1
|
Torrico MC, Ballart C, Fernández-Arévalo A, Solano M, Rojas E, Abras A, Gonzales F, Mamani Y, Arnau A, Lozano D, Gascón J, Picado A, Torrico F, Muñoz C, Gállego M. The need for culture in tegumentary leishmaniasis diagnosis in Bolivia: A comparative evaluation of four parasitological techniques using two sampling methods. Acta Trop 2024; 250:107092. [PMID: 38065375 DOI: 10.1016/j.actatropica.2023.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Leishmaniases are zoonotic diseases caused by protozoa of the genus Leishmania. In Bolivia, leishmaniasis occurs mainly in the cutaneous form (CL) followed by the mucosal or mucocutaneous form (ML or MCL), grouped as tegumentary leishmaniosis (TL), while cases of visceral leishmaniasis (VL) are rare. The cases of TL are routinely diagnosed by parasitological methods: Direct Parasitological Exam (DPE) and axenic culture, the latter being performed only by specialized laboratories. The aim of the present study was to optimize the parasitological diagnosis of TL in Bolivia, using two sampling methods. Samples from 117 patients with suspected TL, obtained by aspiration (n = 121) and scraping (n = 121) of the edge of the lesion were tested by: direct parasitological exam, culture in TSTB medium, and miniculture and microculture in Schneider's medium. A positive laboratory result by any of the four techniques evaluated using either of the two sampling methods was considered the gold standard. Of the 117 suspected patients included, TL was confirmed in 96 (82 %), corresponding 79 of the confirmed cases (82.3 %) to CL and 16 (16.7 %) to ML. Parasitological techniques specificity was 100 % and their analytical sensitivity was greater with scraping samples in TSTB culture (98 %). Scraping samples in TSTB and miniculture correlated well with the reference (Cohen's kappa coefficient=0.88) and showed good reliability (Cronbach's alpha coefficient ≥0.91). Microculture provided positive results earlier than the other culture methods (mean day 4.5). By day 14, 98 % of positive cultures had been detected. Scraping sampling and miniculture were associated with higher culture contamination (6 % and 17 %, respectively). Bacterial contamination predominated, regardless of the sampling and culture method, while filamentous fungi and mixed contamination were more frequently observed in cultures from scraping samples. In conclusion: (i) scraping samples proved more suitable for the diagnosis of TL as they increased analytical sensitivity, are less traumatic for the patient and are safer for laboratory personnel than aspirates; (ii) culture, mainly in TSBT medium, should be used for the diagnosis of TL due to its high sensitivity (doubling the number of cases diagnosed by DPE) and its low cost compared to other culture media.
Collapse
Affiliation(s)
- Mary Cruz Torrico
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia; Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Fundación CEADES y Medio Ambiente, Cochabamba, Bolivia.
| | - Cristina Ballart
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain
| | - Anna Fernández-Arévalo
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Marco Solano
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Ernesto Rojas
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Alba Abras
- Departament de Biologia, Universitat de Girona, Girona, Spain
| | - Fabiola Gonzales
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Yercin Mamani
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia; Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Albert Arnau
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Departament de Biologia, Universitat de Girona, Girona, Spain
| | - Daniel Lozano
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia; Fundación CEADES y Medio Ambiente, Cochabamba, Bolivia
| | - Joaquim Gascón
- Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain; CIBERINFEC, ISCIII- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Spain
| | - Albert Picado
- Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain
| | - Faustino Torrico
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia; Fundación CEADES y Medio Ambiente, Cochabamba, Bolivia
| | - Carmen Muñoz
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau Barcelona, Barcelona, Spain; Institut de Recerca Biomèdica Sant Pau, Barcelona, Spain; Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Montserrat Gállego
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain; CIBERINFEC, ISCIII- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
2
|
de Lederkremer RM, Giorgi ME, Marino C. The α-Galactosyl Carbohydrate Epitope in Pathogenic Protozoa. ACS Infect Dis 2022; 8:2207-2222. [PMID: 36083842 DOI: 10.1021/acsinfecdis.2c00370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The α-gal epitope, which refers to the carbohydrate α-d-Galp-(1 → 3)-β-d-Galp-(1 → 4)-d-GlcNAc-R, was first described in the glycoconjugates of mammals other than humans. Evolution caused a mutation that resulted in the inactivation of the α-1,3-galactosyltransferase gene. For that reason, humans produce antibodies against α-d-Galp containing glycoproteins and glycolipids of other species. We summarize here the glycoconjugates with α-d-Galp structures in Trypanosoma, Leishmania, and Plasmodium pathogenic protozoa. These were identified in infective stages of Trypanosoma cruzi and in Plasmodium sporozoites. In Leishmania, α-d-Galp is linked differently in the glycans of glycoinositolphospholipids (GIPLs). Chemically synthesized neoglycoconjugates have been proposed as diagnostic tools and as antigens for vaccines. Several syntheses reported for the α-gal trisaccharide, also called the Galili epitope, and the glycans of GIPLs found in Leishmania, the preparation of neoglycoconjugates, and the studies in which they were involved are also included in this Review.
