1
|
Ariyanto EF, Farahana AK, Sudirman GSJ, Widiarsih E, Qomarilla N, Rahayu NS, Wikayani TP, Heryaman H, Wira DW, Triatin RD, Bashari MH, Pamela Y, Pratiwi YS, Ghozali M. Oyster Mushroom ( Pleurotus ostreatus) Ethanolic Extract Inhibits Pparg Expression While Maintaining the Methylation of the Pparg Promoter During 3T3-L1 Adipocyte Differentiation. J Exp Pharmacol 2025; 17:27-36. [PMID: 39834594 PMCID: PMC11745172 DOI: 10.2147/jep.s494116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose This study aims to provide new insights into the potential of oyster mushroom (Pleurotus ostreatus) ethanolic extract in preventing obesity through the inhibition of Pparg expression and modulation of methylation level on Pparg promoter during 3T3-L1 adipocyte differentiation. Methods This in vitro quantitative experimental study was conducted by treating the 3T3-L1 cell line differentiated using 0.5 mM methyl-isobutyl-xanthine, 1 μM dexamethasone, and 10 μg/mL insulin-containing medium with oyster mushroom ethanolic extract. The extract was obtained from 80 g of dried oyster mushroom powder extracted three times with 800 mL of ethanol, filtered, evaporated, and reconstituted in dimethyl sulfoxide (DMSO) to final concentrations of 0, 25, 50, and 100 µg/mL, with DMSO limited to 0.5% in all solutions. Pparg mRNA expression was quantified by qRT-PCR analysis and Pparg promoter methylation levels were measured quantitatively by pyrosequencing of bisulfite-treated DNA samples. Results The addition of 25 µg/mL oyster mushroom ethanolic extract significantly suppressed Pparg mRNA expression with no significant change in the Pparg promoter methylation levels. Conclusion Oyster mushroom ethanolic extract inhibited Pparg mRNA expression without altering Pparg promoter methylation, suggesting reduced adipocyte differentiation. This study emphasizes the potential of oyster mushroom in the prevention or treatment of obesity by inhibiting adipocyte differentiation.
Collapse
Affiliation(s)
- Eko Fuji Ariyanto
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
- Research Center for Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Anastasya Kania Farahana
- Undergraduate Program of Medical Doctor, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | | | - Erlina Widiarsih
- Molecular Genetics Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Nurul Qomarilla
- Cell Culture Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Nurul Setia Rahayu
- Molecular Genetics Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Tenny Putri Wikayani
- Cell Culture Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Henhen Heryaman
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Dwi Wahyudha Wira
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Rima Destya Triatin
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
- Research Center for Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Muhammad Hasan Bashari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Yunisa Pamela
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Yuni Susanti Pratiwi
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Mohammad Ghozali
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| |
Collapse
|
2
|
Yan K, Guo L, Zhang B, Chang M, Meng J, Deng B, Liu J, Hou L. MAC Family Transcription Factors Enhance the Tolerance of Mycelia to Heat Stress and Promote the Primordial Formation Rate of Pleurotus ostreatus. J Fungi (Basel) 2023; 10:13. [PMID: 38248923 PMCID: PMC10816978 DOI: 10.3390/jof10010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024] Open
Abstract
Pleurotus ostreatus is a typical tetrapolar heterologous edible mushroom, and its growth and development regulatory mechanism has become a research hotspot in recent years. The MAC1 protein is a transcription factor that perceives copper and can regulate the expression of multiple genes, thereby affecting the growth and development of organisms. However, its function in edible mushrooms is still unknown. In this study, two transcription factor genes, PoMCA1a and PoMAC1b, were identified. Afterwards, PoMAC1 overexpression (OE) and RNA interference (RNAi) strains were constructed to further explore gene function. The results showed that the PoMAC1 mutation had no significant effect on the growth rate of mycelia. Further research has shown that OE-PoMAC1a strains and RNAi-PoMAC1b strains exhibit strong tolerance under 32 °C heat stress. However, under 40 °C heat stress, the OE of PoMAC1a and PoMAC1b promoted the recovery of mycelial growth after heat stress. Second, the OE of PoMAC1a can promote the rapid formation of primordia and shorten the cultivation cycle. In summary, this study indicated that there are functional differences between PoMAC1a and PoMAC1b under different heat stresses during the vegetative growth stage, and PoMAC1a has a positive regulatory effect on the formation of primordia during the reproductive growth stage.
