1
|
Tammineni ER, Manno C, Oza G, Figueroa L. Skeletal muscle disorders as risk factors for type 2 diabetes. Mol Cell Endocrinol 2025; 599:112466. [PMID: 39848431 PMCID: PMC11886953 DOI: 10.1016/j.mce.2025.112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/27/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The incidence and prevalence of muscular disorders and of type 2 diabetes (T2D) is increasing and both represent highly significant healthcare problems, both economically and compromising quality of life. Interestingly, skeletal muscle dysfunction and T2D share some commonalities including dysregulated glucose homeostasis, increased oxidative stress, dyslipidemia, and cytokine alterations. Several lines of evidence have hinted to a relationship between skeletal muscle dysfunction and T2D. For instance, T2D affects skeletal muscle morphology, functionality, and overall health through altered protein metabolism, impaired mitochondrial function, and ultimately cell viability. Conversely, humans suffering from myopathies and their experimental models demonstrated increased incidence of T2D through altered muscle glucose disposal function due to abnormal calcium homeostasis, compromised mitochondrial function, dyslipidemia, increased inflammatory cytokines and fiber size alterations and disproportions. Lifestyle modifications are essential for improving and maintaining mobility and metabolic health in individuals suffering from myopathies along with T2D. In this review, we updated current literature evidence on clinical incidence of T2D in inflammatory, mitochondrial, metabolic myopathies, and muscular dystrophies and further discussed the molecular basis of these skeletal muscle disorders leading to T2D.
Collapse
Affiliation(s)
| | - Carlo Manno
- Department of Physiology and Biophysics, Rush University, Chicago, USA
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Queretaro, Mexico
| | - Lourdes Figueroa
- Department of Physiology and Biophysics, Rush University, Chicago, USA
| |
Collapse
|
2
|
Pérez-López DO, Burke MJ, Hakim CH, Teixeira JA, Han J, Yue Y, Ren Z, Sun J, Chen SJ, Herzog RW, Yao G, Duan D. Circulatory CCL2 distinguishes Duchenne muscular dystrophy dogs. Dis Model Mech 2025; 18:dmm052137. [PMID: 40084478 DOI: 10.1242/dmm.052137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/28/2025] [Indexed: 03/16/2025] Open
Abstract
To establish a minimally invasive approach to studying body-wide muscle inflammation in the canine Duchenne muscular dystrophy (DMD) model, we evaluated 13 cytokines/chemokines in frozen sera from 90 affected (239 sera) and 73 normal (189 sera) dogs (0.00 to 45.2 months of age). Linear mixed-effects model analysis suggested that ten cytokines/chemokines were significantly elevated in affected dogs, including interleukin (IL)-2, IL-6, IL-7, IL-8, IL-10, IL-15, IL-18, C-C motif chemokine ligand 2 (CCL2), C-X-C motif chemokine ligand 1 (CXCL1) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Further, cytokine/chemokine elevation coincided with the onset of muscle disease. Importantly, only CCL2 showed consistent changes at all ages, with the most pronounced increase occurring between 3 and 9 months. To study the effects of sample storage and type, we compared fresh versus frozen, and serum versus plasma, samples from the same dog. Similar readings were often obtained in fresh and frozen sera. Although plasma readings were significantly lower for many cytokines/chemokines, this did not compromise the robustness of CCL2 as a biomarker. Our study establishes a baseline for using circulatory cytokines/chemokines as biomarkers in canine DMD studies.