Collapse
Affiliation(s)
- Rosa M de Lederkremer
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428Buenos Aires, Argentina
| | - María Eugenia Giorgi
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428Buenos Aires, Argentina
| | - Carla Marino
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428Buenos Aires, Argentina
| |
Collapse
|
3
|
Suescún-Carrero SH, Tadger P, Sandoval Cuellar C, Armadans-Gil L, Ramírez López LX. Rapid diagnostic tests and ELISA for diagnosing chronic Chagas disease: Systematic revision and meta-analysis. PLoS Negl Trop Dis 2022; 16:e0010860. [PMID: 36256676 PMCID: PMC9616215 DOI: 10.1371/journal.pntd.0010860] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/28/2022] [Accepted: 10/03/2022] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE To determine the diagnostic validity of the enzyme-linked immunosorbent assay (ELISA) and Rapid Diagnostic Tests (RDT) among individuals with suspected chronic Chagas Disease (CD). METHODOLOGY A search was made for studies with ELISA and RDT assays validity estimates as eligibility criteria, published between 2010 and 2020 on PubMed, Web of Science, Scopus, and LILACS. This way, we extracted the data and assessed the risk of bias and applicability of the studies using the QUADAS-2 tool. The bivariate random effects model was also used to estimate the overall sensitivity and specificity through forest-plots, ROC space, and we visually assessed the heterogeneity between studies. Meta-regressions were made using subgroup analysis. We used Deeks' test to assess the risk of publication bias. RESULTS 43 studies were included; 27 assessed ELISA tests; 14 assessed RDTs; and 2 assessed ELISA and RDTs, against different reference standards. 51.2 % of them used a non-comparative observational design, and 46.5 % a comparative clinical design ("case-control" type). High risk of bias was detected for patient screening and reference standard. The ELISA tests had a sensitivity of 99% (95% CI: 98-99) and a specificity of 98% (95% CI: 97-99); whereas the Rapid Diagnostic Tests (RDT) had values of 95% (95% CI: 94-97) and 97% (95% CI: 96-98), respectively. Deeks' test showed asymmetry on the ELISA assays. CONCLUSIONS ELISA and RDT tests have high validity for diagnosing chronic Chagas disease. The analysis of these two types of evidence in this systematic review and meta-analysis constitutes an input for their use. The limitations included the difficulty in extracting data due to the lack of information in the articles, and the comparative clinical-type design of some studies.
Collapse
Affiliation(s)
| | - Philippe Tadger
- Universidad de Boyacá, Tunja, Colombia
- Real World Solutions, IQVIA, Zaventem, Belgium
| | | | - Lluis Armadans-Gil
- Epidemiology and Preventive Medicine Service, Hospital Universitari Vall d’Hebron—Universitat Autónoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
4
|
Montoya AL, Carvajal EG, Ortega-Rodriguez U, Estevao IL, Ashmus RA, Jankuru SR, Portillo S, Ellis CC, Knight CD, Alonso-Padilla J, Izquierdo L, Pinazo MJ, Gascon J, Suarez V, Watts DM, Malo IR, Ramsey JM, Alarcón De Noya B, Noya O, Almeida IC, Michael K. A Branched and Double Alpha-Gal-Bearing Synthetic Neoglycoprotein as a Biomarker for Chagas Disease. Molecules 2022; 27:5714. [PMID: 36080480 PMCID: PMC9457857 DOI: 10.3390/molecules27175714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Chagas disease (CD) is caused by the parasite Trypanosoma cruzi and affects 6-7 million people worldwide. The diagnosis is still challenging, due to extensive parasite diversity encompassing seven genotypes (TcI-VI and Tcbat) with diverse ecoepidemiological, biological, and pathological traits. Chemotherapeutic intervention is usually effective but associated with severe adverse events. The development of safer, more effective therapies is hampered by the lack of biomarker(s) (BMKs) for the early assessment of therapeutic outcomes. The mammal-dwelling trypomastigote parasite stage expresses glycosylphosphatidylinositol-anchored mucins (tGPI-MUC), whose O-glycans are mostly branched with terminal, nonreducing α-galactopyranosyl (α-Gal) glycotopes. These are absent in humans, and thus highly immunogenic and inducers of specific CD anti-α-Gal antibodies. In search for α-Gal-based BMKs, here we describe the synthesis of neoglycoprotein NGP11b, comprised of a carrier protein decorated with the branched trisaccharide Galα(1,2)[Galα(1,6)]Galβ. By chemiluminescent immunoassay using sera/plasma from chronic CD (CCD) patients from Venezuela and Mexico and healthy controls, NGP11b exhibited sensitivity and specificity similar to that of tGPI-MUC from genotype TcI, predominant in those countries. Preliminary evaluation of CCD patients subjected to chemotherapy showed a significant reduction in anti-α-Gal antibody reactivity to NGP11b. Our data indicated that NGP11b is a potential BMK for diagnosis and treatment assessment in CCD patients.
Collapse
Affiliation(s)
- Alba L. Montoya
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Elisa G. Carvajal
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Uriel Ortega-Rodriguez
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Igor L. Estevao
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Roger A. Ashmus
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sohan R. Jankuru
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Susana Portillo
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Cameron C. Ellis
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Colin D. Knight
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), 28029 Madrid, Spain
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), 28029 Madrid, Spain
| | - Maria-Jesus Pinazo
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), 28029 Madrid, Spain
- Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), 28029 Madrid, Spain
- Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Veronica Suarez
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Douglas M. Watts
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Iliana R. Malo
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula 30700, Chiapas, Mexico
| | - Janine M. Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula 30700, Chiapas, Mexico
| | - Belkisyolé Alarcón De Noya
- Sección de Inmunología, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas 1041, Venezuela
| | - Oscar Noya
- Seccion de Biohelmintiasis, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas 1041, Venezuela
| | - Igor C. Almeida
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Katja Michael
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
5
|
Schijman AG, Alonso-Padilla J, Longhi SA, Picado A. Parasitological, serological and molecular diagnosis of acute and chronic Chagas disease: from field to laboratory. Mem Inst Oswaldo Cruz 2022; 117:e200444. [PMID: 35613155 PMCID: PMC9164950 DOI: 10.1590/0074-02760200444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/13/2021] [Indexed: 01/05/2023] Open
Abstract
There is no consensus on the diagnostic algorithms for many scenarios of Trypanosoma cruzi infection, which hinders the establishment of governmental guidelines in endemic and non-endemic countries. In the acute phase, parasitological methods are currently employed, and standardised surrogate molecular tests are being introduced to provide higher sensitivity and less operator-dependence. In the chronic phase, IgG-based serological assays are currently used, but if a single assay does not reach the required accuracy, PAHO/WHO recommends at least two immunological tests with different technical principles. Specific algorithms are applied to diagnose congenital infection, screen blood and organ donors or conduct epidemiological surveys. Detecting Chagas disease reactivation in immunosuppressed individuals is an area of increasing interest. Due to its neglect, enhancing access to diagnosis of patients at risk of suffering T. cruzi infection should be a priority at national and regional levels.
