1
|
Miedzianowska-Masłowska J, Masłowski M, Strzelec K. Biomass, Phyto-Ash, and Biochar from Beech Wood as Functional Additives for Natural Rubber-Based Elastomer Composites. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1659. [PMID: 40271907 PMCID: PMC11990562 DOI: 10.3390/ma18071659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/05/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
The growing interest in renewable resource-based materials has driven efforts to develop elastomeric biocomposites using biomass, phyto-ash, and biochar as fillers. These bio-additives, derived from beech wood through various processing methods, were incorporated into natural rubber (NR) at varying weight ratios. The primary objective of this study was to assess how the type and content of each bio-filler influence the structural, processing, and performance properties of the biocomposites. Mechanical properties, including tensile strength and hardness, were evaluated, while crosslink density of the vulcanizates was determined using equilibrium swelling in solvents. Additionally, the composites underwent thermogravimetric analysis (TGA) to determine the decomposition temperature of individual components within the polymer matrix. Bio-fillers influenced rheological and mechanical properties, with phyto-ash reducing viscosity and cross-linking density, and biochar and biomass increasing stiffness and maximum torque. Biochar extended curing time due to the absorption of curing agents, whereas phyto-ash accelerated vulcanization. Mechanical tests showed that all bio-filled composites were stiffer than the reference, with biochar and biomass (30 phr) exhibiting the highest hardness (45.8 °ShA and 49.1 °ShA, respectively) and cross-link density (2.68 × 10-5 mol/cm3 and 2.77 × 10-5 mol/cm3, respectively), contributing to improved tensile strength, in particular in the case of biochar, where the TS was 17.6 MPa. The study also examined the effects of thermal-oxidative aging on the samples, providing insights into the changes in the mechanical properties of the biocomposites under simulated aging conditions.
Collapse
Affiliation(s)
| | - Marcin Masłowski
- Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | | |
Collapse
|
2
|
Lazaro-Hdez C, Valerga AP, Gomez-Carturla J, Sanchez-Nacher L, Boronat T, Ivorra-Martinez J. Optimization of the ductile properties of poly(lactic acid) (PLA) using green citrate-based plasticizers and itaconic anhydride grafted PLA (PLA-g-IA). Int J Biol Macromol 2025; 307:142034. [PMID: 40090659 DOI: 10.1016/j.ijbiomac.2025.142034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Certain miscellaneous beans have a low glycemic index (GI) and may reduce the risk of chronic metabolic disorders, including type 2 diabetes and obesity, by modulating postprandial glucose homeostasis and blood lipid levels. In this study, red kidney bean flour and wheat gluten were used as raw materials, and long-chain inulin phosphate monoester (PFXL) was added to improve the quality of red kidney bean dough, prepare high-quality steamed bread, and explore its health effect on type 2 diabetes. The results showed that the addition of PFXL improved the water distribution and rheological properties of coarse grain dough and enriched the flavor of coarse grain steamed bread. In addition, the optimized steamed bread exhibited a low glycemic index (eGI = 51.76), which could reduce fasting blood glucose and glycated serum protein by 21.55 % and 26.11 %, respectively, and could significantly improve oral glucose tolerance and blood lipid levels in diabetic mice and had a certain protective effect on liver injury. Overall, these findings provide a scientific basis for the development of functional foods.
Collapse
Affiliation(s)
- Carlos Lazaro-Hdez
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Alicante, Spain
| | - Ana P Valerga
- Department of Mechanical Engineering and Industrial Design, School of Engineering, University of Cadiz, Av. Universidad de Cádiz, 10, E-11519 Puerto Real, Cadiz, Spain
| | - Jaume Gomez-Carturla
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Alicante, Spain
| | - Lourdes Sanchez-Nacher
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Alicante, Spain
| | - Teodomiro Boronat
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Alicante, Spain
| | - Juan Ivorra-Martinez
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Alicante, Spain.
| |
Collapse
|
3
|
Zumaya ALV, Iemtsev A, Fulem M, Hassouna F. Rational design of PLA-based ASDs for pharmaceutical 3D printing: Insights from phase diagram modeling. Eur J Pharm Biopharm 2025; 208:114657. [PMID: 39921011 DOI: 10.1016/j.ejpb.2025.114657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
The integration of 3D printing into the pharmaceutical sciences opens new possibilities for personalized medicine. Poly(lactide) (PLA), a biodegradable and biocompatible polymer, is highly suitable for biomedical applications, particularly in the context of 3D printing. However, its processability often requires the addition of plasticizers. This study investigates the use of phase diagram modeling as a tool to guide the rational selection of plasticizers and to assess their impact on the thermodynamic and kinetic stability of PLA-based amorphous solid dispersions (ASDs) containing active pharmaceutical ingredients (APIs). Thermodynamic stability against API recrystallization was predicted based on the API solubility in PLA and Plasticizer-PLA carriers using the Conductor-like Screening Model for Real Solvents (COSMO-RS), while the kinetic stability of the ASDs was evaluated by modeling the glass transition temperatures of the mixtures. Two APIs, indomethacin (IND) and naproxen (NAP), with differing glass-forming abilities (i.e., recrystallization tendencies), and three plasticizers, triacetin (TA), triethyl citrate (TEC), and poly(L-lactide-co-caprolactone) (PLCL), were selected for investigation. The physical stability of ASD formulations containing 9 wt% API and plasticizer to PLA in two ratios, 10:81 and 20:71 w/w %, was monitored over time using differential scanning calorimetry and X-ray powder diffraction and compared with phase diagram predictions. All formulations were predicted to be thermodynamically unstable; however, those containing no plasticizer or with TEC and TA at 10 wt% were predicted to exhibit some degree of kinetic stability. Long-term physical studies corroborated these predictions. The correlation between the predicted phase behavior and long-term physical stability highlights the potential of phase diagram modeling as a tool for the rational design of ASDs in pharmaceutical 3D printing.
Collapse
Affiliation(s)
- Alma Lucia Villela Zumaya
- Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Anton Iemtsev
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Michal Fulem
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Fatima Hassouna
- Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
4
|
Nejatpour M, Fallah A, Koc B. Shape Memory PLA/TPU Blend Using High-Speed Thermo-Kinetic Mixing. ACS OMEGA 2025; 10:193-206. [PMID: 39829531 PMCID: PMC11740114 DOI: 10.1021/acsomega.4c04338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 01/22/2025]
Abstract
In this study, a thorough examination of the chemical, thermal, and mechanical characteristics, as well as shape memory behavior at low temperatures, of blends consisting of polylactic acid (PLA) and polyurethane (TPU) is conducted. The research involves the preparation of PLA/TPU mixtures with varying concentrations of TPU using a high-speed thermo-kinetic mixing approach. Chemical, morphological, and thermal analyses were conducted on pure PLA, TPU, and PLA/TPU mixtures by using Fourier Transform Infrared (FTIR), X-ray diffraction pattern spectroscopy (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). Mechanical properties were assessed through tensile and three-point bending tests. The achievement of a uniform mixture is confirmed through SEM images, reduction in the glass transition temperature according to DSC and DMA, and an improvement in mechanical properties compared to results documented in the literature, implying a more effective mixing method for the compounds. To assess the practical applicability of this blend, an investigation into the shape memory properties of the mixture when deformed at low temperatures, i.e., cold programming) is carried out. Gray relational analysis (GRA) is employed to identify the optimal TPU content for the mixture, considering both mechanical and shape memory properties. The results indicate that a mixture with a 20% volume fraction of TPU exhibits mechanical properties comparable to those of pure PLA, along with sufficient flexibility at room temperature and notable shape recovery properties.
Collapse
Affiliation(s)
- Mona Nejatpour
- Integrated
Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
| | - Ali Fallah
- Integrated
Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
| | - Bahattin Koc
- Integrated
Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
| |
Collapse
|
5
|
Mena-Prado I, Navas-Ortiz E, Fernández-García M, Blázquez-Blázquez E, Limbo S, Rollini M, Martins DM, Bonilla AM, Del Campo A. Enhancing functional properties of compostable materials with biobased plasticizers for potential food packaging applications. Int J Biol Macromol 2024; 280:135538. [PMID: 39306182 DOI: 10.1016/j.ijbiomac.2024.135538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
The demand of non-toxic and biobased plasticizers is substantially growing, particularly in biodegradable thermoplastics-based packaging applications. Herein, a derivative of citric acid (CITREM-LR10), usually used as food additive, was evaluated for the first time as plasticizer in PLA and Ecovio® biopolymers. Films containing 10 %(w/w) of CITREM-LR10 were prepared and compared with films plasticized with another biobased compound, SOFT-NSAFE, derived from acetic acid. The incorporation of both plasticizers provokes a slight reduction of the glass transition, however, only CITREM-LR10 was able to augment the elongation at break value of PLA films. A further evaluation of the films by Raman confocal microscopy showed the segregation of the CITREM-LR10 in microdomains, which could explain the enhanced elongation at break value, behaving as stress concentrators. In addition, CITREM-LR10 provides antimicrobial activity against S. aureus and both plasticizers give antioxidant properties, and almost negligible diffusion in food simulated solution. Composting studies showed that the plasticizers do not have effect on the disintegration rate of the films. In spite of these outstanding properties, the water vapour and oxygen barrier properties of the films worsen with its incorporation, therefore, the inclusion of fillers in the material together with the plasticizers would be necessary to improve such properties for food packaging applications.