Collapse
Affiliation(s)
- Dennis O Pérez-López
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Matthew J Burke
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - James A Teixeira
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Jin Han
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Zewei Ren
- Department of Statistics, University of Missouri, Columbia, MO 65212, USA
| | - Jianguo Sun
- Department of Statistics, University of Missouri, Columbia, MO 65212, USA
| | - Shi-Jie Chen
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Gang Yao
- Department of Chemical and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, MO 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Department of Chemical and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, MO 65212, USA
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
3
|
Fausto LL, Alberti A, Kades G, de Carvalho RPD, Freiberger V, Ventura L, Dias P, Zanoni EM, Soares BH, Dutra ML, Martins DF, Comim CM. Effects of a Ketogenic Diet on the Assessment of Biochemical and Clinical Parameters in Duchenne Muscular Dystrophy: A Preclinical Investigation. Mol Neurobiol 2024; 61:10992-11011. [PMID: 38816675 DOI: 10.1007/s12035-024-04258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive skeletal muscle degeneration and systemic effects, including the central nervous system (CNS). This study aimed to assess the impact of a 14-day ketogenic diet (DCet) on biochemical and clinical parameters in a DMD mouse model. Young adult mice (50 days old) were fed DCet, while control groups received a standard diet. On the 14th day, memory and behavior tests were conducted, followed by biochemical evaluations of oxidative stress, inflammatory biomarkers, body weight, feed intake, and brain-derived neurotrophic factor (BDNF) levels. mdx + DCet mice showed reduced mass (0.2 g ± 2.49) and improved memory retention (p < 0.05) compared to controls. Oxidative damage in muscle tissue and CNS decreased, along with a significant cytokine level reduction (p <0.05). The protocol led to an increase in hippocampal BDNF and mitochondrial respiratory complex activity in muscle tissue and the central nervous system (CNS), while also decreasing creatine kinase activity only in the striatum. Overall, a 14-day DCet showed protective effects by improving spatial learning and memory through reductions in oxidative stress and immune response, as well as increases in BDNF levels, consistent with our study's findings.
Collapse
Affiliation(s)
- Lilian Leite Fausto
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Adriano Alberti
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil.
| | | | | | - Viviane Freiberger
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Leticia Ventura
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Paula Dias
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | | | | | - Matheus Luchini Dutra
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Daniel Fernandes Martins
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Clarissa Martinelli Comim
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| |
Collapse
|
4
|
Yannin Hernández-de la Cruz S, Ordaz-Robles T, Antonio Villaldama-Soriano M, Emmanuel Luna-Guzmán C, Almeida-Becerril T, Villa-Morales J, Cárdenas-Conejo A, Dolores Ruíz-Cruz E, Maldonado-Hernandez J, Bernabe-Garcia M, Barbosa-Cortés L, Rodríguez-Cruz M. The muscle regeneration marker FOXP3 is associated with muscle injury in Duchenne muscular dystrophy. Brain Dev 2024; 46:199-206. [PMID: 38388302 DOI: 10.1016/j.braindev.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND In Duchenne muscular dystrophy (DMD), the immune system cells (ISC) synthesize molecules to regulate inflammation, a process needed to regenerate muscle. The relationship between those molecules and the muscle injury is unknown. Monocytes belonging to ISC are regulated by omega-3 fatty acids (ω-3 LCPUFAs) in DMD, but whether those fatty acids influence other ISC like T-cells is unknown. OBJECTIVE We analyzed the expression of the muscle regeneration markers (FOXP3 and AREG) in circulating leukocytes of DMD patients with different lower limb muscle functions and whether ω-3 LCPUFAs regulate the expression of those markers, and the populations of circulating T-cells, their intracellular cytokines, and disease progression (CD69 and CD49d) markers. METHODS This placebo-controlled, double-blind, randomized study was conducted in DMD boys supplemented with ω-3 LCPUFAs (n = 18) or placebo (sunflower oil, n = 13) for six months. FOXP3 and AREG mRNA expression in leukocytes, immunophenotyping of T-cell populations, CD49d and CD69 markers, and intracellular cytokines in blood samples were analyzed at baseline and months 1, 2, 3, and 6 of supplementation. RESULTS Patients with assisted ambulation expressed higher (P = 0.015) FOXP3 mRNA levels than ambulatory patients. The FOXP3 mRNA expression correlated (Rho = -0.526, P = 0.03) with the Vignos scale score at month six of supplementation with ω-3 LCPUFAs. CD49d + CD8 + T-cells population was lower (P = 0.037) in the ω -3 LCPUFAs group than placebo at month six of supplementation. CONCLUSION FOXP3 is highly expressed in circulating leukocytes of DMD patients with the worst muscle function. Omega-3 LCPUFAs might modulate the synthesis of the adhesion marker CD49d + CD8 + T-cells, but their plausible impact on FOXP3 needs more research.