Collapse
Affiliation(s)
- Alejandro Gabriel Schijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr Hector Torres, CONICET, Laboratorio de Biología Molecular de la Enfermedad de Chagas, Ciudad de Buenos Aires, Argentina
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health, University of Barcelona, Hospital Clinic, Barcelona, Spain
| | - Silvia Andrea Longhi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr Hector Torres, CONICET, Laboratorio de Biología Molecular de la Enfermedad de Chagas, Ciudad de Buenos Aires, Argentina
| | - Albert Picado
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| |
Collapse
|
6
|
Alonso-Vega C, Urbina JA, Sanz S, Pinazo MJ, Pinto JJ, Gonzalez VR, Rojas G, Ortiz L, Garcia W, Lozano D, Soy D, Maldonado RA, Nagarkatti R, Debrabant A, Schijman A, Thomas MC, López MC, Michael K, Ribeiro I, Gascon J, Torrico F, Almeida IC. New chemotherapy regimens and biomarkers for Chagas disease: the rationale and design of the TESEO study, an open-label, randomised, prospective, phase-2 clinical trial in the Plurinational State of Bolivia. BMJ Open 2021; 11:e052897. [PMID: 34972765 PMCID: PMC8720984 DOI: 10.1136/bmjopen-2021-052897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Chagas disease (CD) affects ~7 million people worldwide. Benznidazole (BZN) and nifurtimox (NFX) are the only approved drugs for CD chemotherapy. Although both drugs are highly effective in acute and paediatric infections, their efficacy in adults with chronic CD (CCD) is lower and variable. Moreover, the high incidence of adverse events (AEs) with both drugs has hampered their widespread use. Trials in CCD adults showed that quantitative PCR (qPCR) assays remain negative for 12 months after standard-of-care (SoC) BZN treatment in ~80% patients. BZN pharmacokinetic data and the nonsynchronous nature of the proliferative mammal-dwelling parasite stage suggested that a lower BZN/NFX dosing frequency, combined with standard or extended treatment duration, might have the same or better efficacy than either drug SoC, with fewer AEs. METHODS AND ANALYSIS New ThErapies and Biomarkers for ChagaS infEctiOn (TESEO) is an open-label, randomised, prospective, phase-2 clinical trial, with six treatment arms (75 patients/arm, 450 patients). Primary objectives are to compare the safety and efficacy of two new proposed chemotherapy regimens of BZN and NFX in adults with CCD with the current SoC for BZN and NFX, evaluated by qPCR and biomarkers for 36 months posttreatment and correlated with CD conventional serology. Recruitment of patients was initiated on 18 December 2019 and on 20 May 2021, 450 patients (study goal) were randomised among the six treatment arms. The treatment phase was finalised on 18 August 2021. Secondary objectives include evaluation of population pharmacokinetics of both drugs in all treatment arms, the incidence of AEs, and parasite genotyping. ETHICS AND DISSEMINATION The TESEO study was approved by the National Institutes of Health (NIH), U.S. Food and Drug Administration (FDA), federal regulatory agency of the Plurinational State of Bolivia and the Ethics Committees of the participating institutions. The results will be disseminated via publications in peer-reviewed journals, conferences and reports to the NIH, FDA and participating institutions. TRIAL REGISTRATION NUMBER NCT03981523.