Collapse
Affiliation(s)
- Kexing Yan
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
| | - Lifeng Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
| | - Benfeng Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
- Shanxi Research Center for Engineering Technology of Edible Fungi, Jinzhong 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
- Shanxi Research Center for Engineering Technology of Edible Fungi, Jinzhong 030801, China
| | - Bing Deng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Jingyu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Ludan Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| |
Collapse
|
3
|
Aguiar MM, Wadt LC, Vilar DS, Hernández-Macedo ML, Kumar V, Monteiro RTR, Mulla SI, Bharagava RN, Iqbal HMN, Bilal M, Ferreira LFR. Vinasse bio-valorization for enhancement of Pleurotus biomass productivity: chemical characterization and carbohydrate analysis. BIOMASS CONVERSION AND BIOREFINERY 2023; 13:10031-10040. [DOI: 10.1007/s13399-021-02198-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 02/05/2023]
|
4
|
Chemometric-Based Analysis of Metabolomics Studies of Bioactive Fractions of Pleurotus osteratus and Their Correlation with In Vitro Anti-Cancer Activity. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04325-z. [PMID: 36705844 DOI: 10.1007/s12010-023-04325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/28/2023]
Abstract
Richness in nutrients with an ample of the myco-bioactive molecules makes Pleurotus osteratus preferential mushroom. In this paper, we conducted a preliminary study on bio-assay-guided fractionation of dichloromethane:ethanol crude extract (1:1, v/v) of P. osteratus (CD) against human breast cancer cell line (MDA-MB-231). Later, CD and its potent hexane (H) and ethyl acetate (EA) fraction were screened against a panel of a human cancer cell lines. H fraction possesses higher cytotoxicity followed by EA and CD. Literature review revealed that polyphenol and ergosterol are the biomarkers found in P. osteratus and could responsible for its cytotoxic potential. Accordingly, hyphenated liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based polyphenol and ergosterol-targeted myco-metabolite profiling of CD, H, and EA fractions were carried out. Despite being significantly rich in polyphenol and ergosterol content, EA fraction showed moderate cytotoxicity. Considering this, liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF/MS)-based untargeted myco-metabolite profiling of CD, H and EA fractions was further conducted to identify a new biomarker. Tentatively, 20 myco-metabolites were identified, belonging to the class of steroids, alkaloid, terpenoid, fatty alcohol, and polyketide. The myco-metabolite variabilities among potent samples in correlation to their in vitro anti-cancer activity was explored using the different chemometric tools: principal component analysis (PCA), hierarchical clustering analysis (HCA), and partial least square (PLS). A probable synergistic action among identified myco-metabolites (betulin, solanocapsine, ophiobolin F, linoleoyl ethanolamide, (13R,14R)-7-labdene-13,14,15-triol, asterosterol, cholest-5-ene, (3b,6b,8a,12a)-8,12-epoxy-7(11)-eremophilene-6,8,12-trimethoxy-3-ol, beta-obscurine, myxalamid B, momordol, and avocadyne 4-acetate) may be responsible for the observed cytotoxicity potential of H fraction of P. osteratus.