Collapse
Affiliation(s)
- Ignacio Mena-Prado
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Elena Navas-Ortiz
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Enrique Blázquez-Blázquez
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Sara Limbo
- DeFENS, Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Manuela Rollini
- DeFENS, Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Daniele Maria Martins
- DeFENS, Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Alexandra Muñoz Bonilla
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Adolfo Del Campo
- Institute of Cerámica y Vidrio, ICV-CSIC, C/Kelsen 5, 28049, Campus de Cantoblanco, Madrid, Spain.
| |
Collapse
|
6
|
Mazidi MM, Arezoumand S, Zare L. Research progress in fully biorenewable tough blends of polylactide and green plasticizers. Int J Biol Macromol 2024; 279:135345. [PMID: 39244110 DOI: 10.1016/j.ijbiomac.2024.135345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Plasticized PLA plastic films are being increasingly used in, among others, packaging and agriculture sectors in an attempt to address the rapid growth of municipal waste. The present paper aims to review the recent progress and the state-of-the-art in the field of fully bio-renewable tough blends of PLA with green plasticizers aimed at developing flexible packaging films. The different classes of green substances, derived from completely bio-renewable resources, used as potential plasticizers for PLA resins are reviewed. The effectiveness of these additives for PLA plasticization is discussed by describing their effects on different properties of PLA. The performance of these blends is primarily determined by the solvent power, compatibility, efficiency, and permanence of plasticizer present in the PLA matrix of resulting films. The various chemical modification strategies employed to tailor the phase interactions, dispersion level and morphology, plasticization efficiency, and permanence, including functionalization, oligomerization, polymerization and self-crosslinking, grafting and copolymerization, and dynamic vulcanization are demonstrated. Sometimes a third component has also been added to the plasticized binary blends as compatibilizer to further promote dispersion and interfacial adhesion. The impact of chemical structure, size and molecular weight, chemical functionalities, polarity, concentration, topology as well as molecular architectures of the plasticizers on the plasticizer performance and the overall characteristics of resulting plasticized PLA materials is discussed. The morphological features and toughening mechanisms for PLA/plasticizer blends are also presented. The different green liquids employed show varying degree of plasticization. Some are more useful for semi-rigid applications, while some others can be used for very flexible products. There is an optimum level of plasticizer in PLA matrices above which the tensile ductility deteriorates. Esters-derivatives of bio-based plasticizers have been shown to be very promising additives for PLA modification. Some plasticizers impart additional functions such as antioxidation and antibacterial activity to the resulting PLA materials, or compatibilization in PLA-based blends. While the primary objective of plasticization is to boost the processability, flexibility, and toughness over wider practical conditions, the bio-degradability, permeability and long-term stability of microstructure (and thereby properties) of the plasticized films against light, weathering, thermal aging, and oxidation deserve further investigations.
Collapse
Affiliation(s)
- Majid Mehrabi Mazidi
- Faculty of Polymer Engineering, Sahand University of Technology, Sahand New Town, Tabriz 51335-1996, Iran.
| | - Sahar Arezoumand
- Department of Polymer Engineering, University of Tehran, Kish International Campus, Kish Island, Iran
| | - Leila Zare
- Faculty of Polymer and Chemistry Sciences, Islamic Azad University, Fasa 7461195531, Iran
| |
Collapse
|
7
|
Sun S, Weng Y, Han Y, Zhang C. Plasticization mechanism of biobased plasticizers comprising polyethylene glycol diglycidyl ether-butyl citrate with both long and short chains on poly(lactic acid). Int J Biol Macromol 2024; 276:133948. [PMID: 39025184 DOI: 10.1016/j.ijbiomac.2024.133948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/23/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Polylactic acid (PLA), a biodegradable polymer with low flexibility, is commonly plasticized with small molecules like tributyl citrate (TBC) for film production. However, these plasticizers, which lack chemical bonds or strong intermolecular interactions with the matrix, tend to migrate to the film surface over time. Their inclusion often compromises material strength for flexibility, increasing elongation at break but reducing tensile strength. In this research, by combining citric acid with n-butanol (B) and poly(ethylene glycol) diglycidyl ether (E), we synthesized three plasticizers, namely TE3, TE2B1, and TE1B2, to enhance the flexibility of PLA. TE2B1 and TE1B2 are equipped with butyl ester groups that offer effective plasticizing effects. Additionally, the incorporation of long-chain alkyl featuring epoxy groups can boost the interaction with PLA. The results showed that the epoxy groups of the long-chain alkyl plasticizers can improve the elongation at break without compromising tensile strength significantly. The migration of plasticizer from PLA matrix can be reduced by strong interactions like chemical bonds, entanglements, and hydrogen bonding with PLA. TE1B2 demonstrated the best plasticizing effect. Adding 15 portions of TE1B2 and TBC separately increased PLA's elongation at break to 304 % and 242 %, with tensile strengths of 36.1 MPa and 22.3 MPa, respectively.
Collapse
Affiliation(s)
- Shiyan Sun
- Department of Materials Science and Engineering, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Yunxuan Weng
- Department of Materials Science and Engineering, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Yu Han
- Department of Materials Science and Engineering, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Caili Zhang
- Department of Materials Science and Engineering, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
8
|
Osial M, Wilczewski S, Godlewska U, Skórczewska K, Hilus J, Szulc J, Roszkiewicz A, Dąbrowska A, Moazzami Goudarzi Z, Lewandowski K, Wypych TP, Nguyen PT, Sumara G, Giersig M. Incorporation of Nanostructural Hydroxyapatite and Curcumin Extract from Curcuma longa L. Rhizome into Polylactide to Obtain Green Composite. Polymers (Basel) 2024; 16:2169. [PMID: 39125199 PMCID: PMC11315054 DOI: 10.3390/polym16152169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
This study showed that a polylactide (PLA)-based composite filled with nanostructured hydroxyapatite (HAp) and a natural extract from the rhizome of Curcuma longa L. could provide an alternative to commonly used fossil-based plasticsfor food packaging. The incorporation of HAp into the PLA matrix had a positive effect on improving selected properties of the composites; the beneficial effect could be enhanced by introducing a green modifier in the form of an extract. Prior to the fabrication of the composite, the filler was characterized in terms of morphology and composition, and the composite was then fully characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman and Fourier transform infrared spectroscopy (FT-IR), and the mechanical, thermal, thermomechanical, and optical properties were investigated. The proposed material exhibits antioxidant properties against DPPH radicals and antibacterial performance against Escherichia coli (E. coli). The results showed that the nanocomposite has the highest antioxidant and antibacterial properties for 10 wt% HAp with an average diameter of rod-shaped structures below 100 nm. In addition, the introduction of turmeric extract had a positive effect on the tensile strength of the nanocomposites containing 1 and 5% HAp. As the resulting material adsorbs light in a specific wavelength range, it can be used in the medical sector, food-packaging, or coatings.
Collapse
Affiliation(s)
- Magdalena Osial
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Str., 02-106 Warsaw, Poland; (A.R.); (Z.M.G.); (M.G.)
| | - Sławomir Wilczewski
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3 Str., 85-326 Bydgoszcz, Poland; (K.S.); (J.S.); (K.L.)
| | - Urszula Godlewska
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3 Str., 02-093 Warsaw, Poland; (U.G.); (T.P.W.)
- Collegium Medicum, Jan Długosz University in Czestochowa, 13/15 Armii Krajowej Str., 42-200 Czestochowa, Poland
| | - Katarzyna Skórczewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3 Str., 85-326 Bydgoszcz, Poland; (K.S.); (J.S.); (K.L.)
| | - Jakub Hilus
- Faculty of Medicine, Jagiellonian University Medical College, St Anne 12 Str., 31-008 Cracow, Poland;
| | - Joanna Szulc
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3 Str., 85-326 Bydgoszcz, Poland; (K.S.); (J.S.); (K.L.)
| | - Agata Roszkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Str., 02-106 Warsaw, Poland; (A.R.); (Z.M.G.); (M.G.)
| | - Agnieszka Dąbrowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., 02-093 Warsaw, Poland;
| | - Zahra Moazzami Goudarzi
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Str., 02-106 Warsaw, Poland; (A.R.); (Z.M.G.); (M.G.)
| | - Krzysztof Lewandowski
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3 Str., 85-326 Bydgoszcz, Poland; (K.S.); (J.S.); (K.L.)
| | - Tomasz P. Wypych
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3 Str., 02-093 Warsaw, Poland; (U.G.); (T.P.W.)
| | - Phuong Thu Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam;
| | - Grzegorz Sumara
- Dioscuri Centre for Metabolic Diseases, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland;
| | - Michael Giersig
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Str., 02-106 Warsaw, Poland; (A.R.); (Z.M.G.); (M.G.)
| |
Collapse
|
9
|
Hasanoglu Z, Sivri N, Alanalp MB, Durmus A. Preparation of polylactic acid (PLA) films plasticized with a renewable and natural Liquidambar Orientalis oil. Int J Biol Macromol 2024; 257:128631. [PMID: 38065447 DOI: 10.1016/j.ijbiomac.2023.128631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 12/03/2023] [Indexed: 01/26/2024]
Abstract
Polylactic acid (PLA) is a brittle biodegradable thermoplastic due to its relatively high glass transition temperature (Tg ∼ 60 °C). This Tg limits the using of PLA in flexible applications, for example packaging films. In this study, it has been shown for the first time that the Liquidambar Orientalis (LO) oil as a nontoxic, environmentally friendly, and green additive can be successfully used as a natural, renewable, and sustainable plasticizer to produce flexible PLA parts and improve its thermal and physical properties and application potential. Natural oil obtained from Liquidambar Orientalis tree was introduced into PLA (as 10, 20, and 30 phr) by melt compounding (MC) and solution mixing (SM) methods. Effect of LO oil amount on the glass transition temperature, melt and cold crystallization behaviors, and degree of crystallinity values of samples were determined with differential scanning calorimetry (DSC). In addition, solid state viscoelastic properties of PLA films were also characterized with dynamic mechanical analysis (DMA) tests. Results showed that LO oil significantly reduced the Tg and storage modulus (E') value of PLA and LO oil showed an excellent plasticizing effect for PLA due to reducing strong hydrogen bonds and secondary interactions between PLA chains.