Collapse
Affiliation(s)
| | - Julio A Urbina
- Center for Biochemistry and Biophysics, Venezuelan Institute for Scientific Research (IVIC), Caracas, Distrito Capital, Venezuela, Bolivarian Republic of
| | - Sergi Sanz
- Biostatistics and Data Management Unit, Barcelona Institute for Global Health, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Basic Clinical Practice, Universitat de Barcelona, Barcelona, Spain
| | - María-Jesús Pinazo
- Barcelona Institute for Global Health (ISGLOBAL), Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Jimy José Pinto
- Fundación Ciencia y Estudios Aplicados para el Desarrollo en Salud y Medio Ambiente (CEADES), Cochabamba, Bolivia, Plurinational State of
| | - Virginia R Gonzalez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Gimena Rojas
- Fundación Ciencia y Estudios Aplicados para el Desarrollo en Salud y Medio Ambiente (CEADES), Cochabamba, Bolivia, Plurinational State of
| | - Lourdes Ortiz
- Fundación Ciencia y Estudios Aplicados para el Desarrollo en Salud y Medio Ambiente (CEADES), Tarija, Bolivia, Plurinational State of
- Universidad Autónoma Juan Misael Saracho, Tarija, Bolivia, Plurinational State of
| | - Wilson Garcia
- Centro Plataforma Chagas Sucre, Fundación Ciencia y Estudios Aplicados para el Desarrollo en Salud y Medio Ambiente (CEADES), Sucre, Bolivia, Plurinational State of
- Programa Departamental de Chagas Chuquisaca, Servicio Departamental de Salud de Chuquisaca, Chuquisaca, Bolivia, Plurinational State of
| | - Daniel Lozano
- Fundación Ciencia y Estudios Aplicados para el Desarrollo en Salud y Medio Ambiente (CEADES), Cochabamba, Bolivia, Plurinational State of
| | - Dolors Soy
- Pharmacy Service, Division of Medicines, Hospital Clinic de Barcelona, Barcelona, Spain
- Institut de Investigació Biomèdica Agustí Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Rosa A Maldonado
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Rana Nagarkatti
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Alain Debrabant
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Alejandro Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - M Carmen Thomas
- Consejo Superior de Investigaciones Científicas, Instituto de Parasitología y Biomedicina López-Neyra, Granada, Spain
| | - Manuel Carlos López
- Consejo Superior de Investigaciones Científicas, Instituto de Parasitología y Biomedicina López-Neyra, Granada, Spain
| | - Katja Michael
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas, USA
| | - Isabela Ribeiro
- Dynamic Portfolio Unit, Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGLOBAL), Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Faustino Torrico
- Fundación Ciencia y Estudios Aplicados para el Desarrollo en Salud y Medio Ambiente (CEADES), Cochabamba, Bolivia, Plurinational State of
| | - Igor C Almeida
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
7
|
Fonseca THS, Faria AR, Leite HM, da Silveira JAG, Carneiro CM, Andrade HM. Chemiluminescent ELISA with multi-epitope proteins to improve the diagnosis of canine visceral leishmaniasis. Vet J 2019; 253:105387. [PMID: 31685139 DOI: 10.1016/j.tvjl.2019.105387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 11/30/2022]
Abstract
Diagnosing canine visceral leishmaniasis (CVL) is difficult because clinical signs of the disease are non-specific and a many infected animals in endemic areas, as in Brazil, are asymptomatic. Serological tests are the most common diagnostic methods employed, but most have limitations. For this reason, the implementation of a rapid, sensitive, and specific diagnostic test for CVL has become increasingly important. In this study, we adapted a chemiluminescent enzyme-linked immunosorbent assay (CL ELISA), using two multi-epitope recombinant proteins (PQ10 and PQ20) and a crude Leishmania antigen produced using promastigotes of L. infantum, as antigens to detect CVL infection in animals from Belo Horizonte. To investigate cross-reactions, samples from dogs with other infections (babesiosis, ehrlichiosis and Trypanosoma cruzi) were tested. Assay performance validations were conducted to analyse parameters such as variability, reproducibility, and stability. CL ELISA sensitivity/specificity with PQ10 antigen was 93.1%/80.0%; with the PQ20 protein 93.1%/96.6%; and with the crude antigen 75%/73.3%. Inter-assay variability and inter-operator coefficient of variation were <7% and <15%, with PQ10 and PQ20, respectively. The accuracy of the CL ELISA was classified as excellent for PQ10 (AUC = 0.95) and PQ20 (AUC = 0.98) and moderate for the crude antigen (AUC = 0.77). The kappa score for qualitative agreement between two plate lots was excellent for PQ10 (0.89) and good for PQ20 (0.65). PQ20 remained more stable than PQ10. The CL ELISA with recombinant proteins is a promising tool to diagnose CVL.
Collapse
Affiliation(s)
- T H S Fonseca
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - A R Faria
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - H M Leite
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - J A G da Silveira
- Laboratório de Protozoologia Veterinária, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - C M Carneiro
- Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - H M Andrade
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Ortega-Rodriguez U, Portillo S, Ashmus RA, Duran JA, Schocker NS, Iniguez E, Montoya AL, Zepeda BG, Olivas JJ, Karimi NH, Alonso-Padilla J, Izquierdo L, Pinazo MJ, de Noya BA, Noya O, Maldonado RA, Torrico F, Gascon J, Michael K, Almeida IC. Purification of Glycosylphosphatidylinositol-Anchored Mucins from Trypanosoma cruzi Trypomastigotes and Synthesis of α-Gal-Containing Neoglycoproteins: Application as Biomarkers for Reliable Diagnosis and Early Assessment of Chemotherapeutic Outcomes of Chagas Disease. Methods Mol Biol 2019; 1955:287-308. [PMID: 30868536 PMCID: PMC6589430 DOI: 10.1007/978-1-4939-9148-8_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chagas disease (ChD), caused by the protozoan parasite Trypanosoma cruzi, affects millions of people worldwide. Chemotherapy is restricted to two drugs, which are partially effective and may cause severe side effects, leading to cessation of treatment in a significant number of patients. Currently, there are no biomarkers to assess therapeutic efficacy of these drugs in the chronic stage. Moreover, no preventive or therapeutic vaccines are available. In this chapter, we describe the purification of Trypanosoma cruzi trypomastigote-derived glycosylphosphatidylinositol (GPI)-anchored mucins (tGPI-mucins) for their use as antigens for the reliable primary or confirmatory diagnosis and as prognostic biomarkers for early assessment of cure following ChD chemotherapy. We also describe, as an example, the synthesis of a potential tGPI-mucin-derived α-Gal-terminating glycan and its coupling to a carrier protein for use as diagnostic and prognostic biomarker in ChD.