Collapse
|
5
|
Sinha S, Das S, Saha B, Paul D, Basu B. Anti-microbial, anti-oxidant, and anti-breast cancer properties unraveled in yeast carotenoids produced via cost-effective fermentation technique utilizing waste hydrolysate. Front Microbiol 2023; 13:1088477. [PMID: 36741891 PMCID: PMC9889640 DOI: 10.3389/fmicb.2022.1088477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction Natural carotenoids are well known for their anti-oxidant property and also shown to have antimicrobial and anticancer efficacy. Production of carotenoids from microbial resources mainly from yeast has attracted commercial interest. Breast cancer has the highest incidence among women, and therapy resistance and lack of effective therapeutic strategies are major treatment bottlenecks, particularly for triple-negative subtypes. Yeast carotenoids are recently being evaluated for affordable, non-toxic, natural product-based therapies. In the present study, we have shown an environment-friendly and inexpensive method for carotenoid production from yeasts, utilizing "mandi" wastes, and investigated the biomedical properties of carotenoids, particularly antineoplastic properties. Methods Vegetable "mandi" waste was used to prepare waste hydrolysate, a culture medium, in which oleaginous red yeast Rhodosporidium sp. was grown. Carotenoid pigments were extracted using the solvent extraction method and analyzed by UV spectroscopy, thin-layer chromatography (TLC), and high-performance liquid chromatography (HPLC). Antimicrobial, antioxidant, and anticancer activities of the extract were evaluated, followed by in silico docking and absorption, distribution, metabolism, and excretion/toxicity (ADME/T) studies. Results Carotenoid extract was found to be composed of three main pigments-β-carotene, torulene, and torularhodin. Extract exhibited significant antioxidant, antimicrobial, and anti-breast cancer activities in vitro while being biocompatible. Interestingly, carotenoids have shown better efficacy in triple-negative breast cancer (TNBC) cells than ER+PR+ cells. In silico evaluation predicted binding with breast cancer-specific molecular targets, specifically the three components showed good binding energy toward VEGF receptors and good drug likeliness properties, as well as less toxicity. Discussion This is the first report on anti-breast cancer activities, particularly targeting TNBC cells by red yeast carotenoids (β-carotene, torulene, and torularhodin) produced via a sustainable environment-friendly bioprocess utilizing waste hydrolysate.
Collapse
Affiliation(s)
- Sweta Sinha
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Souvik Das
- Department of Neuroendocrinology and Experimental Hematology, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Biswajit Saha
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Debarati Paul
- Amity Institute of Biotechnology, Amity University, Noida, India,*Correspondence: Debarati Paul,
| | - Biswarup Basu
- Department of Neuroendocrinology and Experimental Hematology, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India,Biswarup Basu, ,
| |
Collapse
|
6
|
Arunachalam K, Sreeja PS, Yang X. The Antioxidant Properties of Mushroom Polysaccharides can Potentially Mitigate Oxidative Stress, Beta-Cell Dysfunction and Insulin Resistance. Front Pharmacol 2022; 13:874474. [PMID: 35600869 PMCID: PMC9117613 DOI: 10.3389/fphar.2022.874474] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
Diabetes mellitus is a prevalent metabolic and endocrine illness affecting people all over the world and is of serious health and financial concern. Antidiabetic medicine delivered through pharmacotherapy, including synthetic antidiabetic drugs, are known to have several negative effects. Fortunately, several natural polysaccharides have antidiabetic properties, and the use of these polysaccharides as adjuncts to conventional therapy is becoming more common, particularly in underdeveloped nations. Oxidative stress has a critical role in the development of diabetes mellitus (DM). The review of current literature presented here focusses, therefore, on the antioxidant properties of mushroom polysaccharides used in the management of diabetic complications, and discusses whether these antioxidant properties contribute to the deactivation of the oxidative stress-related signalling pathways, and to the amelioration of β-cell dysfunction and insulin resistance. In this study, we conducted a systematic review of the relevant information concerning the antioxidant and antidiabetic effects of mushrooms from electronic databases, such as PubMed, Scopus or Google Scholar, for the period 1994 to 2021. In total, 104 different polysaccharides from mushrooms have been found to have antidiabetic effects. Most of the literature on mushroom polysaccharides has demonstrated the beneficial effects of these polysaccharides on reactive oxygen and nitrogen species (RONS) levels. This review discuss the effects of these polysaccharides on hyperglycemia and other alternative antioxidant therapies for diabetic complications through their applications and limits, in order to gain a better understanding of how they can be used to treat DM. Preclinical and phytochemical investigations have found that most of the active polysaccharides extracted from mushrooms have antioxidant activity, reducing oxidative stress and preventing the development of DM. Further research is necessary to confirm whether mushroom polysaccharides can effectively alleviate hyperglycemia, and the mechanisms by which they do this, and to investigate whether these polysaccharides might be utilized as a complementary therapy for the prevention and management of DM in the future.