Collapse
Affiliation(s)
- Zehra Hasanoglu
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemical Engineering, Avcılar, Istanbul 34320, Turkey
| | - Nurcan Sivri
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemical Engineering, Avcılar, Istanbul 34320, Turkey
| | - Mine Begum Alanalp
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemical Engineering, Avcılar, Istanbul 34320, Turkey
| | - Ali Durmus
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemical Engineering, Avcılar, Istanbul 34320, Turkey.
| |
Collapse
|
10
|
Seo HJ, Seo YH, Park SU, Lee HJ, Lee MR, Park JH, Cho WY, Lee PC, Lee BY. Glycerol-derived organic carbonates: environmentally friendly plasticizers for PLA. RSC Adv 2024; 14:4702-4716. [PMID: 38318613 PMCID: PMC10840682 DOI: 10.1039/d3ra08922c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
Polylactic acid (PLA) stands as a promising material, sourced from renewables and exhibiting biodegradability-albeit under stringent industrial composting settings. A primary challenge impeding PLA's broad applications is its inherent brittleness, as it fractures with minimal elongation despite its commendable tensile strength. A well-established remedy involves blending PLA with plasticizers. In this study, a range of organic carbonates-namely, 4-ethoxycarbonyloximethyl-[1,3]dioxolan-2-one (1), 4-methoxycarbonyloximethyl-[1,3]dioxolan-2-one (2), glycerol carbonate (3), and glycerol 1-acetate 2,3-carbonate (4)-were synthesized on a preparative scale (∼100 g), using renewable glycerol and CO2-derived diethyl carbonate (DEC) or dimethyl carbonate (DMC). Significantly, 1-4 exhibited biodegradability under ambient conditions within a week, ascertained through soil exposure at 25 °C-outpacing the degradation of comparative cellulose. Further investigations revealed 1's efficacy as a PLA plasticizer. Compatibility with PLA, up to 30 phr (parts per hundred resin), was verified using an array of techniques, including DSC, DMA, SEM, and rotational rheometry. The resulting blends showcased enhanced ductility, evident from tensile property measurements. Notably, the novel plasticizer 1 displayed an advantage over conventional acetyltributylcitrate (ATBC) in terms of morphological stability. Slow crystallization, observed in PLA/ATBC blends over time at room temperature, was absent in PLA/1 blends, preserving amorphous domain dimensions and mitigating plasticizer migration-confirmed through DMA assessments of aged and unaged specimens. Nevertheless, biodegradation assessments of the blends revealed that the biodegradable organic carbonate plasticizers did not augment PLA's biodegradation. The PLA in the blends remained mostly unchanged under ambient soil conditions of 25 °C over a 6 month period. This work underscores the potential of organic carbonates as both eco-friendly plasticizers for PLA and as biodegradable compounds, contributing to the development of environmentally conscious polymer systems.
Collapse
Affiliation(s)
- Hyeon Jeong Seo
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Yeong Hyun Seo
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Sang Uk Park
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Hyun Ju Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Mi Ryu Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Jun Hyeong Park
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Woo Yeon Cho
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| |
Collapse
|
11
|
Zhu J, Sun H, Yang B, Weng Y. Modified Biomass-Reinforced Polylactic Acid Composites. MATERIALS (BASEL, SWITZERLAND) 2024; 17:336. [PMID: 38255504 PMCID: PMC10817700 DOI: 10.3390/ma17020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Polylactic acid (PLA), as a renewable and biodegradable green polymer material, is hailed as one of the most promising biopolymers capable of replacing petroleum-derived polymers for industrial applications. Nevertheless, its limited toughness, thermal stability, and barrier properties have restricted its extensive application. To address these drawbacks in PLA, research efforts have primarily focused on enhancing its properties through copolymerization, blending, and plasticization. Notably, the blending of modified biomass with PLA is expected not only to effectively improve its deficiencies but also to maintain its biodegradability, creating a fully green composite with substantial developmental prospects. This review provides a comprehensive overview of modified biomass-reinforced PLA, with an emphasis on the improvements in PLA's mechanical properties, thermal stability, and barrier properties achieved through modified cellulose, lignin, and starch. At the end of the article, a brief exploration of plasma modification of biomass is presented and provides a promising outlook for the application of reinforced PLA composite materials in the future. This review provides valuable insights regarding the path towards enhancing PLA.
Collapse
Affiliation(s)
- Junjie Zhu
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (B.Y.)
| | - Hui Sun
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (B.Y.)
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Biao Yang
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (B.Y.)
| | - Yunxuan Weng
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (B.Y.)
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
12
|
Jeon H, Son JH, Lee J, Park SB, Ju S, Oh DX, Koo JM, Park J. Preparation of a nanocellulose/nanochitin coating on a poly(lactic acid) film for improved hydrolysis resistance. Int J Biol Macromol 2024; 254:127790. [PMID: 37926305 DOI: 10.1016/j.ijbiomac.2023.127790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Growing concerns regarding plastic waste have prompted various attempts to replace plastic packaging films with biodegradable alternatives such as poly(lactic acid) (PLA). However, their low hydrolysis resistance owing to the presence of aliphatic polyesters limits the shelf life of biodegradable polymers. Hydrolysis leads to the deterioration of mechanical performance, which is a key disadvantage of biodegradable plastics. In this study, a layer-by-layer (LBL) assembly method was used for the dip-coating of biorenewable, biodegradable nanocellulose/nanochitin on the PLA surface. Additional crosslinking and compression of the coated nanofibers, each containing carboxylic acid and amine groups, respectively, were induced through electromagnetic microwave irradiation to protect the PLA film by improving hydrolysis resistance. The coatings were examined by morphological observations and water contact angle measurements. The LBL coatings of differently charged nanofibers of 10.6 μm were reduced to 40 % after microwave treatment, and the thickness does not vary after the hydrolysis experiment. Microwave irradiation increased the water contact angle owing to amide linkage formation, thereby preventing the peeling off of coating layers. Improved hydrolysis resistance inhibited the reduction in molecular weight and tensile strength. These findings could be used to develop sustainable and biodegradable plastic packaging films with a prolonged shelf life.
Collapse
Affiliation(s)
- Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Joo Hee Son
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Junhyeok Lee
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Sung Bae Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Sungbin Ju
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea.
| | - Jun Mo Koo
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Department of Organic Material Engineering, Chungnam National University, Daejeon 34134, Republic of Korea..
| | - Jeyoung Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea.
| |
Collapse
|
13
|
Ren Z, Zhou X, Ding K, Ji T, Sun H, Chi X, Wei Y, Xu M, Cai L, Xia C. Design of sustainable 3D printable polylactic acid composites with high lignin content. Int J Biol Macromol 2023; 253:127264. [PMID: 37804892 DOI: 10.1016/j.ijbiomac.2023.127264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
In this study, we report the development of a sustainable polymer system with 50 wt% lignin content, suitable for additive manufacturing and high value-added utilization of lignin. The plasticized polylactic acid (PLA) was incorporated with lignin to develop the bendable and malleable green composites with excellent 3D printing adaptability. The biocomposites exhibit increases of 765.54 % and 125.27 % in both elongation and toughness, respectively. The plasticizer enhances the dispersion of lignin and the molecular mobility of the PLA chains. The good dispersion of lignin particles within the structure and the reduction of chemical cross-linking promote the local relaxation of the polymer chains. The good local relaxation of the polymer chains and the high flexibility allow to obtain a better integration between the printed layers with good printability. This research demonstrates the promising potential of this composite system for sustainable manufacturing and provides insights into novel material design for high-value applications of lignin.
Collapse
Affiliation(s)
- Zechun Ren
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xinyuan Zhou
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Kejiao Ding
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Tong Ji
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Hao Sun
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xiang Chi
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Yunzhao Wei
- Institute of Petrochemistry, Heilongjiang, Academy of Sciences, Harbin 150040, China
| | - Min Xu
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Liping Cai
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changlei Xia
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Barandiaran A, Lascano D, Montanes N, Balart R, Selles MA, Moreno V. Improvement of the Ductility of Environmentally Friendly Poly(lactide) Composites with Posidonia oceanica Wastes Plasticized with an Ester of Cinnamic Acid. Polymers (Basel) 2023; 15:4534. [PMID: 38231960 PMCID: PMC10708467 DOI: 10.3390/polym15234534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
New composite materials were developed with poly(lactide) (PLA) and Posidonia oceanica fibers through reactive extrusion in the presence of dicumyl peroxide (DCP) and subsequent injection molding. The effect of different amounts of methyl trans-cinnamate (MTC) on the mechanical, thermal, thermomechanical, and wettability properties was studied. The results showed that the presence of Posidonia oceanica fibers generated disruptions in the PLA matrix, causing a decrease in the tensile mechanical properties and causing an impact on the strength due to the stress concentration phenomenon. Reactive extrusion with DCP improved the PO/PLA interaction, diminishing the gap between the fibers and the surrounding matrix, as corroborated by field emission scanning electron microscopy (FESEM). It was observed that 20 phr (parts by weight of the MTC, per one hundred parts by weight of the PO/PLA composite) led to a noticeable plasticizing effect, significantly increasing the elongation at break from 7.1% of neat PLA to 31.1%, which means an improvement of 338%. A considerable decrease in the glass transition temperature, from 61.1 °C of neat PLA to 41.6 °C, was also observed. Thermogravimetric analysis (TGA) showed a loss of thermal stability of the plasticized composites, mainly due to the volatility of the cinnamate ester, leading to a decrease in the onset degradation temperature above 10 phr MTC.
Collapse
Affiliation(s)
| | - Diego Lascano
- Institute of Materials Technology (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (A.B.); (N.M.); (R.B.); (M.A.S.)
| | | | | | | | - Virginia Moreno
- Institute of Materials Technology (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (A.B.); (N.M.); (R.B.); (M.A.S.)
| |
Collapse
|
15
|
Zhao X, Yu J, Liang X, Huang Z, Li J, Peng S. Crystallization behaviors regulations and mechanical performances enhancement approaches of polylactic acid (PLA) biodegradable materials modified by organic nucleating agents. Int J Biol Macromol 2023; 233:123581. [PMID: 36758767 DOI: 10.1016/j.ijbiomac.2023.123581] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/20/2022] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Polylactic acid (PLA) has attracted much attention because of its good biocompatibility, biodegradability, and mechanical properties. However, the slow crystallization rate of PLA during molding leads to its poor heat resistance, which limit its diffusion for many industrial applications. In this review, the relationship between PLA crystallization and its molecular structure and processing conditions is summarized. From the perspective of the regulation of PLA crystallization by organic nucleating agents, the research progress of organic micromolecule (e.g., esters, amides, and hydrazides), organic salt, supramolecular, and macromolecule nucleating agents on the crystallization behavior of PLA is mainly introduced. The nucleation mechanism of PLA is expounded by organic nucleating agents, and the effect of the interaction force between organic nucleating agents and PLA molecular chains on the crystallization behavior of PLA is analyzed. The effects of the crystallization behavior of PLA on its mechanical properties and heat resistance are discussed. It will provide a theoretical reference for the development and application of high-efficiency nucleating agents.