Collapse
Affiliation(s)
| | - Susana Portillo
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Roger A Ashmus
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, USA
| | - Jerry A Duran
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Nathaniel S Schocker
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, USA
| | - Eva Iniguez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Alba L Montoya
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, USA
| | - Brenda G Zepeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Janet J Olivas
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Nasim H Karimi
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Luis Izquierdo
- Barcelona Centre for International Health Research (ISGlobal), Barcelona, Spain
| | - Maria-Jesús Pinazo
- Barcelona Centre for International Health Research (ISGlobal), Barcelona, Spain
| | - Belkisyolé Alarcón de Noya
- Facultad de Medicina, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Oscar Noya
- Facultad de Medicina, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Rosa A Maldonado
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Faustino Torrico
- Faculty of Medicine, Universidad Mayor de San Simón, Cochabamba, Bolivia
- Fundación CEADES, Cochabamba, Bolivia
| | - Joaquim Gascon
- Facultad de Medicina, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Katja Michael
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, USA
| | - Igor C Almeida
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
9
|
Evaluation of the Elecsys Chagas Assay for Detection of Trypanosoma cruzi-Specific Antibodies in a Multicenter Study in Europe and Latin America. J Clin Microbiol 2018; 56:JCM.01446-17. [PMID: 29444836 PMCID: PMC5925710 DOI: 10.1128/jcm.01446-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/08/2018] [Indexed: 01/15/2023] Open
Abstract
Serology is the preferred method to confirm a Chagas disease diagnosis and to screen blood donors. A battery of assays is often required due to the limited accuracy of single assays. The Elecsys Chagas assay is a newly developed, double-antigen sandwich assay for use on the Elecsys and cobas e immunoassay analyzers, intended to identify individuals infected with Trypanosoma cruzi, for diagnosis and screening. The performance of the Elecsys Chagas assay was evaluated in comparison with those of other widely used T. cruzi antibody assays, at multiple sites (Europe/Latin America). Relative sensitivity and specificity were assessed by using samples from blood donors, pregnant women, and hospitalized patients from regions where Chagas disease is endemic and from regions of nonendemicity. The Elecsys Chagas assay had an overall relative sensitivity of 100% (n = 674). Overall relative specificities were 99.90% (n = 14,681), 100% (n = 313), and 100% (n = 517) for samples from blood donors, pregnant women, and hospitalized patients, respectively. The analytical specificity was 99.83% (n = 594). The Elecsys Chagas assay detected T. cruzi antibodies in two World Health Organization (WHO) standard T. cruzi reference panels (panels 09/188 and 09/186) at a 1:512 dilution, corresponding to a cutoff sensitivity of approximately 1 mIU/ml. The Elecsys Chagas assay demonstrated robust performance under routine conditions at multiple sites in Europe and Latin America. In contrast to other available Chagas assays, the Elecsys assay uses a reduced number of recombinant T. cruzi antigens, resulting in a significantly smaller number of cross-reactions and improved analytical specificity while being highly sensitive.
Collapse
|
10
|
Torrico F, Gascon J, Ortiz L, Alonso-Vega C, Pinazo MJ, Schijman A, Almeida IC, Alves F, Strub-Wourgaft N, Ribeiro I, Santina G, Blum B, Correia E, Garcia-Bournisen F, Vaillant M, Morales JR, Pinto Rocha JJ, Rojas Delgadillo G, Magne Anzoleaga HR, Mendoza N, Quechover RC, Caballero MYE, Lozano Beltran DF, Zalabar AM, Rojas Panozo L, Palacios Lopez A, Torrico Terceros D, Fernandez Galvez VA, Cardozo L, Cuellar G, Vasco Arenas RN, Gonzales I, Hoyos Delfin CF, Garcia L, Parrado R, de la Barra A, Montano N, Villarroel S, Duffy T, Bisio M, Ramirez JC, Duncanson F, Everson M, Daniels A, Asada M, Cox E, Wesche D, Diderichsen PM, Marques AF, Izquierdo L, Sender SS, Reverter JC, Morales M, Jimenez W. Treatment of adult chronic indeterminate Chagas disease with benznidazole and three E1224 dosing regimens: a proof-of-concept, randomised, placebo-controlled trial. THE LANCET. INFECTIOUS DISEASES 2018; 18:419-430. [DOI: 10.1016/s1473-3099(17)30538-8] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/31/2017] [Accepted: 08/22/2017] [Indexed: 11/29/2022]
|
11
|
Brito CRN, McKay CS, Azevedo MA, Santos LCB, Venuto AP, Nunes DF, D'Ávila DA, Rodrigues da Cunha GM, Almeida IC, Gazzinelli RT, Galvão LMC, Chiari E, Sanhueza CA, Finn MG, Marques AF. Virus-like Particle Display of the α-Gal Epitope for the Diagnostic Assessment of Chagas Disease. ACS Infect Dis 2016; 2:917-922. [PMID: 27696820 DOI: 10.1021/acsinfecdis.6b00114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The α-Gal antigen [Galα(1,3)Galβ(1,4)GlcNAcα] is an immunodominant epitope displayed by infective trypomastigote forms of Trypanosoma cruzi, the causative agent of Chagas disease. A virus-like particle displaying a high density of α-Gal was found to be a superior reagent for the ELISA-based serological diagnosis of Chagas disease and the assessment of treatment effectiveness. A panel of sera from patients chronically infected with T. cruzi, both untreated and benznidazole-treated, was compared with sera from patients with leishmaniasis and from healthy donors. The nanoparticle-α-Gal construct allowed for perfect discrimination between Chagas patients and the others, avoiding false negative and false positive results obtained with current state-of-the-art reagents. As previously reported with purified α-Gal-containing glycosylphosphatidylinositol-anchored mucins, the current study also showed concentrations of anti-α-Gal IgG to decrease substantially in patients receiving treatment with benznidazole, suggesting that the semiquantitative assessment of serum levels of this highly abundant type of antibody can report on disease status in individual patients.
