etiology and pathophysiology of schizophrenia. Stimulated by various epidemiological findings reporting elevated risk of schizophrenia following prenatal exposure to infection, one line of current research aims to explore the potential contribution of immune-mediated disruption of early brain development in the precipitation of long-term psychotic disease. Since the initial formulation of the "prenatal cytokine hypothesis" more than a decade ago, extensive epidemiological research and remarkable advances in modeling prenatal immune activation effects in animal models have provided strong support for this hypothesis by underscoring the critical role of cytokine-associated inflammatory events, together with downstream pathophysiological processes such as oxidative stress, hypoferremia and zinc deficiency, in mediating the short- and long-term neurodevelopmental effects of prenatal infection. Longitudinal studies in animal models further indicate that infection-induced developmental neuroinflammation may be pathologically relevant beyond the antenatal and neonatal periods, and may contribute to disease progression associated with the gradual development of full-blown schizophrenic disease. According to this scenario, exposure to prenatal immune challenge primes early pre- and postnatal alterations in peripheral and central inflammatory response systems, which in turn may disrupt the normal development and maturation of neuronal systems from juvenile to adult stages of life. Such developmental neuroinflammation may adversely affect processes that are pivotal for normal brain maturation, including myelination, synaptic pruning, and neuronal remodeling, all of which occur to a great extent during postnatal brain maturation. Undoubtedly, our understanding of the role of developmental neuroinflammation in progressive brain changes relevant to schizophrenia is still in infancy. Identification of these mechanisms would be highly warranted because they may represent a valuable target to attenuate or even prevent the emergence of full-blown brain and behavioral pathology, especially in individuals with a history of prenatal complications such as in-utero exposure to infection and/or inflammation.
Collapse
|
15
|
Pimentel SP, Casati MZ, Cirano FR, Ribeiro FV, Casarin RV, Kirsten TB, Chaves-Kirsten GP, Duarte PM, Bernardi MM. Perinatal periodontal disease reduces social behavior in male offspring. Neuroimmunomodulation 2013; 20:29-38. [PMID: 23154307 DOI: 10.1159/000342987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/23/2012] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Our objective was to verify whether prenatal maternal periodontitis is a risk factor for the development of central nervous system disorders in rats. METHODS Periodontitis was induced by placing a ligature around the upper and lower first molars in 9 female Wistar rats (experimental group); 9 rats were left unligated (control group). The maternal general activity in an open field was observed on gestational day (GD) 0, GD 4, and GD 14, and the maternal performance was assessed on the second day after birth. The pups' play behavior was assessed on postnatal day 30. The relative level of reelin was measured in the frontal cortex by real-time PCR analysis. RESULTS The results showed that, compared with the control group, (1) the general activity in female rats with periodontitis was decreased, (2) the maternal performance of these rats was not modified by periodontitis, (3) the play behavior of pups from dams with periodontitis was decreased, and (4) there were no differences in the frontal cortex reelin levels of pups from dams with periodontitis. CONCLUSIONS We conclude that pre- and postnatal periodontitis induces maternal sickness behavior and reduces the pups' play behavior without interference with frontal cortex reelin expression.
Collapse
Affiliation(s)
- S P Pimentel
- Periodontology, Universidade Paulista, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Novak G, Fan T, O'Dowd BF, George SR. Striatal development involves a switch in gene expression networks, followed by a myelination event: implications for neuropsychiatric disease. Synapse 2012. [PMID: 23184870 DOI: 10.1002/syn.21628] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Because abnormal development of striatal neurons is thought to be the part of pathology underlying major psychiatric illnesses, we studied the expression pattern of genes involved in striatal development and of genes comprising key striatal-specific pathways, during an active striatal maturation period, the first two postnatal weeks in rat. This period parallels human striatal development during the second trimester, when prenatal stress is though to lead to increased risk for neuropsychiatric disorders. To identify genes involved in this developmental process, we used subtractive hybridization, followed by quantitative real-time PCR, which allowed us to characterize the developmental expression of over 60 genes, many not previously known to play a role in neuromaturation. Of these 12 were novel transcripts, which did not match known genes, but which showed strict developmental expression and may play a role in striatal neurodevelopment. An additional 89 genes were identified as strong candidates for involvement in this neurodevelopmental process. We show that during the first two postnatal weeks in rat, an early gene expression network, still lacking key striatal-specific signaling pathways, is downregulated and replaced by a mature gene expression network, containing key striatal-specific genes including the dopamine D1 and D2 receptors, conferring to these neurons their functional identity. Therefore, before this developmental switch, striatal neurons lack many of their key phenotypic characteristics. This maturation process is followed by a striking rise in expression of myelination genes, indicating a striatal-specific myelination event. Such strictly controlled developmental program has the potential to be a point of susceptibility to disruption by external factors. Indeed, this period is known to be a susceptibility period in both humans and rats.
Collapse
Affiliation(s)
- Gabriela Novak
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
17
|
Barnum CJ, Tansey MG. Neuroinflammation and non-motor symptoms: the dark passenger of Parkinson's disease? Curr Neurol Neurosci Rep 2012; 12:350-8. [PMID: 22580742 DOI: 10.1007/s11910-012-0283-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Generally speaking, inflammation as a key piece to the Parkinson's disease (PD) puzzle is a relatively new concept. Acceptance of this concept has gained ground as studies by various researchers have demonstrated the potential of mitigating nigral cell death by curtailing inflammation in animal models of PD. We propose that the significance of inflammation in PD pathology may extend beyond the nigrostriatal region. In the current review, we present an argument for this based on the Braak staging and discuss how inflammation might contribute to the development of non-motor PD symptoms.
Collapse
Affiliation(s)
- Christopher J Barnum
- Department of Physiology, School of Medicine at Emory University, 615 Michael Street, Atlanta, GA 30324, USA
| | | |
Collapse
|
18
|
Boekelheide K, Blumberg B, Chapin RE, Cote I, Graziano JH, Janesick A, Lane R, Lillycrop K, Myatt L, States JC, Thayer KA, Waalkes MP, Rogers JM. Predicting later-life outcomes of early-life exposures. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1353-61. [PMID: 22672778 PMCID: PMC3491941 DOI: 10.1289/ehp.1204934] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 06/06/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND In utero exposure of the fetus to a stressor can lead to disease in later life. Epigenetic mechanisms are likely mediators of later-life expression of early-life events. OBJECTIVES We examined the current state of understanding of later-life diseases resulting from early-life exposures in order to identify in utero and postnatal indicators of later-life diseases, develop an agenda for future research, and consider the risk assessment implications of this emerging knowledge. METHODS This review was developed based on our participation in a National Research Council workshop titled "Use of in Utero and Postnatal Indicators to Predict Health Outcomes Later in Life: State of the Science and Research Recommendations." We used a case study approach to highlight the later-life consequences of early-life malnutrition and arsenic exposure. DISCUSSION The environmental sensitivity of the epigenome is viewed as an adaptive mechanism by which the developing organism adjusts its metabolic and homeostatic systems to suit the anticipated extrauterine environment. Inappropriate adaptation may produce a mismatch resulting in subsequent increased susceptibility to disease. A nutritional mismatch between the prenatal and postnatal environments, or early-life obesogen exposure, may explain at least some of the recent rapid increases in the rates of obesity, type 2 diabetes, and cardiovascular diseases. Early-life arsenic exposure is also associated with later-life diseases, including cardiovascular disease and cancer. CONCLUSIONS With mounting evidence connecting early-life exposures and later-life disease, new strategies are needed to incorporate this emerging knowledge into health protective practices.
Collapse
Affiliation(s)
- Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|