Collapse
Affiliation(s)
- Karuppusamy Arunachalam
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, Myanmar
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, Myanmar
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Wu CL, Xu LL, Peng J, Zhang DH. Al-MPS Obstructs EMT in Breast Cancer by Inhibiting Lipid Metabolism via miR-215-5p/SREBP1. Endocrinology 2022; 163:6562775. [PMID: 35366327 DOI: 10.1210/endocr/bqac040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/19/2022]
Abstract
Alkali-extractable mycelial polysaccharide (Al-MPS) is a natural macromolecular polymer that has shown anti-hyperlipidemic and antitumor abilities. This study investigates the mechanism by which Al-MPS inhibits lipid metabolism and epithelial-mesenchymal transition (EMT) in breast cancer (BC). BC cells (MCF-7 and MDA-MB-231) were transfected and/or treated with Al-MPS. CCK-8, Transwell, and scratch assays were used to evaluate the tumorigenic behaviors of BC cells. The expression levels of SREBP1, E-cadherin, N-cadherin, Snail, vimentin, FASN, ACLY, and ACECS1 in BC cells were detected by Western blotting. Dual-luciferase reporter and RNA pull-down assays were performed to verify the binding between miR-215-5p and SREBP1 mRNA. Nude mice were injected with MDA-MB-231 cells and treated with Al-MPS. The changes in tumor volume and protein expression were monitored. miR-215-5p was downregulated and SREBP1 was upregulated in BC. Al-MPS increased miR-215-5p expression and inhibited SREBP1 expression, lipid metabolism, and EMT in BC. Inhibition of miR-215-5p or overexpression of SREBP1 promoted the tumorigenic behaviors of BC cells by stimulating lipid metabolism and counteracted the antitumor effect of Al-MPS. SREBP1 was a downstream target of miR-215-5p. In conclusion, Al-MPS inhibits lipid metabolism and EMT in BC via the miR-215-5p/SREBP1 axis. This study supports the application of polysaccharides in cancer treatment and the molecules regulated by Al-MPS may be used as biomarkers or therapeutic targets for BC.
Collapse
Affiliation(s)
- Chenlu L Wu
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Lili L Xu
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jing Peng
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Danhua H Zhang
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
8
|
Shankar A, Sharma KK. Fungal secondary metabolites in food and pharmaceuticals in the era of multi-omics. Appl Microbiol Biotechnol 2022; 106:3465-3488. [PMID: 35546367 PMCID: PMC9095418 DOI: 10.1007/s00253-022-11945-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 01/16/2023]
Abstract
Fungi produce several bioactive metabolites, pigments, dyes, antioxidants, polysaccharides, and industrial enzymes. Fungal products are also the primary sources of functional food and nutrition, and their pharmacological products are used for healthy aging. Their molecular properties are validated through the use of recent high-throughput genomic, transcriptomic, and metabolomic tools and techniques. Together, these updated multi-omic tools have been used to study fungal metabolites structure and their mode of action on biological and cellular processes. Diverse groups of fungi produce different proteins and secondary metabolites, which possess tremendous biotechnological and pharmaceutical applications. Furthermore, its use and acceptability can be accelerated by adopting multi-omics, bioinformatics, and machine learning tools that generate a huge amount of molecular data. The integration of artificial intelligence and machine learning tools in the era of omics and big data has opened up a new outlook in both basic and applied researches in the area of nutraceuticals and functional food and nutrition. KEY POINTS: • Multi-omic tool helps in the identification of novel fungal metabolites • Intra-omic data from genomics to bioinformatics • Novel metabolites and application in human health.