Collapse
Affiliation(s)
- Carlos Ramon Nascimento Brito
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Craig S McKay
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Maíra Araújo Azevedo
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Luíza Costa Brandão Santos
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Venuto
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Ferreira Nunes
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Daniella Alchaar D'Ávila
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Gisele Macedo Rodrigues da Cunha
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Igor Correia Almeida
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso , El Paso, Texas 79912, United States
| | - Ricardo Tostes Gazzinelli
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Lucia Maria Cunha Galvão
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Egler Chiari
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos A Sanhueza
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Alexandre Ferreira Marques
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
12
|
Enhancing glycan isomer separations with metal ions and positive and negative polarity ion mobility spectrometry-mass spectrometry analyses. Anal Bioanal Chem 2016; 409:467-476. [PMID: 27604268 DOI: 10.1007/s00216-016-9866-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/27/2016] [Accepted: 08/06/2016] [Indexed: 02/01/2023]
Abstract
Glycomics has become an increasingly important field of research since glycans play critical roles in biology processes ranging from molecular recognition and signaling to cellular communication. Glycans often conjugate with other biomolecules, such as proteins and lipids, and alter their properties and functions, so glycan characterization is essential for understanding the effects they have on cellular systems. However, the analysis of glycans is extremely difficult due to their complexity and structural diversity (i.e., the number and identity of monomer units, and configuration of their glycosidic linkages and connectivities). In this work, we coupled ion mobility spectrometry with mass spectrometry (IMS-MS) to characterize glycan standards and biologically important isomers of synthetic αGal-containing O-glycans including glycotopes of the protozoan parasite Trypanosoma cruzi, which is the causative agent of Chagas disease. IMS-MS results showed significant differences for the glycan structural isomers when analyzed in positive and negative polarity and complexed with different metal cations. These results suggest that specific metal ions or ion polarities could be used to target and baseline separate glycan isomers of interest with IMS-MS. Graphical abstract Glycan isomers, such as fructose and glucose, show distinct separations in positive and negative ion mode.
Collapse
|
13
|
Abras A, Gállego M, Llovet T, Tebar S, Herrero M, Berenguer P, Ballart C, Martí C, Muñoz C. Serological Diagnosis of Chronic Chagas Disease: Is It Time for a Change? J Clin Microbiol 2016; 54:1566-1572. [PMID: 27053668 PMCID: PMC4879299 DOI: 10.1128/jcm.00142-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/18/2016] [Indexed: 01/18/2023] Open
Abstract
Chagas disease has spread to areas that are nonendemic for the disease with human migration. Since no single reference standard test is available, serological diagnosis of chronic Chagas disease requires at least two tests. New-generation techniques have significantly improved the accuracy of Chagas disease diagnosis by the use of a large mixture of recombinant antigens with different detection systems, such as chemiluminescence. The aim of the present study was to assess the overall accuracy of a new-generation kit, the Architect Chagas (cutoff, ≥1 sample relative light units/cutoff value [S/CO]), as a single technique for the diagnosis of chronic Chagas disease. The Architect Chagas showed a sensitivity of 100% (95% confidence interval [CI], 99.5 to 100%) and a specificity of 97.6% (95% CI, 95.2 to 99.9%). Five out of six false-positive serum samples were a consequence of cross-reactivity with Leishmania spp., and all of them achieved results of <5 S/CO. We propose the Architect Chagas as a single technique for screening in blood banks and for routine diagnosis in clinical laboratories. Only gray-zone and positive sera with a result of ≤6 S/CO would need to be confirmed by a second serological assay, thus avoiding false-positive sera and the problem of cross-reactivity with Leishmania species. The application of this proposal would result in important savings in the cost of Chagas disease diagnosis and therefore in the management and control of the disease.
Collapse
Affiliation(s)
- Alba Abras
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Barcelona, Spain
| | - Montserrat Gállego
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Barcelona, Spain
| | - Teresa Llovet
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Silvia Tebar
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Barcelona, Spain
| | - Mercedes Herrero
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Pere Berenguer
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Cristina Ballart
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Barcelona, Spain
| | - Carmen Martí
- Unitat de Microbiologia, Hospital General de Granollers, Granollers, Spain
| | - Carmen Muñoz
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
14
|
Pinazo MJ, Posada EDJ, Izquierdo L, Tassies D, Marques AF, de Lazzari E, Aldasoro E, Muñoz J, Abras A, Tebar S, Gallego M, de Almeida IC, Reverter JC, Gascon J. Altered Hypercoagulability Factors in Patients with Chronic Chagas Disease: Potential Biomarkers of Therapeutic Response. PLoS Negl Trop Dis 2016; 10:e0004269. [PMID: 26727000 PMCID: PMC4700971 DOI: 10.1371/journal.pntd.0004269] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/06/2015] [Indexed: 11/19/2022] Open
Abstract
Thromboembolic events were described in patients with Chagas disease without cardiomyopathy. We aim to confirm if there is a hypercoagulable state in these patients and to determine if there is an early normalization of hemostasis factors after antiparasitic treatment. Ninety-nine individuals from Chagas disease-endemic areas were classified in two groups: G1, with T.cruzi infection (n = 56); G2, healthy individuals (n = 43). Twenty-four hemostasis factors were measured at baseline. G1 patients treated with benznidazole were followed for 36 months, recording clinical parameters and performance of conventional serology, chemiluminescent enzyme-linked immunosorbent assay (trypomastigote-derived glycosylphosphatidylinositol-anchored mucins), quantitative polymerase chain reaction, and hemostasis tests every 6-month visits. Prothrombin fragment 1+2 (F1+2) and endogenous thrombin potential (ETP) were abnormally expressed in 77% and 50% of infected patients at baseline but returned to and remained at normal levels shortly after treatment in 76% and 96% of cases, respectively. Plasmin-antiplasmin complexes (PAP) were altered before treatment in 32% of G1 patients but normalized in 94% of cases several months after treatment. None of the patients with normal F1+2 values during follow-up had a positive qRT-PCR result, but 3/24 patients (13%) with normal ETP values did. In a percentage of chronic T. cruzi infected patients treated with benznidazole, altered coagulation markers returned into normal levels. F1+2, ETP and PAP could be useful markers for assessing sustained response to benznidazole.