Collapse
Affiliation(s)
- Xipo Zhao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China; Hubei Longzhong Laboratory, Xiangyang 441000, China.
| | - Jiajie Yu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Xinyu Liang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Zepeng Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Juncheng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Shaoxian Peng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China; Hubei Longzhong Laboratory, Xiangyang 441000, China
| |
Collapse
|
16
|
Zhu Y, Gu X, Dong Z, Wang B, Jin X, Chen Y, Cui M, Wang R, Zhang X. Regulation of polylactic acid using irradiation and preparation of PLA-SiO 2-ZnO melt-blown nonwovens for antibacterial and air filtration. RSC Adv 2023; 13:7857-7866. [PMID: 36909768 PMCID: PMC9996230 DOI: 10.1039/d2ra08274h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Since the COVID-19 pandemic, polypropylene melt-blown nonwovens (MBs) have been widely used in disposable medical surgical masks and medical protective clothing, seriously threatening the environment. As a bio-based biodegradable polymer, polylactic acid (PLA) has attracted great attention in fabricating MBs. However, there are still issues with the undesirable spinnability of PLA and the limited filtration and antibacterial performance of PLA MBs. Herein, a high-efficiency, low-resistance, and antibacterial PLA filter is fabricated by melt-blown spinning and electret postprocessing technology. The irradiation technique is used to tune PLA chain structure, improving its spinnability. Further, silica (SiO2) nanoparticles are added to enhance the charge storage stability of PLA MBs. With a constant airflow rate of 32 L min-1, the PLA-based MBs exhibit a high particulate filtration efficiency of 94.8 ± 1.5%, an ultralow pressure drop of 14.1 ± 1.8 Pa, and an adequate bacterial filtration efficiency of 98 ± 1.2%, meeting the medical protective equipment standard. In addition, the zinc oxide (ZnO) masterbatches are doped into the blend and the antibacterial rate of PLA-based MBs against Escherichia coli and Staphylococcus aureus is higher than 99%. This successful preparation and modification method paves the way for the large-scale production of PLA MBs as promising candidates for high-efficacy and antibacterial filters.
Collapse
Affiliation(s)
- Yanlong Zhu
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Xiaoxia Gu
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Zhenfeng Dong
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Bin Wang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China .,Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Xu Jin
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Yankun Chen
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Meng Cui
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Rui Wang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Xiuqin Zhang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China .,Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology Beijing 100029 China
| |
Collapse
|
17
|
Sun YL, Tu LJ, Tsou CH, Lin SM, Lin L, De Guzman MR, Zeng R, Xia Y. Thermal and mechanical properties of biodegradable nanocomposites prepared by poly(lactic acid)/acetyl tributyl citrate reinforced with attapulgite. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
18
|
Youssef SH, Kim S, Khetan R, Afinjuomo F, Song Y, Garg S. The development of 5-fluorouracil biodegradable implants: A comparative study of PCL/PLGA blends. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
19
|
Agüero Á, Corral Perianes E, Abarca de las Muelas SS, Lascano D, de la Fuente García-Soto MDM, Peltzer MA, Balart R, Arrieta MP. Plasticized Mechanical Recycled PLA Films Reinforced with Microbial Cellulose Particles Obtained from Kombucha Fermented in Yerba Mate Waste. Polymers (Basel) 2023; 15:285. [PMID: 36679165 PMCID: PMC9864610 DOI: 10.3390/polym15020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
In this study, yerba mate waste (YMW) was used to produce a kombucha beverage, and the obtained microbial cellulose produced as a byproduct (KMW) was used to reinforce a mechanically recycled poly(lactic acid) (r-PLA) matrix. Microbial cellulosic particles were also produced in pristine yerba mate for comparison (KMN). To simulate the revalorization of the industrial PLA products rejected during the production line, PLA was subjected to three extrusion cycles, and the resultant pellets (r3-PLA) were then plasticized with 15 wt.% of acetyl tributyl citrate ester (ATBC) to obtain optically transparent and flexible films by the solvent casting method. The plasticized r3-PLA-ATBC matrix was then loaded with KMW and KMN in 1 and 3 wt.%. The use of plasticizer allowed a good dispersion of microbial cellulose particles into the r3-PLA matrix, allowing us to obtain flexible and transparent films which showed good structural and mechanical performance. Additionally, the obtained films showed antioxidant properties, as was proven by release analyses conducted in direct contact with a fatty food simulant. The results suggest the potential interest of these recycled and biobased materials, which are obtained from the revalorization of food waste, for their industrial application in food packaging and agricultural films.
Collapse
Affiliation(s)
- Ángel Agüero
- Instituto de Tecnología de Materiales (ITM), Universidad Politécnica de Valencia (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Esther Corral Perianes
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Sara Soledad Abarca de las Muelas
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Diego Lascano
- Instituto de Tecnología de Materiales (ITM), Universidad Politécnica de Valencia (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - María del Mar de la Fuente García-Soto
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Grupo de Investigación: Tecnologías Ambientales y Recursos Industriales (TARIndustrial), 20006 Madrid, Spain
| | - Mercedes Ana Peltzer
- Grupo de Investigación: Tecnologías Ambientales y Recursos Industriales (TARIndustrial), 20006 Madrid, Spain
- Laboratory of Obtention, Modification, Characterization, and Evaluation of Materials (LOMCEM), Department of Science and Technology, University of Quilmes, Bernal B1876BXD, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Rafael Balart
- Instituto de Tecnología de Materiales (ITM), Universidad Politécnica de Valencia (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Marina Patricia Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| |
Collapse
|
20
|
The Influence of Plasticizers and Accelerated Ageing on Biodegradation of PLA under Controlled Composting Conditions. Polymers (Basel) 2022; 15:polym15010140. [PMID: 36616489 PMCID: PMC9823598 DOI: 10.3390/polym15010140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
The overall performance of plasticizers on common mechanical and physical properties, as well as on the processability of polylactic acid (PLA) films, is well-explored. However, the influence of plasticizers on biodegradation is still in its infancy. In this study, the influence of natural-based dicarboxylic acid-based ester plasticizers (MC2178 and MC2192), acetyl tributyl citrate (ATBC Citroflex A4), and polyethylene glycol (PEG 400) on the biodegradation of extruded PLA films was evaluated. Furthermore, the influence of accelerated ageing on the performance properties and biodegradation of films was further investigated. The biodegradation of films was determined under controlled thermophilic composting conditions (ISO 14855-1). Apart from respirometry, an evaluation of the degree of disintegration, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) of film surfaces was conducted. The influence of melt-processing with plasticizers has a significant effect on structural changes. Especially, the degree of crystallinity has been found to be a major factor which affects the biodegradation rate. The lowest biodegradation rates have been evaluated for films plasticized with PEG 400. These lower molecular weight plasticizers enhanced the crystallinity degrees of the PLA phase due to an increase in chain mobility. On the contrary, the highest biodegradation rate was found for films plasticized with MC2192, which has a higher molecular weight and evoked minimal structural changes of the PLA. From the evaluated results, it could also be stated that migration of plasticizers, physical ageing, and chain scission of films prompted by ageing significantly influenced both the mechanical and thermal properties, as well as the biodegradation rate. Therefore, the ageing of parts has to be taken into consideration for the proper evolution of the biodegradation of plasticized PLA and their applications.
Collapse
|
21
|
Novák J, Běhálek L, Borůvka M, Lenfeld P. The Physical Properties and Crystallization Kinetics of Biocomposite Films Based on PLLA and Spent Coffee Grounds. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8912. [PMID: 36556716 PMCID: PMC9785839 DOI: 10.3390/ma15248912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In the context of today's needs for environmental sustainability, it is important to develop new materials that are based on renewable resources and biodegrade at the end of their life. Bioplastics reinforced by agricultural waste have the potential to cause a revolution in many industrial applications. This paper reports the physical properties and crystallization kinetics of biocomposite films based on poly(L-lactic acid) (PLLA) and 10 wt.% of spent coffee grounds (SCG). To enhance adhesion between the PLLA matrix and SCG particles, a compatibilizing agent based on itaconic anhydride (IA)-grafted PLLA (PLLA-g-IA) was prepared by reactive extrusion using dicumyl peroxide (DCP). Furthermore, due to the intended application of the film in the packaging industry, the organic plasticizer acetyl tributyl citrate (ATBC) is used to improve processing and increase ductility. The crystallization behavior and thermal properties were observed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Crystallinity degree increased from 3,5 (neat PLLA) up to 48% (PLLA/PLLA-g-IA/ATBC/SCG) at the highest cooling rate. The physical properties were evaluated by tensile testing and dynamic mechanical analysis (DMA). The combination of the compatibilizer, SCG, and ATBC led to a synergistic effect that positively influenced the supramolecular structure, internal damping, and overall ductility of the composite films.
Collapse
Affiliation(s)
- Jan Novák
- Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic
| | | | | | | |
Collapse
|
22
|
Safandowska M, Makarewicz C, Rozanski A, Idczak R. Barrier Properties of Semicrystalline Polylactide: The Role of the Density of the Amorphous Regions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marta Safandowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz90-363, Poland
| | - Cezary Makarewicz
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz90-363, Poland
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12/16, Lodz90-237, Poland
| | - Artur Rozanski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz90-363, Poland
| | - Rafal Idczak
- Institute of Experimental Physics, University of Wroclaw, Maksa Borna 9, Wroclaw50-204, Poland
| |
Collapse
|
23
|
Ramezani Dana H, Ebrahimi F. Synthesis, properties, and applications of polylactic
acid‐based
polymers. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hossein Ramezani Dana
- Mechanics, Surfaces and Materials Processing (MSMP) – EA 7350 Arts et Metiers Institute of Technology Aix‐en‐Provence France
- Texas A&M Engineering Experiment Station (TEES) Texas A&M University College Station Texas USA
| | - Farnoosh Ebrahimi
- PRISM Polymer, Recycling, Industrial, Sustainability and Manufacturing Technological University of the Shannon (TUS) Athlone Ireland
| |
Collapse
|
24
|
Ren J, Li Y, Lin Q, Li Z, Zhang G. Development of biomaterials based on plasticized polylactic acid and tea polyphenols for active-packaging application. Int J Biol Macromol 2022; 217:814-823. [PMID: 35907448 DOI: 10.1016/j.ijbiomac.2022.07.154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Bioactive-packaging films based on polylactic acid (PLA), acetyl tributyl citrate (ATBC), and tea polyphenol (TP) were prepared by melt blending. Results of mechanical-property test revealed that adding ATBC and TP can significantly improve mechanical properties of PLA. The shift of CO to lower wavelengths in FTIR and the morphology of the films in SEM indicated physical or chemical interactions in the PLA/ATBC/TP films. The antioxidant, and antibacterial activities of the PLA/ATBC films increased dramatically (P<0.05) with increased TP amount. The antioxidant activity of the films with 1 % TP was equivalent to that of 300 mg/L l-ascorbic acid, whereas PLA/ATBC/TP films with 0.5 % and 1 % TP concentration were effective in inhibiting Staphylococcus aureus and Escherichia coli within almost 5 h (P<0.05). The PLA films changed from transparent to opaque and from yellow to red after combining with ATBC or TP, respectively. The overall migration of the films in 3 % acetic acid and 10 % ethanol did not exceed the overall migration limit. All these findings indicated potential of the PLA/ATBC/TP films in active-packaging application.