Collapse
Affiliation(s)
- Akshay Shankar
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
9
|
Dalonso N, Petkowicz CLO, Lugones LG, Silveira MLL, Gern RMM. Comparison of cell wall polysaccharides in Schizophyllum commune after changing phenotype by mutation. AN ACAD BRAS CIENC 2021; 93:e20210047. [PMID: 34730621 DOI: 10.1590/0001-3765202120210047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022] Open
Abstract
The Agaricomycetes fungi produce various compounds with pharmaceutical, medicinal, cosmetic, environmental and biotechnological properties. In addition, some polysaccharides extracted from the fungal cell wall have antitumor and immunomodulatory actions. The aim of this study was to use genetic modification to transform Schizophyllum commune and identify if the phenotype observed (different from the wild type) resulted in changes of the cell wall polysaccharides. The plasmid pUCHYG-GPDGLS, which contains the Pleurotus ostreatus glucan synthase gene, was used in S. commune transformations. Polysaccharides from cell wall of wild (ScW) and mutants were compared in this study. Polysaccharides from the biomass and culture broth were extracted with hot water. One of the mutants (ScT4) was selected for further studies and, after hydrolysis/acetylation, the GLC analysis showed galactose as the major component in polysaccharide fraction from the mutant and glucose as the major monomer in the wild type. Differences were also found in the elution profiles from HPSEC and NMR analyses. From the monosaccharide composition it was proposed that mannogalactans are components of S. commune cell wall for both, wild and mutant, but in different proportions. To our knowledge, this is the first time that mannogalactans are isolated from S. commune liquid culture.
Collapse
Affiliation(s)
- Nicole Dalonso
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville/UNIVILLE, Rua Paulo Malschitzki, 10, Zona Industrial Norte, 89201-972 Joinville, SC, Brazil
| | - Carmen L O Petkowicz
- Universidade Federal do Paraná, Departamento de Bioquímica e Biologia Molecular, Centro Politécnico, Av. Coronel Francisco H. dos Santos, 100, Caixa Postal 19046, Jardim das Américas, 81531-980 Curitiba, PR, Brazil
| | - Luis G Lugones
- Utrecht University, Molecular Microbiology Department, Padualaan n° 8, Utrecht Science Park, 3584 CH, Utrecht, The Netherlands
| | - Marcia L L Silveira
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville/UNIVILLE, Rua Paulo Malschitzki, 10, Zona Industrial Norte, 89201-972 Joinville, SC, Brazil
| | - Regina M M Gern
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville/UNIVILLE, Rua Paulo Malschitzki, 10, Zona Industrial Norte, 89201-972 Joinville, SC, Brazil
| |
Collapse
|
10
|
Elhusseiny SM, El-Mahdy TS, Awad MF, Elleboudy NS, Farag MMS, Yassein MA, Aboshanab KM. Proteome Analysis and In Vitro Antiviral, Anticancer and Antioxidant Capacities of the Aqueous Extracts of Lentinula edodes and Pleurotus ostreatus Edible Mushrooms. Molecules 2021; 26:4623. [PMID: 34361776 PMCID: PMC8348442 DOI: 10.3390/molecules26154623] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
In this study, we examined aqueous extracts of the edible mushrooms Pleurotus ostreatus (oyster mushroom) and Lentinula edodes (shiitake mushroom). Proteome analysis was conducted using LC-Triple TOF-MS and showed the expression of 753 proteins by Pleurotus ostreatus, and 432 proteins by Lentinula edodes. Bioactive peptides: Rab GDP dissociation inhibitor, superoxide dismutase, thioredoxin reductase, serine proteinase and lectin, were identified in both mushrooms. The extracts also included promising bioactive compounds including phenolics, flavonoids, vitamins and amino acids. The extracts showed promising antiviral activities, with a selectivity index (SI) of 4.5 for Pleurotus ostreatus against adenovirus (Ad7), and a slight activity for Lentinula edodes against herpes simplex-II (HSV-2). The extracts were not cytotoxic to normal human peripheral blood mononuclear cells (PBMCs). On the contrary, they showed moderate cytotoxicity against various cancer cell lines. Additionally, antioxidant activity was assessed using DPPH radical scavenging, ABTS radical cation scavenging and ORAC assays. The two extracts showed potential antioxidant activities, with the maximum activity seen for Pleurotus ostreatus (IC50 µg/mL) = 39.46 ± 1.27 for DPPH; 11.22 ± 1.81 for ABTS; and 21.40 ± 2.20 for ORAC assays. This study encourages the use of these mushrooms in medicine in the light of their low cytotoxicity on normal PBMCs vis à vis their antiviral, antitumor and antioxidant capabilities.