Collapse
Affiliation(s)
- Maria-Jesus Pinazo
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic- Universitat de Barcelona, Barcelona, Spain
| | - Elizabeth de Jesus Posada
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic- Universitat de Barcelona, Barcelona, Spain
| | - Luis Izquierdo
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic- Universitat de Barcelona, Barcelona, Spain
| | - Dolors Tassies
- Hemotherapy and Hemostasis Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Alexandre-Ferreira Marques
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
- Universidade Federal de Minas Gerais, Departamento de Parasitologia, Belo Horizonte, Minas Gerais, Brazil
| | - Elisa de Lazzari
- Health Biostatistics, ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic- Universitat de Barcelona, Barcelona, Spain
| | - Edelweiss Aldasoro
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic- Universitat de Barcelona, Barcelona, Spain
| | - Jose Muñoz
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic- Universitat de Barcelona, Barcelona, Spain
| | - Alba Abras
- Laboratori de Parasitologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Silvia Tebar
- Laboratori de Parasitologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Gallego
- Laboratori de Parasitologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Igor Correia de Almeida
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Joan-Carles Reverter
- Hemotherapy and Hemostasis Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Joaquim Gascon
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic- Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Schocker NS, Portillo S, Brito CRN, Marques AF, Almeida IC, Michael K. Synthesis of Galα(1,3)Galβ(1,4)GlcNAcα-, Galβ(1,4)GlcNAcα- and GlcNAc-containing neoglycoproteins and their immunological evaluation in the context of Chagas disease. Glycobiology 2015; 26:39-50. [PMID: 26384953 DOI: 10.1093/glycob/cwv081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/09/2015] [Indexed: 01/07/2023] Open
Abstract
The protozoan parasite, Trypanosoma cruzi, the etiologic agent of Chagas disease (ChD), has a cell surface covered by immunogenic glycoconjugates. One of the immunodominant glycotopes, the trisaccharide Galα(1,3)Galβ(1,4)GlcNAcα, is expressed on glycosylphosphatidylinositol-anchored mucins of the infective trypomastigote stage of T. cruzi and triggers high levels of protective anti-α-Gal antibodies (Abs) in infected individuals. Here, we have efficiently synthesized the mercaptopropyl glycoside of that glycotope and conjugated it to maleimide-derivatized bovine serum albumin (BSA). Chemiluminescent-enzyme-linked immunosorbent assay revealed that Galα(1,3)Galβ(1,4)GlcNAcα-BSA is recognized by purified anti-α-Gal Abs from chronic ChD patients ∼230-fold more strongly than by anti-α-Gal Abs from sera of healthy individuals (NHS anti-α-Gal). Similarly, the pooled sera of chronic Chagas disease patients (ChHSP) recognized Galα(1,3)Galβ(1,4)GlcNAcα ∼20-fold more strongly than pooled NHS. In contrast, the underlying disaccharide Galβ(1,4)GlcNAcα and the monosaccharide GlcNAcα or GlcNAcβ conjugated to BSA are poorly or not recognized by purified anti-α-Gal Abs or sera from Chagasic patients or healthy individuals. Our results highlight the importance of the terminal Galα moiety for recognition by Ch anti-α-Gal Abs and the lack of Abs against nonself Galβ(1,4)GlcNAcα and GlcNAcα glycotopes. The substantial difference in binding of Ch vs. NHS anti-α-Gal Abs to Galα(1,3)Galβ(1,4)GlcNAcα-BSA suggests that this neoglycoprotein (NGP) might be suitable for experimental vaccination. To this end, the Galα(1,3)Galβ(1,4)GlcNAcα-BSA NGP was then used to immunize α1,3-galactosyltransferase-knockout mice, which produced antibody titers 40-fold higher as compared with pre-immunization titers. Taken together, our results indicate that the synthetic Galα(1,3)Galβ(1,4)GlcNAcα glycotope coupled to a carrier protein could be a potential diagnostic and vaccine candidate for ChD.