Collapse
Affiliation(s)
- Sthephanie Yannin Hernández-de la Cruz
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México (CDMX), Mexico.
| | - Thania Ordaz-Robles
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México (CDMX), Mexico.
| | - Marco Antonio Villaldama-Soriano
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México (CDMX), Mexico.
| | - Cristian Emmanuel Luna-Guzmán
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México (CDMX), Mexico.
| | - Tomas Almeida-Becerril
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México (CDMX), Mexico.
| | - Judith Villa-Morales
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México (CDMX), Mexico.
| | - Alan Cárdenas-Conejo
- Departamento de Genética Médica. Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, CDMX, Mexico.
| | - Eugenia Dolores Ruíz-Cruz
- Departamento de Genética, UMAE Hospital General "Dr. Gaudencio González Garza". Centro Médico Nacional "La Raza", IMSS, CDMX, México.
| | - Jorge Maldonado-Hernandez
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México (CDMX), Mexico.
| | - Mariela Bernabe-Garcia
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México (CDMX), Mexico.
| | - Lourdes Barbosa-Cortés
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México (CDMX), Mexico.
| | - Maricela Rodríguez-Cruz
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México (CDMX), Mexico.
| |
Collapse
|
5
|
Ferraguti G, Terracina S, Micangeli G, Lucarelli M, Tarani L, Ceccanti M, Spaziani M, D'Orazi V, Petrella C, Fiore M. NGF and BDNF in pediatrics syndromes. Neurosci Biobehav Rev 2023; 145:105015. [PMID: 36563920 DOI: 10.1016/j.neubiorev.2022.105015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Neurotrophins (NTs) as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) play multiple roles in different settings including neuronal development, function and survival in both the peripheral and the central nervous systems from early stages. This report aims to provide a summary and subsequent review of evidences on the role of NTs in rare and non-common pediatric human diseases associated with changes in neurodevelopment. A variety of diseases has been analyzed and many have been linked to NTs neurobiological effects, including chronic granulomatous disease, hereditary sensory and autonomic neuropathy, Duchenne muscular dystrophy, Bardet-Biedl syndrome, Angelman syndrome, fragile X syndrome, trisomy 16, Williams-Beuren syndrome, Prader-Willi syndrome, WAGR syndrome, fetal alcohol spectrum disorders, Down syndrome and Klinefelter Syndrome. NTs alterations have been associated with numerous pathologic manifestations including cognitive defects, behavioral abnormalities, epilepsy, obesity, tumorigenesis as well as muscle-skeletal, immunity, bowel, pain sensibility and cilia diseases. In this report, we discuss that further studies are needed to clear a possible therapeutic role of NTs in these still often uncurable diseases.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ginevra Micangeli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Rome, Italy
| | - Matteo Spaziani
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Valerio D'Orazi
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy.
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy.
| |
Collapse
|
6
|
Schultz TI, Raucci FJ, Salloum FN. Cardiovascular Disease in Duchenne Muscular Dystrophy. JACC Basic Transl Sci 2022; 7:608-625. [PMID: 35818510 PMCID: PMC9270569 DOI: 10.1016/j.jacbts.2021.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/11/2022]
Abstract
Cardiomyopathy is the leading cause of death in patients with DMD. DMD has no cure, and there is no current consensus for treatment of DMD cardiomyopathy. This review discusses therapeutic strategies to potentially reduce or prevent cardiac dysfunction in DMD patients. Additional studies are needed to firmly establish optimal treatment modalities for DMD cardiomyopathy.
Duchenne muscular dystrophy (DMD) is a devastating disease affecting approximately 1 in every 3,500 male births worldwide. Multiple mutations in the dystrophin gene have been implicated as underlying causes of DMD. However, there remains no cure for patients with DMD, and cardiomyopathy has become the most common cause of death in the affected population. Extensive research is under way investigating molecular mechanisms that highlight potential therapeutic targets for the development of pharmacotherapy for DMD cardiomyopathy. In this paper, the authors perform a literature review reporting on recent ongoing efforts to identify novel therapeutic strategies to reduce, prevent, or reverse progression of cardiac dysfunction in DMD.
