1
|
Chen J, Ma N, Chen B, Huang Y, Li J, Li J, Chen Z, Wang P, Ran B, Yang J, Bai J, Ning S, Ai J, Wei Q, Liu L, Cao D. Synergistic effects of immunotherapy and adjunctive therapies in prostate cancer management. Crit Rev Oncol Hematol 2025; 207:104604. [PMID: 39732304 DOI: 10.1016/j.critrevonc.2024.104604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
In recent years, cancer immunotherapy has received widespread attention due to significant tumor clearance in some malignancies. Various immunotherapy approaches, including vaccines, immune checkpoint inhibitors, oncolytic virotherapy, bispecific T cell engagers, and adoptive T cell transfer, have completed or are undergoing clinical trials for prostate cancer. Despite immune checkpoint blockade's extraordinary effectiveness in treating a variety of cancers, targeted prostate cancer treatment using the immune system is still in its infancy. Multiple factors including the heterogeneity of prostate cancer, the cold tumor microenvironment, and a low level of neoantigens, contribute to the poor immunotherapy response. Significant effort is being devoted to improving immune-based prostate cancer therapy. Recently, several key discoveries demonstrate that prostate cancer immunotherapy agents may be used to promise better prognosis for patients as part of combination strategies with other agents targeting tumor-associated immune mechanism of resistance. Here, this review comprehensively examines the recent advancements in immunotherapy for prostate cancer, exploring its potential synergistic effects when combined with other treatment modalities to enhance clinical efficacy.
Collapse
Affiliation(s)
- Jie Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd section, South Renmin Road, Chengdu 610041, China
| | - Bo Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yin Huang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinze Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zeyu Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Puze Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Biao Ran
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiahao Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingxing Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shu Ning
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liangren Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dehong Cao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Ye Z, Qian Q, Jin H, Qian Q. Cancer vaccine: learning lessons from immune checkpoint inhibitors. J Cancer 2018; 9:263-268. [PMID: 29344272 PMCID: PMC5771333 DOI: 10.7150/jca.20059] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer vaccines have been exclusively studied all through the past decades, and have made exceptional achievements in cancer treatment. Few cancer vaccines have been approved by the US Food and Drug Administration (FDA), for instance, Provenge, which was approved for the treatment of prostate carcinoma in 2012. Moreover, more recently, T-VEC got approval for the treatment of melanoma. While, the overall therapeutic effects of cancer vaccines have been taken into consideration as below expectations, low antigenicity of targeting antigen and tumor heterogeneity are the two key limiting barriers encountered by the cancer vaccines. Nonetheless, recent developments in cancer immune-therapies together with associated technologies, for instance the unparalleled achievements bagged by immune checkpoint inhibitor based therapies and neo-antigen identification tools, envisage potential improvements in cancer vaccines in respect to the treatments of malignancies. This review brings forth measures for the purpose of refining therapeutic cancer vaccines by learning lessons from the success of PD-1 inhibitor based immune-therapies.
Collapse
Affiliation(s)
- ZhenLong Ye
- Shanghai Engineering Research Center for Cell Therapy, 75 Qianyang Road, Shanghai 201805, China
| | - Qiming Qian
- Shanghai Engineering Research Center for Cell Therapy, 75 Qianyang Road, Shanghai 201805, China
| | - HuaJun Jin
- Shanghai Engineering Research Center for Cell Therapy, 75 Qianyang Road, Shanghai 201805, China
| | - QiJun Qian
- Shanghai Engineering Research Center for Cell Therapy, 75 Qianyang Road, Shanghai 201805, China
| |
Collapse
|
3
|
Kübler H, Scheel B, Gnad-Vogt U, Miller K, Schultze-Seemann W, Vom Dorp F, Parmiani G, Hampel C, Wedel S, Trojan L, Jocham D, Maurer T, Rippin G, Fotin-Mleczek M, von der Mülbe F, Probst J, Hoerr I, Kallen KJ, Lander T, Stenzl A. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J Immunother Cancer 2015; 3:26. [PMID: 26082837 PMCID: PMC4468959 DOI: 10.1186/s40425-015-0068-y] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/29/2015] [Indexed: 02/19/2023] Open
Abstract
Background CV9103 is a prostate-cancer vaccine containing self-adjuvanted mRNA (RNActive®) encoding the antigens PSA, PSCA, PSMA, and STEAP1. This phase I/IIa study evaluated safety and immunogenicity of CV9103 in patients with advanced castration-resistant prostate-cancer. Methods 44 Patients received up to 5 intra-dermal vaccinations. Three dose levels of total mRNA were tested in Phase I in cohorts of 3–6 patients to determine a recommended dose. In phase II, 32 additional patients were treated at the recommended dose. The primary endpoint was safety and tolerability, the secondary endpoint was induction of antigen specific immune responses monitored at baseline and at weeks 5, 9 and 17. Results The most frequent adverse events were grade 1/2 injection site erythema, injection site reactions, fatigue, pyrexia, chills and influenza-like illness. Possibly treatment related urinary retention occurred in 3 patients. The recommended dose was 1280 μg. A total of 26/33 evaluable patients treated at 1280 μg developed an immune response, directed against multiple antigens in 15 out of 33 patients. One patient showed a confirmed PSA response. In the subgroup of 36 metastatic patients, the Kaplan-Meier estimate of median overall survival was 31.4 months [95 % CI: 21.2; n.a]. Conclusions The self-adjuvanted RNActive® vaccine CV9103 was well tolerated and immunogenic. The technology is a versatile, fast and cost-effective platform allowing for creation of vaccines. The follow-up vaccine CV9104 including the additional antigens prostatic acid phosphatase (PAP) and Muc1 is currently being tested in a randomized phase IIb trial to assess the clinical benefit induced by this new vaccination approach. Trial registration EU Clinical Trials Register: EudraCT number 2008-003967-37, registered 27 Jan 2009. Electronic supplementary material The online version of this article (doi:10.1186/s40425-015-0068-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hubert Kübler
- Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Birgit Scheel
- CureVac GmbH, Paul-Ehrlich-Str. 15, Tuebingen, 72076 Germany
| | | | - Kurt Miller
- Charité University Hospital Berlin, Berlin, Germany
| | | | | | | | - Christian Hampel
- University Hospital of the Johannes-Gutenberg-University Mainz, Mainz, Germany
| | - Steffen Wedel
- Ortenau Klinikum Offenburg-Gengenbach, Offenburg, Germany
| | - Lutz Trojan
- University Hospital Göttingen, Göttingen/University Hospital Mannheim, Mannheim, Germany
| | - Dieter Jocham
- University Hospital Schleswig-Holstein Campus Luebeck, Luebeck, Germany
| | - Tobias Maurer
- Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | | | | | | | - Jochen Probst
- CureVac GmbH, Paul-Ehrlich-Str. 15, Tuebingen, 72076 Germany
| | - Ingmar Hoerr
- CureVac GmbH, Paul-Ehrlich-Str. 15, Tuebingen, 72076 Germany
| | | | - Thomas Lander
- CureVac GmbH, Paul-Ehrlich-Str. 15, Tuebingen, 72076 Germany
| | | |
Collapse
|
4
|
Chen XH, Liu ZC, Zhang G, Wei W, Wang XX, Wang H, Ke HP, Zhang F, Wang HS, Cai SH, Du J. TGF-β and EGF induced HLA-I downregulation is associated with epithelial-mesenchymal transition (EMT) through upregulation of snail in prostate cancer cells. Mol Immunol 2015; 65:34-42. [PMID: 25618241 DOI: 10.1016/j.molimm.2014.12.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/21/2014] [Accepted: 12/26/2014] [Indexed: 01/05/2023]
Abstract
Human leukocyte antigen class I antigens (HLA-I) is essential in immune response by presenting antigenic peptides to cytotoxic T lymphocytes. Downregulation of HLA-I is observed in primary and metastatic prostate cancers, which facilitates them escape from immune surveillance, thereby promotes prostate cancer progression. In addition, elevated level of growth factors like TGF-β or EGF in microenvironment is related to the prostate cancer deterioration. Thus, we wondered whether TGF-β or EGF was involved in the regulation of HLA-I during the development of prostate cancer cells. In this study, we demonstrated that TGF-β and EGF both downregulated the expression of HLA-I, thereby attenuated the cytotoxic T cell mediated lysis of prostate cancer cells. Next, we revealed that TGF-β and EGF induced downregulation of HLA-I is associated with classical epithelial-mesenchymal transition (EMT) morphological changes and expression profiles. We further illustrated that overexpression of Snail is crucial for HLA-I downregulation and its association with EMT. At last, we discussed that NF-κB/p65 is the plausible target for Snail to induce HLA-I downregulation. Taken together, this is the first evidence to reveal that both TGF-β and EGF can induce HLA-I downregulation which is then proven to be associated with EMT in prostate cancer cells. These discoveries provide a deeper understanding of growth factors induced immune escape and introduce potential therapeutic targets for prostate cancers.
Collapse
Affiliation(s)
- Xiao-Hui Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Zong-Cai Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Wei Wei
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Xiao-Xiong Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jinan University, Guangzhou 510632, PR China
| | - Hao Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Hong-Peng Ke
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Fan Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Hong-Sheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China.
| | - Shao-Hui Cai
- Department of Pharmacology, School of Pharmaceutical Sciences, Jinan University, Guangzhou 510632, PR China.
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China.
| |
Collapse
|
5
|
Current World Literature. Curr Opin Oncol 2013; 25:325-30. [DOI: 10.1097/cco.0b013e328360f591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Arlen PM. Prostate cancer vaccines: an old yet novel target, the androgen receptor. Expert Rev Vaccines 2013; 12:249-51. [PMID: 23496664 DOI: 10.1586/erv.13.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cancer vaccines have been utilized as a therapeutic modality to treat prostate cancer in clinical studies for several decades. Recently with the approval of sipuleucel-T, vaccines have now been accepted as standard therapy for this disease. The androgen receptorhas long been recognized as a therapeutic target for the treatment of patients with locally advanced as well as metastatic disease. Recent preclinical studies described by Olson et al. have focused on the androgen receptor as a target for prostate cancer immunotherapy. They have developed and tested a DNA vaccine targeting the ligand-binding domain of the androgen receptor and have demonstrated in animal studies the ability to elicit T-cell responses towards the vaccine that have resulted in both antitumor activity as well as increased survival in the animal models described.
Collapse
Affiliation(s)
- Philip M Arlen
- Precision Biologics, Inc., 9700 Great Seneca Hwy, Suite 321, Rockville, MD 20850, USA.
| |
Collapse
|
7
|
Culme-Seymour EJ, Davie NL, Brindley DA, Edwards-Parton S, Mason C. A decade of cell therapy clinical trials (2000–2010). Regen Med 2012; 7:455-62. [DOI: 10.2217/rme.12.45] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
| | - Natasha L Davie
- Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London, UK
| | - David A Brindley
- Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London, UK
| | | | - Chris Mason
- Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London, UK
| |
Collapse
|