Collapse
Affiliation(s)
| | - Susana Portillo
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, USA
| | - Carlos R N Brito
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, USA Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Alexandre F Marques
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Igor C Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, USA
| | | |
Collapse
|
16
|
Detection of high levels of anti-α-galactosyl antibodies in sera of patients with Old World cutaneous leishmaniasis: a possible tool for diagnosis and biomarker for cure in an elimination setting. Parasitology 2014; 141:1898-903. [PMID: 25297927 DOI: 10.1017/s0031182014001607] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the Kingdom of Saudi Arabia (KSA), Old World cutaneous leishmaniasis (CL) is mainly caused by Leishmania major and Leishmania tropica parasites. Diagnosis of CL is predominately made by clinicians, who at times fail to detect the disease and are unable to identify parasite species. Here, we report the development of a chemiluminescent enzyme-linked immunosorbent assay (CL-ELISA) to measure the levels of anti-α-galactosyl antibodies in human sera. Using this assay, we have found that individuals infected with either Leishmania spp. had significantly elevated levels (up to 9-fold higher) of anti-α-Gal IgG compared to healthy control individuals. The assay sensitivity was 96% for L. major (95% CI; 94-98%) and 91% for L. tropica (95% CI; 86-98%) infections and therefore equivalent to restriction fragment length polymorphism-polymerase chain reaction analysis of parasite ITS1 gene. In addition, the assay had higher sensitivity than microscopy analysis, which only detected 68 and 45% of the L. major and L. tropica infections, respectively. Interestingly, up to 2 years following confirmed CL cure individuals had 28-fold higher levels of anti-α-Gal IgG compared to healthy volunteers. Monitoring levels of anti-α-Gal antibodies can be exploited as both a diagnostic tool and as a biomarker of cure of Old World CL in disease elimination settings.
Collapse
|
17
|
Bhattacharyya T, Falconar AK, Luquetti AO, Costales JA, Grijalva MJ, Lewis MD, Messenger LA, Tran TT, Ramirez JD, Guhl F, Carrasco HJ, Diosque P, Garcia L, Litvinov SV, Miles MA. Development of peptide-based lineage-specific serology for chronic Chagas disease: geographical and clinical distribution of epitope recognition. PLoS Negl Trop Dis 2014; 8:e2892. [PMID: 24852444 PMCID: PMC4031129 DOI: 10.1371/journal.pntd.0002892] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/09/2014] [Indexed: 11/18/2022] Open
Abstract
Background Chagas disease, caused by infection with the protozoan Trypanosoma cruzi, remains a serious public health issue in Latin America. Genetically diverse, the species is sub-divided into six lineages, known as TcI–TcVI, which have disparate geographical and ecological distributions. TcII, TcV, and TcVI are associated with severe human disease in the Southern Cone countries, whereas TcI is associated with cardiomyopathy north of the Amazon. T. cruzi persists as a chronic infection, with cardiac and/or gastrointestinal symptoms developing years or decades after initial infection. Identifying an individual's history of T. cruzi lineage infection directly by genotyping of the parasite is complicated by the low parasitaemia and sequestration in the host tissues. Methodology/Principal Findings We have applied here serology against lineage-specific epitopes of the T. cruzi surface antigen TSSA, as an indirect approach to allow identification of infecting lineage. Chagasic sera from chronic patients from a range of endemic countries were tested by ELISA against synthetic peptides representing lineage-specific TSSA epitopes bound to avidin-coated ELISA plates via a biotin labelled polyethylene glycol-glycine spacer to increase rotation and ensure each amino acid side chain could freely interact with their antibodies. 79/113 (70%) of samples from Brazil, Bolivia, and Argentina recognised the TSSA epitope common to lineages TcII/TcV/TcVI. Comparison with clinical information showed that a higher proportion of Brazilian TSSApep-II/V/VI responders had ECG abnormalities than non-responders (38% vs 17%; p<0.0001). Among northern chagasic sera 4/20 (20%) from Ecuador reacted with this peptide; 1/12 Venezuelan and 1/34 Colombian samples reacted with TSSApep-IV. In addition, a proposed TcI-specific epitope, described elsewhere, was demonstrated here to be highly conserved across lineages and therefore not applicable to lineage-specific serology. Conclusions/Significance These results demonstrate the considerable potential for synthetic peptide serology to investigate the infection history of individuals, geographical and clinical associations of T. cruzi lineages. Chagas disease remains a significant public health issue in Latin America. Caused by the single-celled parasite Trypanosoma cruzi, the main route of infection is via contact with contaminated faeces from blood-sucking triatomine bugs, but following successful insecticide spraying campaigns, congenital, food-borne, and transfusion/transplantation routes of infection have become more relevant. In the absence of successful chemotherapy, T. cruzi usually persists in the body for life, and in symptomatic cases may lead to death or debilitation by heart failure and/or gastrointestinal megasyndromes. As a species, T. cruzi displays great genetic diversity, and is subdivided into lineages called TcI - TcVI. Associating T. cruzi lineage with clinical symptoms is a key goal of Chagas disease research. Direct isolation and typing of T. cruzi from chronically infected patients is hampered by the sequestration of the parasite in host tissues. Identifying lineage-specific antibodies in serum provides an alternative approach to determining an individual's history of infection. Here, we performed lineage-specific serology using samples from a range of South American countries. We show that lineage-specific seropositivity is associated with geographical distributions and clinical outcome. These findings have wide implications for further diagnostics development and improved understanding of the epidemiology of Chagas disease.
Collapse
Affiliation(s)
- Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| | | | - Alejandro O. Luquetti
- Laboratorio de Chagas, Hospital das Clinicas, Universidade Federal de Goiás, Goiânia, Goias, Brazil
| | - Jaime A. Costales
- Centro de Investigación en Enfermedades Infecciosas, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Mario J. Grijalva
- Centro de Investigación en Enfermedades Infecciosas, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Tropical Disease Institute, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America
| | - Michael D. Lewis
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Louisa A. Messenger
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Trang T. Tran
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Juan-David Ramirez
- Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Felipe Guhl
- Centro de Investigaciones en Microbiología y Parasitología Tropical, Universidad de los Andes, Bogotá, Colombia
| | - Hernan J. Carrasco
- Universidad Central de Venezuela Instituto de Medicina Tropical, Caracas, Venezuela
| | - Patricio Diosque
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Salta, Argentina
| | - Lineth Garcia
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | | | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|