Collapse
Affiliation(s)
- Jizhou Ren
- Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yana Li
- Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Qinbao Lin
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, Jinan University, Zhuhai 519070, China
| | - Zenghui Li
- Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guoquan Zhang
- Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
25
|
Zhao X, Liu J, Li J, Liang X, Zhou W, Peng S. Strategies and techniques for improving heat resistance and mechanical performances of poly(lactic acid) (PLA) biodegradable materials. Int J Biol Macromol 2022; 218:115-134. [PMID: 35868408 DOI: 10.1016/j.ijbiomac.2022.07.091] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/05/2022]
Abstract
Poly(lactic acid) (PLA) has attracted much attention as a substitute for petroleum-based plastics, but its low heat resistance limits its application range in packaging fields and disposable products. This paper summarizes the structural factors affecting the heat resistance of PLA and systematically summarizes methods to improve its heat resistance. PLA is a semi-crystalline polymer, and crystallinity, crystal size, and other factors are important factors affecting heat resistance. This paper systematically analyzes the means to control the crystallization behavior of PLA, and summarizes the effects of nucleating agents, cross-linking, grafting, and annealing processes on the crystallization behavior and heat resistance of PLA. The effects of PLA molecular chain cross-linking and grafting on the motility of PLA molecular chains and the heat resistance of PLA materials are further discussed from the perspective of PLA molecular chain segment movement. The research work on combining PLA with reinforcements such as high heat-resistant polymer materials, fiber, and nanoparticles to improve the mechanical properties and heat resistance of PLA by introducing rigid groups or structures is described in detail. Improving the heat resistance of PLA material is an important strategy to promote the application of biodegradable materials, and has broad research value and application prospects.
Collapse
Affiliation(s)
- Xipo Zhao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China; Hubei Longzhong Laboratory, Xiangyang 441000, China.
| | - Jinchao Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Juncheng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Xinyu Liang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Weiyi Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China; Hubei Longzhong Laboratory, Xiangyang 441000, China
| | - Shaoxian Peng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China; Hubei Longzhong Laboratory, Xiangyang 441000, China.
| |
Collapse
|
26
|
Aliotta L, Gigante V, Lazzeri A. Analytical Modeling of Stress Relaxation and Evaluation of the Activation Volume Variation: Effect of Temperature and Plasticizer Content for Poly(3-hydroxybutyrate-3-hydroxyvalerate). ACS OMEGA 2022; 7:23662-23672. [PMID: 35847325 PMCID: PMC9280768 DOI: 10.1021/acsomega.2c02284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, stress-relaxation tests that have been carried out at different temperatures (quite below the heat deflection temperature) on a poly(3-hydroxybutyrate-3hydroxyvalerate) (PHB-HV) matrix containing different amounts of the acetyl tributyl citrate plasticizer (added at 5 and 10 wt %) are investigated. The analytical modeling of the stress relaxation behavior by the coupling of Eyring's approach and the Guiu and Pratt model is successful. The activation volume results achieved are very interesting; in fact, not only the dependence of the activation volume from temperature is confirmed (and it resulted in dependence from the α' relaxation temperature) but also, for the first time, the dependence of the activation volume from the plasticizer content is shown. In particular, the presence of a linear relationship between the activation volume and the plasticizer volume content is observed.
Collapse
Affiliation(s)
- Laura Aliotta
- University
of Pisa, Department of Civil and Industrial Engineering, Via Diotisalvi, 2, Pisa 56122, Italy
- Interuniversity
National Consortium of Materials Science and Technology (INSTM), Via Giusti 9, Florence 50121, Italy
| | - Vito Gigante
- University
of Pisa, Department of Civil and Industrial Engineering, Via Diotisalvi, 2, Pisa 56122, Italy
- Interuniversity
National Consortium of Materials Science and Technology (INSTM), Via Giusti 9, Florence 50121, Italy
| | - Andrea Lazzeri
- University
of Pisa, Department of Civil and Industrial Engineering, Via Diotisalvi, 2, Pisa 56122, Italy
- Interuniversity
National Consortium of Materials Science and Technology (INSTM), Via Giusti 9, Florence 50121, Italy
| |
Collapse
|
27
|
Kalia K, Francoeur B, Amirkhizi A, Ameli A. In Situ Foam 3D Printing of Microcellular Structures Using Material Extrusion Additive Manufacturing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22454-22465. [PMID: 35522894 DOI: 10.1021/acsami.2c03014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A facile manufacturing method to enable the in situ foam 3D printing of thermoplastic materials is reported. An expandable feedstock filament was first made by incorporation of thermally expandable microspheres (TEMs) in the filament during the extrusion process. The material formulation and extrusion process were designed such that TEM expansion was suppressed during filament fabrication. Polylactic acid (PLA) was used as a model material, and filaments containing 2.0 wt % triethyl citrate and 0.0-5.0 wt % TEM were fabricated. Expandable filaments were then fed into a material extrusion additive manufacturing process to enable the in situ foaming of microcellular structures during layer deposition. The mesostructure, cellular morphology, thermal behavior, and mechanical properties of the printed foams were investigated. Repeatable foam prints with highly uniform cellular structures were successfully achieved. The part density was reduced with an increase in the TEM content, with a maximum reduction of 50% at 5.0 wt % TEM content. It is also remarkable that the interbead gaps of mesostructure vanished due to the local polymer expansion during in situ foaming. The incorporation of TEM and plasticizer only slightly lowered the critical temperatures of PLA, that is, glass-transition, melting, and decomposition temperatures. Moreover, with the introduction of foaming, the specific tensile strength and modulus decreased, whereas the ductility and toughness increased severalfold. The results unveil the feasibility of a novel additive manufacturing technology that offers numerous opportunities toward the manufacturing of specially designed structures including functionally graded foams for a variety of applications.
Collapse
Affiliation(s)
- Karun Kalia
- Department of Plastics Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Benjamin Francoeur
- Department of Mechanical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Alireza Amirkhizi
- Department of Mechanical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Amir Ameli
- Department of Plastics Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| |
Collapse
|
28
|
Development and Characterization of Polylactide Blends with Improved Toughness by Reactive Extrusion with Lactic Acid Oligomers. Polymers (Basel) 2022; 14:polym14091874. [PMID: 35567043 PMCID: PMC9104828 DOI: 10.3390/polym14091874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
In this work, we report the development and characterization of polylactide (PLA) blends with improved toughness by the addition of 10 wt.% lactic acid oligomers (OLA) and assess the feasibility of reactive extrusion (REX) and injection moulding to obtain high impact resistant injection moulded parts. To improve PLA/OLA interactions, two approaches are carried out. On the one hand, reactive extrusion of PLA/OLA with different dicumyl peroxide (DCP) concentrations is evaluated and, on the other hand, the effect of maleinized linseed oil (MLO) is studied. The effect of DCP and MLO content used in the reactive extrusion process is evaluated in terms of mechanical, thermal, dynamic mechanical, wetting and colour properties, as well as the morphology of the obtained materials. The impact strength of neat PLA (39.3 kJ/m2) was slightly improved up to 42.4 kJ/m2 with 10 wt.% OLA. Nevertheless, reactive extrusion with 0.3 phr DCP (parts by weight of DCP per 100 parts by weight of PLA–OLA base blend 90:10) led to a noticeable higher impact strength of 51.7 kJ/m2, while the reactive extrusion with 6 phr MLO gave an even higher impact strength of 59.5 kJ/m2, thus giving evidence of the feasibility of these two approaches to overcome the intrinsic brittleness of PLA. Therefore, despite MLO being able to provide the highest impact strength, reactive extrusion with DCP led to high transparency, which could be an interesting feature in food packaging, for example. In any case, these two approaches represent environmentally friendly strategies to improve PLA toughness.
Collapse
|
29
|
Okpuwhara RO, Oboirien BO, Sadiku ER. The lanolin‐based oil plasticized polylactide: Thermal and chemical characteristics. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rita O. Okpuwhara
- Department of Chemical Engineering University of Johannesburg Johannesburg South Africa
| | - Bilainu O. Oboirien
- Department of Chemical Engineering University of Johannesburg Johannesburg South Africa
| | - Emmanuel R. Sadiku
- Institute of Nano Engineering Research (INER), Department of Chemical, Metallurgical and Materials Engineering, Polymer Division Tshwane University of Technology Pretoria South Africa
| |
Collapse
|
30
|
The Influence of Additives and Environment on Biodegradation of PHBV Biocomposites. Polymers (Basel) 2022; 14:polym14040838. [PMID: 35215751 PMCID: PMC8963093 DOI: 10.3390/polym14040838] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
The biodegradation of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) ternary biocomposites containing nature-based plasticizer acetyl tributyl citrate (ATBC), heterogeneous nucleation agents-calcium carbonate (CaCO3) and spray-dried lignin-coated cellulose nanocrystals (L-CNC)-in vermicomposting, freshwater biotope, and thermophilic composting have been studied. The degree of disintegration, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and the evaluation of surface images taken by scanning electron microscopy (SEM) were conducted for the determination influence of different environments and additives on the biodegradation of PHBV. Furthermore, the method adapted from ISO 14855-1 standard was used for thermophilic composting. It is a method based on the measurement of the amount of carbon dioxide evolved during microbial degradation. The highest biodegradation rate was observed in the thermophilic condition of composting. The biodegradation level of all PHBV-based samples was, after 90 days, higher than 90%. Different mechanisms of degradation and consequently different degradation rate were evaluated in vermicomposting and freshwater biotope. The surface enzymatic degradation, observed during the vermicomposting process, showed slightly higher biodegradation potential than the hydrolytic attack of freshwater biotope. The application of ATBC plasticizers in the PHBV matrix caused an increase in biodegradation rate in all environments. However, the highest biodegradation rate was achieved for ternary PHBV biocomposites containing 10 wt. % of ATBC and 10 wt. % of CaCO3. A considerable increase in the degree of disintegration was evaluated, even in freshwater biotope. Furthermore, the slight inhibition effect of L-CNC on the biodegradation process of ternary PHBV/ATBC/L-CNC could be stated.
