1
|
Bucchieri F, Pitruzzella A, Fucarino A, Gammazza AM, Bavisotto CC, Marcianò V, Cajozzo M, Lo Iacono G, Marchese R, Zummo G, Holgate ST, Davies DE. Functional characterization of a novel 3D model of the epithelial-mesenchymal trophic unit. Exp Lung Res 2017; 43:82-92. [PMID: 28368678 DOI: 10.1080/01902148.2017.1303098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND/AIM Epithelial-mesenchymal communication plays a key role in tissue homeostasis and abnormal signaling contributes to chronic airways disease such as COPD. Most in vitro models are limited in complexity and poorly represent this epithelial-mesenchymal trophic unit. We postulated that cellular outgrowth from bronchial tissue would enable development of a mucosal structure that recapitulates better in vivo tissue architecture. MATERIALS AND METHODS Bronchial tissue was embedded in Matrigel and outgrowth cultures monitored using time-lapse microscopy, electrical resistance, light and electron microscopy. Cultures were challenged repetitively with cigarette smoke extract (CSE). RESULTS The outgrowths formed as a multicellular sheet with motile cilia becoming evident as the Matrigel was remodeled to provide an air interface; cultures were viable for more than one year. Immunofluorescence and electron microscopy (EM) identified an upper layer of mucociliary epithelium and a lower layer of highly organized extracellular matrix (ECM) interspersed with fibroblastic cells separated by a basement membrane. EM analysis of the mucosal construct after repetitive exposure to CSE revealed epithelial damage, loss of cilia, and ECM remodeling, as occurs in vivo. CONCLUSIONS We have developed a robust bronchial mucosal model. The structural changes observed following CSE exposure suggest the model should have utility for drug discovery and preclinical testing, especially those targeting airway remodeling.
Collapse
Affiliation(s)
- Fabio Bucchieri
- a Academic Unit of Clinical and Experimental Sciences , University of Southampton Faculty of Medicine, University Hospital Southampton , Southampton , United Kingdom.,b Dipartimento BIONEC , University of Palermo , Palermo , Italy.,c Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST) , Palermo , Italy.,d Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR) , Palermo , Italy
| | - Alessandro Pitruzzella
- b Dipartimento BIONEC , University of Palermo , Palermo , Italy.,c Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST) , Palermo , Italy
| | - Alberto Fucarino
- b Dipartimento BIONEC , University of Palermo , Palermo , Italy.,c Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST) , Palermo , Italy
| | - Antonella Marino Gammazza
- b Dipartimento BIONEC , University of Palermo , Palermo , Italy.,c Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST) , Palermo , Italy
| | - Celeste Caruso Bavisotto
- b Dipartimento BIONEC , University of Palermo , Palermo , Italy.,c Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST) , Palermo , Italy
| | - Vito Marcianò
- b Dipartimento BIONEC , University of Palermo , Palermo , Italy
| | - Massimo Cajozzo
- e Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche , University of Palermo , Palermo , Italy
| | - Giorgio Lo Iacono
- e Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche , University of Palermo , Palermo , Italy
| | - Roberto Marchese
- f Interventional Pulmonology Unit , La Maddalena Cancer Center , Palermo , Italy
| | - Giovanni Zummo
- b Dipartimento BIONEC , University of Palermo , Palermo , Italy
| | - Stephen T Holgate
- a Academic Unit of Clinical and Experimental Sciences , University of Southampton Faculty of Medicine, University Hospital Southampton , Southampton , United Kingdom.,g Southampton NIHR Respiratory Biomedical Research Unit, Sir Henry Wellcome Laboratories , University of Southampton School of Medicine, University Hospital Southampton , Southampton , United Kingdom
| | - Donna E Davies
- a Academic Unit of Clinical and Experimental Sciences , University of Southampton Faculty of Medicine, University Hospital Southampton , Southampton , United Kingdom.,g Southampton NIHR Respiratory Biomedical Research Unit, Sir Henry Wellcome Laboratories , University of Southampton School of Medicine, University Hospital Southampton , Southampton , United Kingdom
| |
Collapse
|
2
|
Barnes PJ, Bonini S, Seeger W, Belvisi MG, Ward B, Holmes A. Barriers to new drug development in respiratory disease. Eur Respir J 2016; 45:1197-207. [PMID: 25931481 DOI: 10.1183/09031936.00007915] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Peter J Barnes
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sergio Bonini
- Second University of Naples, Caserta, Italy Institute of Translational Pharmacology-CNR, Rome, Italy European Medicines Agency, London, UK