Collapse
|
7
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
8
|
Ramon-Duaso C, Gener T, Consegal M, Fernández-Avilés C, Gallego JJ, Castarlenas L, Swanson MS, de la Torre R, Maldonado R, Puig MV, Robledo P. Methylphenidate Attenuates the Cognitive and Mood Alterations Observed in Mbnl2 Knockout Mice and Reduces Microglia Overexpression. Cereb Cortex 2020; 29:2978-2997. [PMID: 30060068 DOI: 10.1093/cercor/bhy164] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/25/2018] [Indexed: 12/15/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem disorder affecting muscle and central nervous system (CNS) function. The cellular mechanisms underlying CNS alterations are poorly understood and no useful treatments exist for the neuropsychological deficits observed in DM1 patients. We investigated the progression of behavioral deficits present in male and female muscleblind-like 2 (Mbnl2) knockout (KO) mice, a rodent model of CNS alterations in DM1, and determined the biochemical and electrophysiological correlates in medial prefrontal cortex (mPFC), striatum and hippocampus (HPC). Male KO exhibited more cognitive impairment and depressive-like behavior than female KO mice. In the mPFC, KO mice showed an overexpression of proinflammatory microglia, increased transcriptional levels of Dat, Drd1, and Drd2, exacerbated dopamine levels, and abnormal neural spiking and oscillatory activities in the mPFC and HPC. Chronic treatment with methylphenidate (MPH) (1 and 3 mg/kg) reversed the behavioral deficits, reduced proinflammatory microglia in the mPFC, normalized prefrontal Dat and Drd2 gene expression, and increased Bdnf and Nrf2 mRNA levels. These findings unravel the mechanisms underlying the beneficial effects of MPH on cognitive deficits and depressive-like behaviors observed in Mbnl2 KO mice, and suggest that MPH could be a potential candidate to treat the CNS deficiencies in DM1 patients.
Collapse
Affiliation(s)
- Carla Ramon-Duaso
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Thomas Gener
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Marta Consegal
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Cristina Fernández-Avilés
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Juan José Gallego
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Laura Castarlenas
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology and the Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.,CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERON), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Maldonado
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.,Laboratory of Neuropharmacology, Department of Experimental al Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - M Victoria Puig
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.,Laboratory of Neuropharmacology, Department of Experimental al Health Sciences, Pompeu Fabra University, Barcelona, Spain
| |
Collapse
|
9
|
da Silva Prade J, Bálsamo EC, Machado FR, Poetini MR, Bortolotto VC, Araújo SM, Londero L, Boeira SP, Sehn CP, de Gomes MG, Prigol M, Cattelan Souza L. Anti-inflammatory effect of Arnica montana in a UVB radiation-induced skin-burn model in mice. Cutan Ocul Toxicol 2020; 39:126-133. [PMID: 32183539 DOI: 10.1080/15569527.2020.1743998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: ultraviolet radiation types A and B (UV) (400-315nm and 315-280nm respectively) are the main components present in sunlight known to cause skin injuries. Arnica montana is a plant that has been widely studied for containing anti-inflammatory, healing and analgesic properties capable of preventing or ameliorating lesions. Here, we investigated the therapeutic effect of topical application of Arnica montana after UVB-induced cutaneous injuries in mice.Methods: mice were exposed to UVB radiation (Philips TL40W/12 RS lamp) in a period of 3 hours. After one hour of radiation exposure, the animals were treated with topical application of Arnica montana ointment (250 mg/g) in the ear. At the time of 16 hours after treatment, the parameters of edema, oxidative stress and inflammatory reaction were measured in the ear of mice.Results: our results demonstrated that topical treatment with Arnica montana reduced the UVB-induced inflammatory response as demonstrated by the reduction of ear edema, inhibition of myeloperoxidase activation, decrease of nuclear factor kappa B levels and reduction of proinflammatory cytokines levels, such as interleukin-1beta, interleukin-6, tumour necrosis factor-alpha and interferon-gamma. In addition, Arnica montana ameliorated oxidative damage mediated by UVB radiation, as demonstrated by the reduction of lipid peroxidation, protein oxidation and increase of tissue antioxidant capacity and glutathione levels in the ear.Conclusion: we concluded that Arnica montana ointment is effective in alleviating the auricular inflammatory process and oxidative damage induced by acute UVB radiation, sustaining the traditional use of Arnica montana for the treatment of skin disorders.