Collapse
|
31
|
Maiza M, Hamam A. Toughened Poly (lactic acid)/Poly (ε-caprolactone) blend with triethyl citrate (TEC) and polyethylene glycol (PEG 3). POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.1982967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Mounira Maiza
- Research Center in Industrial Technologies Crti, Cheraga, Algiers, Algeria
| | - Abderrazak Hamam
- Research Center in Industrial Technologies Crti, Cheraga, Algiers, Algeria
| |
Collapse
|
32
|
Mousa N, Galiwango E, Haris S, Al-Marzouqi AH, Abu-Jdayil B, Caires YL. A New Green Composite Based on Plasticized Polylactic Acid Mixed with Date Palm Waste for Single-Use Plastics Applications. Polymers (Basel) 2022; 14:574. [PMID: 35160563 PMCID: PMC8839791 DOI: 10.3390/polym14030574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Petroleum-based plastic is widely used in almost all fields. However, it causes serious threats to the environment owing to its non-biodegradable properties, which necessitates finding biodegradable alternatives. Here, date palm rachis (DPR) waste was used as a filler (30, 40, and 50 wt%) to form a biodegradable composite with polylactic acid (PLA) and achieve cost-performance balance. DPR-PLA composites were prepared using a melt-mixing extruder at 180 °C by varying mixing time, DPR composition, and plasticizer type and composition. The biodegradable testing specimens were prepared by compression molding and analyzed using physical, thermal, and mechanical characterizations. Scanning electron microscopy images indicated a uniform dispersion of DPR (90 μm) in the PLA matrix. The esterification reaction resulting from this interaction between DPR and PLA was confirmed by Fourier transform infrared spectroscopy. The 30 wt% DPR-PLA composite was considered the optimal composite with the lowest melt flow index (16 g/10 min). This work confirmed the superior effect of addition of 10 wt% of triethyl citrate (TEC) compared with polybutylene adipate terephthalate (PBAT) by the improvement in the elongation at break of the optimal composite from 2.10% to 4.20%. Moreover, the addition of 10 wt% of PBAT to the optimal composite resulted in a lower tensile strength (21.80 MPa) than that of the composite with 10 wt% of TEC (33.20 MPa). These results show the potential of using the proposed composite as an alternative material for single-use plastics such as cutlery.
Collapse
Affiliation(s)
- Noran Mousa
- Chemical and Petroleum Engineering Department, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; (N.M.); (E.G.); (B.A.-J.)
| | - Emmanuel Galiwango
- Chemical and Petroleum Engineering Department, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; (N.M.); (E.G.); (B.A.-J.)
| | - Sabeera Haris
- Civil & Environmental Engineering Department, United Arab Emirates University, Al-Ain 15551, United Arab Emirates;
| | - Ali H. Al-Marzouqi
- Chemical and Petroleum Engineering Department, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; (N.M.); (E.G.); (B.A.-J.)
| | - Basim Abu-Jdayil
- Chemical and Petroleum Engineering Department, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; (N.M.); (E.G.); (B.A.-J.)
| | - Yousuf L. Caires
- Palmade Plastic Cutlery Manufacturing LLC, Dubai, United Arab Emirates;
| |
Collapse
|
33
|
Wang H, Wan T, Wang H, Wang S, Li Q, Cheng B. Novel colorimetric membranes based on polylactic acid-grafted-citrated methacrylated urethane (PLA-CMU) to monitor cod freshness. Int J Biol Macromol 2022; 194:452-460. [PMID: 34822833 DOI: 10.1016/j.ijbiomac.2021.11.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 11/28/2022]
Abstract
Halochromic agent is easy to fall off from the surface of colorimetric membranes during fish freshness monitoring, which would decay the test accuracy. In order to increase its anchoring, citrated methacrylated urethane (CMU) synthesized by using tributyl citrate, β-hydroxyethyl methacrylate and diphenyl-methane-diisocyanate as a halochromic agent was grafted on polylactic acid (PLA). The CMU grafted PLA (PLA-CMU) together with tetrabutylammonium chloride (TBAC) prepared colorimetric membranes via electrospinning. 1H NMR and FTIR analysis showed successful bonding between CMU and PLA, and PLA-CMU grafting efficiency reached to the maximum value of 11.15%. Moreover, DSC confirmed that PLA-CMU existed low cold-crystallization temperature due to the excellent compatibility of CMU with PLA, which enhanced the anchoring of CMU effectively. Nanofiber-based PLA-CMU/TBAC colorimetric membrane enhanced the probability of molecules being captured due to its porous structure and large specific surface area. In addition, the increase in hydrophilicity of the membrane can provide a microenvironment for liquid phase reaction, exhibiting obvious color-changing sensitivity during cod freshness monitoring, from white color to light orange or pink with the deterioration of cod at 25 °C and 4 °C respectively. The results demonstrate PLA-CMU/TBAC colorimetric membranes would provide a simple and promising strategy for monitoring fish freshness.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology (TUST), Tianjin 300457, PR China
| | - Tong Wan
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology (TUST), Tianjin 300457, PR China
| | - Hao Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shaoyu Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology (TUST), Tianjin 300457, PR China.
| | - Quanxiang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Bowen Cheng
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology (TUST), Tianjin 300457, PR China.
| |
Collapse
|
34
|
Rojas A, Velásquez E, Patiño Vidal C, Guarda A, Galotto MJ, López de Dicastillo C. Active PLA Packaging Films: Effect of Processing and the Addition of Natural Antimicrobials and Antioxidants on Physical Properties, Release Kinetics, and Compostability. Antioxidants (Basel) 2021; 10:antiox10121976. [PMID: 34943079 PMCID: PMC8750271 DOI: 10.3390/antiox10121976] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/02/2022] Open
Abstract
The performance characteristics of polylactic acid (PLA) as an active food packaging film can be highly influenced by the incorporation of active agents (AAs) into PLA, and the type of processing technique. In this review, the effect of processing techniques and the addition of natural AAs on the properties related to PLA performance as a packaging material are summarized and described through a systematic analysis, giving new insights about the relation between processing techniques, types of AA, physical–mechanical properties, barriers, optical properties, compostability, controlled release, and functionalities in order to contribute to the progress made in designing antioxidant and antimicrobial PLA packaging films. The addition of AAs into PLA films affected their optical properties and influenced polymer chain reordering, modifying their thermal properties, functionality, and compostability in terms of the chemical nature of AAs. The mechanical and barrier performance of PLA was affected by the AA’s dispersion degree and crystallinity changes resulting from specific processing techniques. In addition, hydrophobicity and AA concentration also modified the barrier properties of PLA. The release kinetics of AAs from PLA were tuned, modifying diffusion coefficient of the AAs in terms of the different physical properties of the films that resulted from specific processing techniques. Several developments based on the incorporation of antimicrobial and antioxidant substances into PLA have displayed outstanding activities for food protection against microbial growth and oxidation.
Collapse
Affiliation(s)
- Adrián Rojas
- Packaging Innovation Center (LABEN), Department of Science and Food Technology, Faculty of Technology, University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile; (A.R.); (E.V.); (C.P.V.); (A.G.); (M.J.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago 9170124, Chile
| | - Eliezer Velásquez
- Packaging Innovation Center (LABEN), Department of Science and Food Technology, Faculty of Technology, University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile; (A.R.); (E.V.); (C.P.V.); (A.G.); (M.J.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago 9170124, Chile
| | - Cristian Patiño Vidal
- Packaging Innovation Center (LABEN), Department of Science and Food Technology, Faculty of Technology, University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile; (A.R.); (E.V.); (C.P.V.); (A.G.); (M.J.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago 9170124, Chile
| | - Abel Guarda
- Packaging Innovation Center (LABEN), Department of Science and Food Technology, Faculty of Technology, University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile; (A.R.); (E.V.); (C.P.V.); (A.G.); (M.J.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago 9170124, Chile
- Department of Science and Food Technology, Faculty of Technology, University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile
| | - María José Galotto
- Packaging Innovation Center (LABEN), Department of Science and Food Technology, Faculty of Technology, University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile; (A.R.); (E.V.); (C.P.V.); (A.G.); (M.J.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago 9170124, Chile
- Department of Science and Food Technology, Faculty of Technology, University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile
| | - Carol López de Dicastillo
- Packaging Innovation Center (LABEN), Department of Science and Food Technology, Faculty of Technology, University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile; (A.R.); (E.V.); (C.P.V.); (A.G.); (M.J.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago 9170124, Chile
- Department of Science and Food Technology, Faculty of Technology, University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile
- Correspondence:
| |
Collapse
|
35
|
Pinho LAG, Lima AL, Sa-Barreto LL, Gratieri T, Gelfuso GM, Marreto RN, Cunha-Filho M. Preformulation Studies to Guide the Production of Medicines by Fused Deposition Modeling 3D Printing. AAPS PharmSciTech 2021; 22:263. [PMID: 34729662 DOI: 10.1208/s12249-021-02114-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Fused deposition modeling (FDM) 3D printing has demonstrated high potential for the production of personalized medicines. However, the heating at high temperatures inherent to this process causes unknown risks to the drug product's stability. The present study aimed to assess the use of a tailored preformulation protocol involving physicochemical assessments, including the rheological profiles of the samples, to guide the development of medicines by FDM 3D printing. For this, polymers commonly used in FDM printing, i.e., high impact polystyrene (HIPS), polylactic acid (PLA), and polyvinyl alcohol (PVA), and their common plasticizers (mineral oil, triethyl citrate, and glycerol, respectively) were evaluated using the thermolabile model drug isoniazid (INH). Samples were analyzed by chemical and physical assays. The results showed that although the drug could produce polymorphs under thermal processing, the polymeric matrix can be a protective element, and no polymorphic transformation was observed. However, incompatibilities between materials might impact their chemical, thermal, and rheological performances. In fact, ternary mixtures of INH, PLA, and TEC showed a major alteration in their viscoelastic behavior besides the chemical changes. On the other hand, the use of plasticizers for HIPS and PVA exhibited positive consequences in drug solubility and rheologic behavior, probably improving sample printability. Thus, the optimization of the FDM 3D printing based on preformulation studies can assist the choice of compatible components and seek suitable processing conditions to obtain pharmaceutical products.