| | - Werner Seeger
- University of Giessen and Marburg Lung Centre, Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Maria G Belvisi
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Brian Ward
- European Affairs Dept, European Respiratory Society, Brussels, Belgium
| | - Anthony Holmes
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| |
Collapse
|
3
|
Vries MD, Bedke N, Smithers NP, Loxham M, Howarth PH, Nawijn MC, Davies DE. Inhibition of Pim1 kinase, new therapeutic approach in virus-induced asthma exacerbations. Eur Respir J 2016; 47:783-91. [PMID: 26869670 DOI: 10.1183/13993003.00171-2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 12/09/2015] [Indexed: 01/01/2023]
Abstract
Therapeutic options to treat virus-induced asthma exacerbations are limited and urgently needed. Therefore, we tested Pim1 kinase as potential therapeutic target in human rhinovirus (HRV) infections. We hypothesised that inhibition of Pim1 kinase reduces HRV replication by augmenting the interferon-induced anti-viral response due to increased activity of the janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway.Air-liquid interface (ALI) cultures of primary bronchial epithelial cells (PBECs) from healthy individuals and moderate-to-severe asthmatic volunteers were infected with HRV-16 with or without a specific Pim1 inhibitor; viral replication and induction of anti-viral responses were measured using RT-qPCR. Viral titres were measured by 50% tissue culture infective dose and release of interferon-γ-induced protein 10 (IP-10) and RANTES protein assessed by ELISA. Phosphorylation of STAT-1 was determined using western blotting.Viral replication was reduced in ALI cultures of healthy and asthmatic PBECs treated with the Pim1 inhibitor. Using cultures from healthy donors, enhanced STAT-1 phosphorylation upon inhibition of Pim1 kinase activity resulted in increased mRNA expression of interferon-β, interleukin-29, IP-10 and RANTES 12 h after infection and increased protein levels of IP-10 and RANTES 24 h after infection.We have identified Pim1 kinase as novel target to reduce viral replication in ALI cultures of PBECs. This may open new avenues for therapeutic interventions in virus-induced asthma exacerbations.
Collapse
Affiliation(s)
- Maaike de Vries
- University of Groningen, University Medical Center Groningen, Experimental Pulmonology and Inflammation Research, Dept of Pathology and Medical Biology, Groningen, The Netherlands Brooke Laboratory, Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, University Hospital Southampton, Southampton, UK University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Nicole Bedke
- Brooke Laboratory, Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, University Hospital Southampton, Southampton, UK
| | - Natalie P Smithers
- Brooke Laboratory, Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, University Hospital Southampton, Southampton, UK
| | - Matthew Loxham
- Brooke Laboratory, Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, University Hospital Southampton, Southampton, UK
| | - Peter H Howarth
- Brooke Laboratory, Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, University Hospital Southampton, Southampton, UK National Institute for Health Research, Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
| | - Martijn C Nawijn
- University of Groningen, University Medical Center Groningen, Experimental Pulmonology and Inflammation Research, Dept of Pathology and Medical Biology, Groningen, The Netherlands University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Donna E Davies
- Brooke Laboratory, Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, University Hospital Southampton, Southampton, UK National Institute for Health Research, Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
| |
Collapse
|
4
|
Combes RD, Balls M. A critical assessment of the scientific basis, and implementation, of regulations for the safety assessment and marketing of innovative tobacco-related products. Altern Lab Anim 2015; 43:251-90. [PMID: 26375889 DOI: 10.1177/026119291504300406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Our scientific, logistical, ethical and animal welfare-related concerns about the latest US Food and Drug Administration (FDA) regulations for existing and so-called 'new' tobacco products, aimed at reducing harmful exposures, are explained. Such claims for sales in the USA now have to be based on a wide range of information, a key part of which will increasingly be data on safety and risk. One of the pathways to achieve marketing authorisation is to demonstrate substantial equivalence (SE) with benchmark products, called