Collapse
Affiliation(s)
- Josiéle da Silva Prade
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, Brazil
| | - Eveline Costeira Bálsamo
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, Brazil
| | - Franciele Romero Machado
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, Brazil
| | - Márcia Rósula Poetini
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, Brazil
| | - Stífani Machado Araújo
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, Brazil
| | - Larissa Londero
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, Brazil
| | - Silvana Peterini Boeira
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, Brazil
| | - Carla Pohl Sehn
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, Brazil
| | - Marcelo Gomes de Gomes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, Brazil
| | - Leandro Cattelan Souza
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, Brazil
| |
Collapse
|
10
|
Late Brain Involvement after Neonatal Immune Activation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9573248. [PMID: 31467920 PMCID: PMC6699266 DOI: 10.1155/2019/9573248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/07/2019] [Indexed: 01/18/2023]
Abstract
The neonatal immune system is still immature, which makes it more susceptible to the infectious agents. Neonatal immune activation is associated with increased permeability of the blood-brain barrier, causing an inflammatory cascade in the CNS and altering behavioral and neurochemical parameters. One of the hypotheses that has been studied is that neuroinflammation may be involved in neurodegenerative processes, such as Alzheimer's disease (AD). We evaluate visuospatial memory, cytokines levels, and the expression of tau and GSK-3β proteins in hippocampus and cortex of animals exposed to neonatal endotoxemia. C57BL/6 mice aging two days received a single injection of subcutaneous lipopolysaccharide (LPS). At 60,120, and 180 days of age, visual-spatial memory was evaluated and the hippocampus and cortex were dissected to evaluate the cytokines levels and expression of tau and GSK-3β proteins. The animals exposed to LPS in the neonatal period present with visuospatial memory impairment at 120 and 180 days of age. Here there was an increase of TNF-α and IL-1β levels in the hippocampus and cortex only at 60 days of age. Here there was an increase in the expression of GSK-3β in hippocampus of the animals at 60, 120, and 180 days of age. In the cortex, this increase occurred in the 120 and 180 days of age. Tau protein expression was high in hippocampus and cortex at 120 days of age and in hippocampus at 180 days of age. The data observed show that neonatal immune activation may be associated with visuospatial memory impairment, neuroinflammation, and increased expression of GSK-3β and Tau proteins in the long term.
Collapse
|
11
|
Comim CM, Ventura L, Freiberger V, Dias P, Bragagnolo D, Dutra ML, Amaral RA, Camargo-Fagundes ALS, Reis PA, Castro-Faria-Neto HC, Vainzof M, Rosa MI. Neurocognitive Impairment in mdx Mice. Mol Neurobiol 2019; 56:7608-7616. [PMID: 31077034 DOI: 10.1007/s12035-019-1573-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disorder that affects muscles and also the brain, resulting in memory and behavioral problems. In the pathogenesis of DMD, inflammation is an important factor during the degenerative process. However, the involvement of the brain is still unclear. Therefore, the objective of this study is to evaluate the cognitive involvement, BDNF levels, cytokine levels through the levels of TNF-α and IL-1β, the myeloperoxidase (MPO) activity, and the expression of proteins postsynaptic density (PSD)-95 and synaptophysin in the brain of mdx mice. To this aim, we used adult mdx mice. It was observed that mdx mice presented deficits on the habituation, aversive, and object recognition memory. These animals also had a depression-like behavior and an anxiety-like behavior, a decrease of BDNF levels, an increase in the levels of TNF-α and IL-1β, an increase of MPO activity, and an overexpression of synaptophysin and PSD-95 in brain tissue. In conclusion, these data show that mdx mice possibly present a neuroinflammatory component and the involvement of synaptic proteins associated to memory storage and restoring process impairment as well as a depressive- and anxiety-like behavior.