Collapse
|
36
|
Physical Properties and Non-Isothermal Crystallisation Kinetics of Primary Mechanically Recycled Poly(l-lactic acid) and Poly(3-hydroxybutyrate- co-3-hydroxyvalerate). Polymers (Basel) 2021; 13:polym13193396. [PMID: 34641213 PMCID: PMC8512861 DOI: 10.3390/polym13193396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 01/20/2023] Open
Abstract
The physical properties and non-isothermal melt- and cold-crystallisation kinetics of poly (l-lactic acid) (PLLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biobased polymers reprocessed by mechanical milling of moulded specimens and followed injection moulding with up to seven recycling cycles are investigated. Non-isothermal crystallisation kinetics are evaluated by the half-time of crystallisation and a procedure based on the mathematical treatment of DSC cumulative crystallisation curves at their inflection point (Kratochvil-Kelnar method). Thermomechanical recycling of PLLA raised structural changes that resulted in an increase in melt flow properties by up to six times, a decrease in the thermal stability by up to 80 °C, a reduction in the melt half-time crystallisation by up to about 40%, an increase in the melt crystallisation start temperature, and an increase in the maximum melt crystallisation rate (up to 2.7 times). Furthermore, reprocessing after the first recycling cycle caused the elimination of cold crystallisation when cooling at a slow rate. These structural changes also lowered the cold crystallisation temperature without impacting the maximum cold crystallisation rate. The structural changes of reprocessed PHBV had no significant effect on the non-isothermal crystallisation kinetics of this material. Additionally, the thermomechanical behaviour of reprocessed PHBV indicates that the technological waste of this biopolymer is suitable for recycling as a reusable additive to the virgin polymer matrix. In the case of reprocessed PLLA, on the other hand, a significant decrease in tensile and flexural strength (by 22% and 46%, respectively) was detected, which reflected changes within the biobased polymer structure. Apart from the elastic modulus, all the other thermomechanical properties of PLLA dropped down with an increasing level of recycling.
Collapse
|
37
|
Alhanish A, Abu Ghalia M. Developments of biobased plasticizers for compostable polymers in the green packaging applications: A review. Biotechnol Prog 2021; 37:e3210. [PMID: 34499430 DOI: 10.1002/btpr.3210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
The demand for biobased materials for various end-uses in the bioplastic industry is substantially growing due to increasing awareness of health and environmental concerns, along with the toxicity of synthetic plasticizers such as phthalates. This fact has stimulated new regulations requiring the replacement of synthetic conventional plasticizers, particularly for packaging applications. Biobased plasticizers have recently been considered as essential additives, which may be used during the processing of compostable polymers to enormously boost biobased packaging applications. The development and utilization of biobased plasticizers derived from epoxidized soybean oil, castor oil, cardanol, citrate, and isosorbide have been broadly investigated. The synthesis of biobased plasticizers derived from renewable feedstocks and their impact on packaging material performance have been emphasized. Moreover, the effect of biobased plasticizer concentration, interaction, and compatibility on the polymer properties has been examined. Recent developments have resulted in the replacement of synthetic plasticizers by biobased counterparts. Particularly, this has been the case for some biodegradable thermoplastics-based packaging applications.
Collapse
Affiliation(s)
- Atika Alhanish
- Department of Chemical Engineering, Faculty of Petroleum and Natural Gas Engineering, University of Zawia, Zawia, Libya
| | | |
Collapse
|
38
|
Dispersion of Micro Fibrillated Cellulose (MFC) in Poly(lactic acid) (PLA) from Lab-Scale to Semi-Industrial Processing Using Biobased Plasticizers as Dispersing Aids. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the present study, two commercial typologies of microfibrillated cellulose (MFC) (Exilva and Celish) with 2% wt % were firstly melt-compounded at the laboratory scale into polylactic acid (PLA) by a microcompounder. To reach an MFC proper dispersion and avoid the well-known aglomeration problems, the use of two kinds of biobased plasticisers (poly(ethylene glycol) (PEG) and lactic acid oligomer (OLA)) were investigated. The plasticizers had the dual effect of dispersing the MFC, and at the same time, they counterbalanced the excessive stiffness caused by the addition of MFC to the PLA matrix. Several preliminaries dilution tests, with different aqueous cellulose suspension/plasticizer weight ratios were carried out. These tests were accompanied by SEM observations and IR and mechanical tests on compression-molded films in order to select the best plasticizer content. The best formulation was then scaled up in a semi-industrial twin-screw extruder, feeding the solution by a peristaltic pump, to optimize the industrial-scale production of commercial MFC-based composites with a solvent-free method. From this study, it can be seen that the use of plasticisers as dispersing aids is a biobased and green solution that can be easily used in conventional extrusion techniques.
Collapse
|
39
|
Li H, Zhen W, Dong C, Zhao L. Preparation of nano boron nitride-trimethylolpropane tris (3-mercaptopropionate) grafted poly (L-lactic acid) based on click chemistry and its effect on the crystallization of poly (lactic acid). REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Teixeira SC, Silva RRA, de Oliveira TV, Stringheta PC, Pinto MRMR, Soares NDFF. Glycerol and triethyl citrate plasticizer effects on molecular, thermal, mechanical, and barrier properties of cellulose acetate films. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Patel M, Schwendemann D, Spigno G, Geng S, Berglund L, Oksman K. Functional Nanocomposite Films of Poly(Lactic Acid) with Well-Dispersed Chitin Nanocrystals Achieved Using a Dispersing Agent and Liquid-Assisted Extrusion Process. Molecules 2021; 26:molecules26154557. [PMID: 34361717 PMCID: PMC8347658 DOI: 10.3390/molecules26154557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
The development of bio-based nanocomposites is of high scientific and industrial interest, since they offer excellent advantages in creating functional materials. However, dispersion and distribution of the nanomaterials inside the polymer matrix is a key challenge to achieve high-performance functional nanocomposites. In this context, for better dispersion, biobased triethyl citrate (TEC) as a dispersing agent in a liquid-assisted extrusion process was used to prepare the nanocomposites of poly (lactic acid) (PLA) and chitin nanocrystals (ChNCs). The aim was to identify the effect of the TEC content on the dispersion of ChNCs in the PLA matrix and the manufacturing of a functional nanocomposite. The nanocomposite film's optical properties; microstructure; migration of the additive and nanocomposites' thermal, mechanical and rheological properties, all influenced by the ChNC dispersion, were studied. The microscopy study confirmed that the dispersion of the ChNCs was improved with the increasing TEC content, and the best dispersion was found in the nanocomposite prepared with 15 wt% TEC. Additionally, the nanocomposite with the highest TEC content (15 wt%) resembled the mechanical properties of commonly used polymers like polyethylene and polypropylene. The addition of ChNCs in PLA-TEC15 enhanced the melt viscosity, as well as melt strength, of the polymer and demonstrated antibacterial activity.
Collapse
Affiliation(s)
- Mitul Patel
- Division of Materials Science, Luleå University of Technology, SE-97 187 Luleå, Sweden; (M.P.); (S.G.); (L.B.)
| | - Daniel Schwendemann
- Institute for Material Engineering and Plastics Processing, University of Applied Sciences Eastern Switzerland, CH-8640 Rapperswil, Switzerland;
| | - Giorgia Spigno
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Shiyu Geng
- Division of Materials Science, Luleå University of Technology, SE-97 187 Luleå, Sweden; (M.P.); (S.G.); (L.B.)
| | - Linn Berglund
- Division of Materials Science, Luleå University of Technology, SE-97 187 Luleå, Sweden; (M.P.); (S.G.); (L.B.)
| | - Kristiina Oksman
- Division of Materials Science, Luleå University of Technology, SE-97 187 Luleå, Sweden; (M.P.); (S.G.); (L.B.)
- Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3BS, Canada
- Correspondence: ; Tel.: +46-920-493371
| |
Collapse
|
42
|
Gunasekaran A, Chen HY, Ponnusamy VK, Sorrentino A, Anandan S. Synthesis of high polydispersity index polylactic acid and its application as gel electrolyte towards fabrication of dye-sensitized solar cells. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02615-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Velásquez E, Patiño Vidal C, Rojas A, Guarda A, Galotto MJ, López de Dicastillo C. Natural antimicrobials and antioxidants added to polylactic acid packaging films. Part I: Polymer processing techniques. Compr Rev Food Sci Food Saf 2021; 20:3388-3403. [PMID: 34118127 DOI: 10.1111/1541-4337.12777] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022]
Abstract
Currently, reducing packaging plastic waste and food losses are concerning topics in the food packaging industry. As an alternative for these challenges, antimicrobial and antioxidant materials have been developed by incorporating active agents (AAs) into biodegradable polymers to extend the food shelf life. In this context, developing biodegradable active materials based on polylactic acid (PLA) and natural compounds are a great alternative to maintain food safety and non-toxicity of the packaging. AAs, such as essential oils and polyphenols, have been added mainly as antimicrobial and antioxidant natural compounds in PLA packaging. In this review, current techniques used to develop active PLA packaging films were described in order to critically compare their feasibility, advantages, limitations, and relevant processing aspects. The analysis was focused on the processing conditions, such as operation variables and stages, and factors related to the AAs, such as their concentrations, weight losses during processing, and incorporation technique, among others. Recent developments of active PLA-based monolayers and bi- or multilayer films were also considered. In addition, patents on inventions and technologies on active PLA-based films for food packaging were reviewed. This review highlights that the selection of the processing technique and conditions to obtain active PLA depends on the type of the AA regarding its volatility, solubility, and thermosensitivity.