predicates. However, the regulations are insufficiently transparent with regard to: a) a rationale for the cut-off date for 'old' and 'new' products, and for exempting the former from regulation; b) the scientific validity and operation of SE; c) options for product labelling to circumvent SE; d) the experimental data required to support, and criteria to judge, a claim; and e) a strategy for risk assessment/management. Scientific problems related to the traditional animal methods used in respiratory disease and inhalation toxicology, and the use of quantitative comparators of toxicity, such as the No Observed Adverse Effect Level, are discussed. We review the advantages of relevant in vitro, mechanism-based, target tissue-oriented technologies, which an advisory report of the Institute of Medicine of the US National Academy of Sciences largely overlooked. These benefits include: a) the availability, for every major site in the respiratory tract, of organotypic human cell-based tissue culture systems, many of which are already being used by the industry; b) the accurate determination of concentrations of test materials received by target cells; c) methods for exposure to particulate and vapour phases of smoke, separately or combined; d) the ability to study tissue-specific biotransformation; and e) the use of modern, human-focused methodologies, unaffected by species differences. How data extrapolation, for risk assessment, from tissue culture to the whole animal, could be addressed, is also discussed. A cost (to animal welfare)-benefit (to society, including industry and consumers) analysis was conducted, taking into account the above information; the potential for animal suffering; the extensive data already available; the existence of other, less hazardous forms of nicotine delivery; the fact that much data will be generated solely for benchmarking; and that many smokers (especially nicotine-dependents) ignore health warnings. It is concluded that, in common with policies of several tobacco companies and countries, the use of laboratory animals for tobacco testing is very difficult, if not impossible, to justify. Instead, we propose and argue for an integrated testing scheme, starting with extensive chemical analysis of the ingredients and by-products associated with the use of tobacco products and their toxicity, followed by use of in vitro systems and early clinical studies (involving specific biomarkers) with weight-of-evidence assessments at each stage. Appropriate adjustment factors could be developed to enable concentration-response data obtained in vitro, with the other information generated by the strategy, to enable the FDA to meet its objectives. It is hoped that our intentionally provocative ideas will stimulate further debate on this contentious area of regulatory testing and public safety.
Collapse
|
5
|
Calzetta L, Rogliani P, Cazzola M, Matera MG. Advances in asthma drug discovery: evaluating the potential of nasal cell sampling and beyond. Expert Opin Drug Discov 2014; 9:595-607. [PMID: 24749518 DOI: 10.1517/17460441.2014.909403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Inhaled corticosteroid anti-inflammatory therapy is effective at controlling disease symptoms of asthma, but a subset of patients remains symptomatic despite optimal treatment, creating a clear unmet medical need. Moreover, none of the currently available drugs for asthma are really disease-modifying or curative. Although murine models of asthma, based on transgenic and knockout animals, may offer an integrated pathophysiological system for studying the characteristics of airway inflammation and hyperresponsiveness, these alterations are noteworthily different compared with those observed in asthmatic patients. Since a clear functional and inflammatory relationship between the nasal mucosa and bronchial tissue in patients suffering from asthma and allergic rhinitis has been recognized, using preclinical models based on human nasal cells sampling might support a prompt and effective anti-inflammatory drug discovery in asthma. AREAS COVERED The authors provide a review, which discusses the potential role of nasal cell sampling and its application in advanced drug discovery for asthma. The contents range from the similarities and differences between asthma and allergic rhinitis up to artificial airway models based on sophisticated human lung-on-a-chip devices. EXPERT OPINION Nasal cell sampling and processing have reached a great potential in asthma drug discovery. The authors believe that models of asthma, which are based on human nasal cells, can provide valuable indications of proof of pharmacological and potential therapeutic efficacy in both preclinical and early clinical settings.