Collapse
Affiliation(s)
- Clarissa M Comim
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, SC, Brazil.
| | - Letícia Ventura
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, SC, Brazil
| | - Viviane Freiberger
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, SC, Brazil
| | - Paula Dias
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, SC, Brazil
| | - Daiane Bragagnolo
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, SC, Brazil
| | - Matheus L Dutra
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, SC, Brazil
| | - Ricardo A Amaral
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, SC, Brazil
| | - Ana Lucia S Camargo-Fagundes
- Laboratory of Epidemiology, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, 88806-000, Brazil
| | - Patrícia A Reis
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz/IOC/FIOCRUZ-Manguinhos, Rio de Janeiro, Brazil
| | - Hugo C Castro-Faria-Neto
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz/IOC/FIOCRUZ-Manguinhos, Rio de Janeiro, Brazil
| | - Mariz Vainzof
- Human Genome Research Center, Biosciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Maria I Rosa
- Laboratory of Epidemiology, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, 88806-000, Brazil
| |
Collapse
|
12
|
Rodríguez-Cruz M, Cruz-Guzmán ODR, Almeida-Becerril T, Solís-Serna AD, Atilano-Miguel S, Sánchez-González JR, Barbosa-Cortés L, Ruíz-Cruz ED, Huicochea JC, Cárdenas-Conejo A, Escobar-Cedillo RE, Yam-Ontiveros CA, Ricárdez-Marcial EF. Potential therapeutic impact of omega-3 long chain-polyunsaturated fatty acids on inflammation markers in Duchenne muscular dystrophy: A double-blind, controlled randomized trial. Clin Nutr 2017; 37:1840-1851. [PMID: 28987470 DOI: 10.1016/j.clnu.2017.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND & AIMS Duchenne Muscular Dystrophy (DMD) is the most frequent dystrophy in childhood generated by a deficiency in dystrophin. DMD is a neuromuscular disease and its clinical course comprises chronic inflammation and gradual muscle weakness. Supplementation of omega-3 long chain-Polyunsaturated Fatty Acids (ω-3 long chain-PUFA) reduces inflammatory markers in various disorders. The goal of this research was to analyze the influence of ω-3 long chain-PUFA intake on gene expression and blood inflammatory markers in boys with DMD. METHODS In a placebo-controlled, double. Blind, randomized trial, boys with DMD (n = 36) consumed 2.9 g/day of ω-3 long chain-PUFA or sunflower oil as control, in capsules, for a period of 6 months. Blood was analyzed at baseline and at months 1, 2, 3, and 6 of supplementation for expression of inflammatory markers in leukocytes and serum. RESULTS There was high adherence to capsule intake (control: 95.3% ± 7.2%, and ω-3 long chain-PUFA: 97.4% ± 3.7% at month 6). Enrichment of EicosaPentaenoic Acid (EPA) and DocosaHexaenoic Acid (DHA) in erythrocytes increased significantly in patients supplemented with ω-3 long chain-PUFA compared with the placebo group during the 6 months of supplementation. Messenger RNA (mRNA) of the Nuclear Factor kappa beta (NF-κB) and its target genes InterLeukin 1 beta (IL-1β) and IL-6 was downregulated significantly (p < 0.05) in leukocytes from DMD boys supplemented with ω-3 long chain-PUFA for 6 months, compared to the placebo group. Omega-3 long chain-PUFA intake decreased the serum IL-1β (-59.5%; p = 0.011) and IL-6 (-54.8%; p = 0.041), and increased the serum IL-10 (99.9%, p < 0.005), in relation to those with placebo treatment. CONCLUSION Supplementation with ω-3 long chain-PUFA 2.9 g/day is well-tolerated, has a beneficial reductive effect on proinflammatory markers, and increases an anti-inflammatory marker, indicating that ω-3 long chain-PUFA could have a potential therapeutic impact on chronic inflammation in DMD. This research is registered at clinicaltrials.gov (NCT018264229).
Collapse
Affiliation(s)
- Maricela Rodríguez-Cruz
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico.