Collapse
Affiliation(s)
- Shaza M. Elhusseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), 4th Industrial Area, 6th of October City, Cairo 2566, Egypt; (S.M.E.); (T.S.E.-M.)
| | - Taghrid S. El-Mahdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), 4th Industrial Area, 6th of October City, Cairo 2566, Egypt; (S.M.E.); (T.S.E.-M.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, Taif 11099, Saudi Arabia;
| | - Nooran S. Elleboudy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Cairo 11566, Egypt; (N.S.E.); (M.A.Y.)
| | - Mohamed M. S. Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt;
| | - Mahmoud A. Yassein
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Cairo 11566, Egypt; (N.S.E.); (M.A.Y.)
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Cairo 11566, Egypt; (N.S.E.); (M.A.Y.)
| |
Collapse
|
11
|
Niego AG, Rapior S, Thongklang N, Raspé O, Jaidee W, Lumyong S, Hyde KD. Macrofungi as a Nutraceutical Source: Promising Bioactive Compounds and Market Value. J Fungi (Basel) 2021; 7:397. [PMID: 34069721 PMCID: PMC8161071 DOI: 10.3390/jof7050397] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/16/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Macrofungi production and economic value have been increasing globally. The demand for macrofungi has expanded rapidly owing to their popularity among consumers, pleasant taste, and unique flavors. The presence of high quality proteins, polysaccharides, unsaturated fatty acids, minerals, triterpene sterols, and secondary metabolites makes macrofungi an important commodity. Macrofungi are well known for their ability to protect from or cure various health problems, such as immunodeficiency, cancer, inflammation, hypertension, hyperlipidemia, hypercholesterolemia, and obesity. Many studies have demonstrated their medicinal properties, supported by both in vivo and in vitro experimental studies, as well as clinical trials. Numerous bioactive compounds isolated from mushrooms, such as polysaccharides, proteins, fats, phenolic compounds, and vitamins, possess strong bioactivities. Consequently, they can be considered as an important source of nutraceuticals. Numerous edible mushrooms have been studied for their bioactivities, but only a few species have made it to the market. Many species remain to be explored. The converging trends and popularity of eastern herbal medicines, natural/organic food product preference, gut-healthy products, and positive outlook towards sports nutrition are supporting the growth in the medicinal mushroom market. The consumption of medicinal mushrooms as functional food or dietary supplement is expected to markedly increase in the future. The global medicinal mushroom market size is projected to increase by USD 13.88 billion from 2018 to 2022. The global market values of promising bioactive compounds, such as lentinan and lovastatin, are also expected to rise. With such a market growth, mushroom nutraceuticals hold to be very promising in the years to come.
Collapse
Affiliation(s)
- Allen Grace Niego
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Iloilo Science and Technology University, La Paz, Iloilo 5000, Philippines
| | - Sylvie Rapior
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, CEFE, CNRS, University Montpellier, EPHE, IRD, CS 14491, 15 Avenue Charles Flahault, CEDEX 5, 34093 Montpellier, France;
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Olivier Raspé
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Wuttichai Jaidee
- Medicinal Plants Innovation Center, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| |
Collapse
|
12
|
Sharma A, Sharma A, Tripathi A. Biological activities of Pleurotus spp. polysaccharides: A review. J Food Biochem 2021; 45:e13748. [PMID: 33998679 DOI: 10.1111/jfbc.13748] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 11/27/2022]
Abstract
Mushrooms are consumed for their nutrients and therapeutic bioactive compounds and are used medicinally in Chinese and Japanese medicine traditions since time immemorial. Members of the genus Pleurotus form a heterogeneous group of edible species with outstanding nutritional profiles rich in fiber, vitamins (thiamine, riboflavin, ascorbic acid, ergosterine, and niacin), micro and macro-elements (phosphorus and iron), and carbohydrates. Pleurotus is one of the most diversified medicinal and edible mushrooms related to the composition of chemical structures such as polysaccharides, glycoproteins, and secondary metabolites such as alkaloids and betalains. The cultivation of Pleurotus spp. on lignocellulosic wastes represents one of the most economically and cost-effective organic recycling processes, especially