Collapse
Affiliation(s)
- Luigino Calzetta
- IRCCS, San Raffaele Pisana Hospital, Department of Pulmonary Rehabilitation , Rome , Italy
| | | | | | | |
Collapse
|
6
|
van Ree R, Hummelshøj L, Plantinga M, Poulsen LK, Swindle E. Allergic sensitization: host-immune factors. Clin Transl Allergy 2014; 4:12. [PMID: 24735802 PMCID: PMC3989850 DOI: 10.1186/2045-7022-4-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/09/2014] [Indexed: 12/24/2022] Open
Abstract
Allergic sensitization is the outcome of a complex interplay between the allergen and the host in a given environmental context. The first barrier encountered by an allergen on its way to sensitization is the mucosal epithelial layer. Allergic inflammatory diseases are accompanied by increased permeability of the epithelium, which is more susceptible to environmental triggers. Allergens and co-factors from the environment interact with innate immune receptors, such as Toll-like and protease-activated receptors on epithelial cells, stimulating them to produce cytokines that drive T-helper 2-like adaptive immunity in allergy-prone individuals. In this milieu, the next cells interacting with allergens are the dendritic cells lying just underneath the epithelium: plasmacytoid DCs, two types of conventional DCs (CD11b + and CD11b-), and monocyte-derived DCs. It is now becoming clear that CD11b+, cDCs, and moDCs are the inflammatory DCs that instruct naïve T cells to become Th2 cells. The simple paradigm of non-overlapping stable Th1 and Th2 subsets of T-helper cells is now rapidly being replaced by that of a more complex spectrum of different Th cells that together drive or control different aspects of allergic inflammation and display more plasticity in their cytokine profiles. At present, these include Th9, Th17, Th22, and Treg, in addition to Th1 and Th2. The spectrum of co-stimulatory signals coming from DCs determines which subset-characteristics will dominate. When IL-4 and/or IL-13 play a dominant role, B cells switch to IgE-production, a process that is more effective at young age. IgE-producing plasma cells have been shown to be long-lived, hiding in the bone-marrow or inflammatory tissues where they cannot easily be targeted by therapeutic intervention. Allergic sensitization is a complex interplay between the allergen in its environmental context and the tendency of the host’s innate and adaptive immune cells to be skewed towards allergic inflammation. These data and findings were presented at a 2012 international symposium in Prague organized by the Protein Allergenicity Technical Committee of the International Life Sciences Institute’s Health and Environmental Sciences Institute.
Collapse
Affiliation(s)
- Ronald van Ree
- Departments of Experimental Immunology and Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room K0-130, 1105 AZ, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
7
|
Blume C, Davies DE. In vitro and ex vivo models of human asthma. Eur J Pharm Biopharm 2013; 84:394-400. [PMID: 23313714 DOI: 10.1016/j.ejpb.2012.12.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/27/2012] [Accepted: 12/18/2012] [Indexed: 01/11/2023]
Abstract
Asthma is an inflammatory disorder of the conducting airways which undergo distinct structural and functional changes leading to non-specific bronchial hyperresponsiveness (BHR) and airflow obstruction that fluctuate over time. It is a complex disease involving multiple genetic and environmental influences whose multifactorial interactions can result in a range of asthma phenotypes. Since our understanding of these gene-gene and gene-environment interactions is very poor, this poses a major challenge to the logical development of 'models of asthma'. However, use of cells and tissues from asthmatic donors allows genetic and epigenetic influences to be evaluated and can go some way to reflect the complex interplay between genetic and environmental stimuli that occur in vivo. Current alternative approaches to in vivo animal models involve use of a plethora of systems ranging from very simple models using human cells (e.g. bronchial epithelial cells and fibroblasts) in mono- or co-culture, whole tissue explants (biopsies, muscle strips, bronchial rings) through to in vivo studies in human volunteers. Asthma research has been greatly facilitated by the introduction of fibreoptic bronchoscopy which is now a commonly used technique in the field of respiratory disease research, allowing collection of biopsy specimens, bronchial brushing samples, and bronchoalveolar lavage fluid enabling use of disease-derived cells and tissues in some of these models. Here, we will consider the merits and limitations of current models and discuss the potential of tissue engineering approaches through which we aim to advance our understanding of asthma and its treatment.
Collapse
Affiliation(s)
- Cornelia Blume
- Brooke Laboratory, Clinical and Experimental Sciences and the Southampton NIHR, Respiratory Biomedical Research Unit, University of Southampton, University Hospital Southampton, Southampton, United Kingdom.
| | | |
Collapse
|