| | - Oriana Del Rocío Cruz-Guzmán
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Tomás Almeida-Becerril
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Alan Donovan Solís-Serna
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Salvador Atilano-Miguel
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Juan Raúl Sánchez-González
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Lourdes Barbosa-Cortés
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Eugenia Dolores Ruíz-Cruz
- Departamento de Genética, UMAE Hospital General "Dr. Gaudencio González Garza", Centro Médico Nacional "La Raza", IMSS, Mexico City, Mexico
| | - Juan Carlos Huicochea
- Departamento de Genética, Hospital de Pediatría, CMN-SXXI, IMSS, Mexico City, Mexico
| | - Alan Cárdenas-Conejo
- Departamento de Genética, Hospital de Pediatría, CMN-SXXI, IMSS, Mexico City, Mexico
| | - Rosa Elena Escobar-Cedillo
- Servicio de Electrodiagnóstico y Distrofia Muscular, Instituto Nacional de la Rehabilitación (INRehab), Mexico City, Mexico
| | - Carlos Alberto Yam-Ontiveros
- Departamento de Genética, UMAE Hospital General "Dr. Gaudencio González Garza", Centro Médico Nacional "La Raza", IMSS, Mexico City, Mexico
| | - Edgar F Ricárdez-Marcial
- Departamento de Genética, UMAE Hospital General "Dr. Gaudencio González Garza", Centro Médico Nacional "La Raza", IMSS, Mexico City, Mexico
| |
Collapse
|
13
|
Gourdon G, Meola G. Myotonic Dystrophies: State of the Art of New Therapeutic Developments for the CNS. Front Cell Neurosci 2017; 11:101. [PMID: 28473756 PMCID: PMC5397409 DOI: 10.3389/fncel.2017.00101] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Myotonic dystrophies are multisystemic diseases characterized not only by muscle and heart dysfunction but also by CNS alteration. They are now recognized as brain diseases affecting newborns and children for myotonic dystrophy type 1 and adults for both myotonic dystrophy type 1 and type 2. In the past two decades, much progress has been made in understanding the mechanisms underlying the DM symptoms allowing development of new molecular therapeutic tools with the ultimate aim of curing the disease. This review describes the state of the art for the characterization of CNS related symptoms, the development of molecular strategies to target the CNS as well as the available tools for screening and testing new possible treatments.
Collapse
Affiliation(s)
- Genevieve Gourdon
- Institut National de la Santé et de la Recherche Médicale UMR1163Paris, France.,Laboratory CTGDM, Institut Imagine, Université Paris Descartes-Sorbonne Paris CitéParis, France
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, Policlinico San Donato (IRCCS), University of MilanMilan, Italy
| |
Collapse
|
14
|
Nikolić-Kokić A, Marinković D, Perić S, Stević Z, Spasić MB, Blagojević D, Rakocˇević-Stojanović V. Redox imbalance in peripheral blood of type 1 myotonic dystrophy patients. Redox Rep 2016; 21:232-7. [PMID: 26817806 DOI: 10.1080/13510002.2015.1107311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES The aim of our study was to determine if redox imbalance caused by the activities of antioxidant enzymes existed in erythrocytes of type 1 myotonic dystrophy (DM1) patients. METHODS The activities of erythrocyte superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were measured in 30 DM1 patients and 15 healthy controls (HCs). The obtained values were correlated with the Muscular Impairment Rating Scale (MIRS) score and creatine kinase (CK). RESULTS Superoxide dismutase and catalase activities were lower in DM1 patients compared to HCs. A positive correlation was found between disease duration and MIRS score as well as with glutathione reductase activity. In DM1 patients, there were positive correlations between catalase, glutathione peroxidase, and glutathione reductase activities. After sub-dividing DM1 patients according to CK levels, superoxide dismutase activity was still statistically different from HCs. However, catalase activity was significantly lower only in DM1 patients with increased CK. DISCUSSION Undesirable alterations in antioxidant enzyme activities during DM1 disease progression may result in conditions favoring oxidative stress and changes in metabolism which together could contribute to muscle wasting.
Collapse
Affiliation(s)
- Aleksandra Nikolić-Kokić
- a Department of Physiology, Institute for Biological Research Siniša Stanković , University of Belgrade , Serbia
| | - Dragan Marinković
- b Faculty for Special Education and Rehabilitation , University of Belgrade , Serbia
| | - Stojan Perić
- c Neurology Clinic, Clinical Centre of Serbia, School of Medicine , University of Belgrade , Serbia
| | - Zorica Stević
- c Neurology Clinic, Clinical Centre of Serbia, School of Medicine , University of Belgrade , Serbia
| | - Mihajlo B Spasić
- a Department of Physiology, Institute for Biological Research Siniša Stanković , University of Belgrade , Serbia
| | - Duško Blagojević
- a Department of Physiology, Institute for Biological Research Siniša Stanković , University of Belgrade , Serbia
| | | |
Collapse
|