for the utilization of different feasible and cheap recyclable residues. Also, several Pleurotus spp. have the ability to remove phenolic compounds from wastewater with the action of phenoloxidase activity. Here, we have reviewed the chemistry of such polysaccharides and their reported biological activities, namely, anti-inflammatory, immunomodulatory, anti-diabetic, anti-tumor, antioxidant, etc. The mechanism of action and effects of novel polysaccharides extracted from various species of Pleurotus have been studied. The current study will be beneficial for guiding future research projects on the above concept and investigating more deeply the health of human beings. PRACTICAL APPLICATIONS: Mushrooms are one of the most delicious foods around the globe and have many medicinal properties for decades. Various Pleurotus species have been in focus in recent years because of their palatability and medicinal importance too. It contains many bioactive compounds among which polysaccharides are valued to a great extent. Many biological activities are exerted by polysaccharides derived from the Pleurotus spp., namely, anti-tumor, antioxidant, and many more. They are responsible for significant physiological responses in animals, animal-alternative in vitro models, and humans. Their important physicochemical characteristics benefit their use in the food industry as well. So, the biological activities of these Pleurotus spp. polysaccharides will provide an insight to develop Pleurotus spp. as functional foods, because of their nutritional value and presence of bioactive components.
Collapse
Affiliation(s)
- Aparajita Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Aditi Sharma
- Faculty of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Astha Tripathi
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| |
Collapse
|
13
|
Varghese R, Dalvi YB, Lamrood PY, Shinde BP, Nair CKK. Historical and current perspectives on therapeutic potential of higher basidiomycetes: an overview. 3 Biotech 2019; 9:362. [PMID: 31572645 PMCID: PMC6749005 DOI: 10.1007/s13205-019-1886-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022] Open
Abstract
Mushrooms are macroscopic fungi which can be either epigeous or hypogeous and is estimated to be 140,000 on earth, yet only 10% are known. Since ancient time, it played a diverse role in human history for mycolatry, mycophagy and as medicine in folklore and religion. Many Asian and western countries consider mushrooms as panacea for a large number of diseases and utilized for consumption as a gourmet food for its taste as well as flavor. In recent years, scientific research fraternities have confirmed that various extracts and metabolites of mushrooms used traditionally are able to treat a wide range of diseases due to their balanced modulation of multiple targets thereby providing a greater therapeutic effect or equivalent curative effect to that of modern medicine. Medicinal mushrooms especially those belonging to higher basidiomycete groups are reservoir of bioactive compounds with multiple therapeutic properties. The present review provides historical importance as well as an updated information on pharmacologically relevant higher basidiomycetes belong to the genus Agaricus, Auricularia, Phellinus, Ganoderma, Pleurotus, Trametes and Lentinus and their biologically active secondary metabolites. This will help the researchers to understand various type of secondary metabolites, their therapeutic role and related in vivo or in vitro work at a glance. The mounting evidences from several scientific community across the globe, regarding various therapeutic applications of mushroom extracts, unarguably make it an advance research area worth mass attention.
Collapse
Affiliation(s)
- Ruby Varghese
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Tiruvalla, Kerala 689101 India
- MACFAST, Tiruvalla, Kerala India
| | - Yogesh Bharat Dalvi
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Tiruvalla, Kerala 689101 India
| | - Prasad Y. Lamrood
- Department of Botany, Ahmednagar College (Affiliated to Savitribai Phule Pune University), Ahmednagar, Maharashtra India
| | - Bharat P. Shinde
- Vidya Pratishthan’s Arts Science Commerce College, Baramati, Maharashtra India
| | - C. K. K. Nair
- MACFAST, Tiruvalla, Kerala India
- St. Gregorios Dental College and Research Centre, Kothamangalam, Kerala India
| |
Collapse
|
14
|
Natural polysaccharides exhibit anti-tumor activity by targeting gut microbiota. Int J Biol Macromol 2019; 121:743-751. [DOI: 10.1016/j.ijbiomac.2018.10.083] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/29/2018] [Accepted: 10/14/2018] [Indexed: 12/30/2022]
|