Collapse
Affiliation(s)
- Eliezer Velásquez
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile
| | - Cristian Patiño Vidal
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile
| | - Adrián Rojas
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile
| | - Abel Guarda
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Technological Faculty, Food Science and Technology Department, University of Santiago of Chile (USACH), Santiago, Chile
| | - María José Galotto
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Technological Faculty, Food Science and Technology Department, University of Santiago of Chile (USACH), Santiago, Chile
| | - Carol López de Dicastillo
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Technological Faculty, Food Science and Technology Department, University of Santiago of Chile (USACH), Santiago, Chile
| |
Collapse
|
44
|
Pessini P, Daitx TS, Ferreira CI, Mauler RS. Selective localization of organophilic clay Cloisite
30B
in biodegradable poly(lactic acid)/poly(3‐hydroxybutyrate) blends. J Appl Polym Sci 2021. [DOI: 10.1002/app.51175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Paula Pessini
- Instituto de Química Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Tales S. Daitx
- Instituto de Química Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Creusa I. Ferreira
- Instituto de Química Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Raquel S. Mauler
- Instituto de Química Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
45
|
Brdlík P, Borůvka M, Běhálek L, Lenfeld P. Biodegradation of Poly(Lactic Acid) Biocomposites under Controlled Composting Conditions and Freshwater Biotope. Polymers (Basel) 2021; 13:polym13040594. [PMID: 33669420 PMCID: PMC7920484 DOI: 10.3390/polym13040594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022] Open
Abstract
The influence of additives such as natural-based plasticiser acetyl tributyl citrate (ATBC), CaCO3 and lignin-coated cellulose nanocrystals (L-CNC) on the biodegradation of polylactic acid (PLA) biocomposites was studied by monitoring microbial metabolic activity through respirometry. Ternary biocomposites and control samples were processed by a twin-screw extruder equipped with a flat film die. Commonly available compost was used for the determination of the ultimate aerobic biodegradability of PLA biocomposites under controlled composting conditions (ISO 14855-1). In addition, the hydro-degradability of prepared films in a freshwater biotope was analysed. To determine the efficiency of hydro-degradation, qualitative analyses (SEM, DSC, TGA and FTIR) were conducted. The results showed obvious differences in the degradation rate of PLA biocomposites. The application of ATBC at 10 wt.% loading increased the biodegradation rate of PLA. The addition of 10 wt.% of CaCO3 into the plasticised PLA matrix ensured an even higher degradation rate at aerobic thermophilic composting conditions. In such samples (PLA/ATBC/CaCO3), 94% biodegradation in 60 days was observed. In contrast, neat PLA exposed to the same conditions achieved only 16% biodegradation. Slightly inhibited microorganism activity was also observed for ternary PLA biocomposites containing L-CNC (1 wt.% loading). The results of qualitative analyses of degradation in a freshwater biotope confirmed increased biodegradation potential of ternary biocomposites containing both CaCO3 and ATBC. Significant differences in the chemical and structural compositions of PLA biocomposites were found in the evaluated period of three months.
Collapse
|
46
|
PLLA and cassava thermoplastic starch blends: crystalinity, mechanical properties, and UV degradation. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02368-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Tejada-Oliveros R, Balart R, Ivorra-Martinez J, Gomez-Caturla J, Montanes N, Quiles-Carrillo L. Improvement of Impact Strength of Polylactide Blends with a Thermoplastic Elastomer Compatibilized with Biobased Maleinized Linseed Oil for Applications in Rigid Packaging. Molecules 2021; 26:molecules26010240. [PMID: 33466389 PMCID: PMC7796501 DOI: 10.3390/molecules26010240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 11/16/2022] Open
Abstract
This research work reports the potential of maleinized linseed oil (MLO) as biobased compatibilizer in polylactide (PLA) and a thermoplastic elastomer, namely, polystyrene-b-(ethylene-ran-butylene)-b-styrene (SEBS) blends (PLA/SEBS), with improved impact strength for the packaging industry. The effects of MLO are compared with a conventional polystyrene-b-poly(ethylene-ran-butylene)-b-polystyrene-graft-maleic anhydride terpolymer (SEBS-g-MA) since it is widely used in these blends. Uncompatibilized and compatibilized PLA/SEBS blends can be manufactured by extrusion and then shaped into standard samples for further characterization by mechanical, thermal, morphological, dynamical-mechanical, wetting and colour standard tests. The obtained results indicate that the uncompatibilized PLA/SEBS blend containing 20 wt.% SEBS gives improved toughness (4.8 kJ/m2) compared to neat PLA (1.3 kJ/m2). Nevertheless, the same blend compatibilized with MLO leads to an increase in impact strength up to 6.1 kJ/m2, thus giving evidence of the potential of MLO to compete with other petroleum-derived compatibilizers to obtain tough PLA formulations. MLO also provides increased ductile properties, since neat PLA is a brittle polymer with an elongation at break of 7.4%, while its blend with 20 wt.% SEBS and MLO as compatibilizer offers an elongation at break of 50.2%, much higher than that provided by typical SEBS-g-MA compatibilizer (10.1%). MLO provides a slight decrease (about 3 °C lower) in the glass transition temperature (Tg) of the PLA-rich phase, thus showing some plasticization effects. Although MLO addition leads to some yellowing due to its intrinsic yellow colour, this can contribute to serving as a UV light barrier with interesting applications in the packaging industry. Therefore, MLO represents a cost-effective and sustainable solution to the use of conventional petroleum-derived compatibilizers.
Collapse
Affiliation(s)
| | - Rafael Balart
- Correspondence: (R.B.); (L.Q.-C.); Tel.: +34-966-528-433 (L.Q.-C.)
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Pawlak F, Aldas M, Parres F, López-Martínez J, Arrieta MP. Silane-Functionalized Sheep Wool Fibers from Dairy Industry Waste for the Development of Plasticized PLA Composites with Maleinized Linseed Oil for Injection-Molded Parts. Polymers (Basel) 2020; 12:E2523. [PMID: 33137961 PMCID: PMC7692624 DOI: 10.3390/polym12112523] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 11/18/2022] Open
Abstract
Poly(lactic acid) (PLA) was plasticized with maleinized linseed oil (MLO) and further reinforced with sheep wool fibers recovered from the dairy industry. The wool fibers were firstly functionalized with 1 and 2.5 phr of tris(2-methoxyethoxy)(vinyl) (TVS) silane coupling agent and were further used in 1, 5, and 10 phr to reinforce the PLA/MLO matrix. Then, the composite materials were processed by extrusion, followed by injection-molding processes. The mechanical, thermal, microstructural, and surface properties were assessed. While the addition of untreated wool fibers to the plasticized PLA/MLO matrix caused a general decrease in the mechanical properties, the TVS treatment was able to slightly compensate for such mechanical losses. Additionally, a shift in cold crystallization and a decrease in the degree of crystallization were observed due to the fiber silane modification. The microstructural analysis confirmed enhanced interaction between silane-modified fibers and the polymeric matrix. The inclusion of the fiber into the PLA/MLO matrix made the obtained material more hydrophobic, while the yellowish color of the material increased with the fiber content.
Collapse
Affiliation(s)
- Franciszek Pawlak
- Faculty of Technology and Chemical Engineering, University of Science and Technology in Bydgoszcz, Seminaryjna 3, PL-85326 Bydgoszcz, Poland
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Plaza Ferrándiz y Carbonelle, 03801 Alcoy-Alicante, Spain; (F.P.); (J.L.-M.)
| | - Miguel Aldas
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Plaza Ferrándiz y Carbonelle, 03801 Alcoy-Alicante, Spain; (F.P.); (J.L.-M.)
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, Ladrón de Guevera E11-253, Quito 170517, Ecuador
| | - Francisco Parres
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Plaza Ferrándiz y Carbonelle, 03801 Alcoy-Alicante, Spain; (F.P.); (J.L.-M.)
| | - Juan López-Martínez
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Plaza Ferrándiz y Carbonelle, 03801 Alcoy-Alicante, Spain; (F.P.); (J.L.-M.)
| | - Marina Patricia Arrieta
- Departamento de Ingeniería Química y del Medio Ambiente, Escuela Politécnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Grupo de Investigación—Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| |
Collapse
|
50
|
Frone AN, Nicolae CA, Eremia MC, Tofan V, Ghiurea M, Chiulan I, Radu E, Damian CM, Panaitescu DM. Low Molecular Weight and Polymeric Modifiers as Toughening Agents in Poly(3-Hydroxybutyrate) Films. Polymers (Basel) 2020; 12:E2446. [PMID: 33105812 PMCID: PMC7716241 DOI: 10.3390/polym12112446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 01/10/2023] Open
Abstract
The inherent brittleness of poly(3-hydroxybutyrate) (PHB) prevents its use as a substitute of petroleum-based polymers. Low molecular weight plasticizers, such as tributyl 2-acetyl citrate (TAC), cannot properly solve this issue. Herein, PHB films were obtained using a biosynthesized poly(3-hydroxyoctanoate) (PHO) and a commercially available TAC as toughening agents. The use of TAC strongly decreased the PHB thermal stability up to 200 °C due to the loss of low boiling point plasticizer, while minor weight loss was noticed at this temperature for the PHB-PHO blend. Both agents shifted the glass transition temperature of PHB to a lower temperature, the effect being more pronounced for TAC. The elongation at break of PHB increased by 700% after PHO addition and by only 185% in the case of TAC; this demonstrates an important toughening effect of the polymeric modifier. Migration of TAC to the upper surface of the films and no sign of migration in the case of PHO were highlighted by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) results. In vitro biocompatibility tests showed that all the PHB films are non-toxic towards L929 cells and have no proinflammatory immune response. The use of PHO as a toughening agent in PHB represents an attractive solution to its brittleness in the case of packaging and biomedical applications while conserving its biodegradability and biocompatibility.
Collapse
Affiliation(s)
- Adriana Nicoleta Frone
- Polymer Department, National Institute for R&D in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.A.N.); (M.G.); (I.C.); (E.R.)
| | - Cristian Andi Nicolae
- Polymer Department, National Institute for R&D in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.A.N.); (M.G.); (I.C.); (E.R.)
| | - Mihaela Carmen Eremia
- National Institute for Chemical Pharmaceutical Research and Development ICCF, 112 Calea Vitan, 031299 Bucharest, Romania;
| | - Vlad Tofan
- Cantacuzino National Institute of R&D for Microbiology and Immunology, 103 Splaiul Independentei, 050096 Bucharest, Romania;
| | - Marius Ghiurea
- Polymer Department, National Institute for R&D in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.A.N.); (M.G.); (I.C.); (E.R.)
| | - Ioana Chiulan
- Polymer Department, National Institute for R&D in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.A.N.); (M.G.); (I.C.); (E.R.)
| | - Elena Radu
- Polymer Department, National Institute for R&D in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.A.N.); (M.G.); (I.C.); (E.R.)
| | - Celina Maria Damian
- Advanced Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania;
| | - Denis Mihaela Panaitescu
- Polymer Department, National Institute for R&D in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.A.N.); (M.G.); (I.C.); (E.R.)
| |
Collapse
|