1
|
Redhu D, Kumari V, Franke K, Hartmann K, Worm M, Babina M. TNF-α counters skin inflammation by restraining mast cell-dependent thymic stromal lymphopoietin production. J Allergy Clin Immunol 2025:S0091-6749(25)00369-0. [PMID: 40189158 DOI: 10.1016/j.jaci.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND TNF-α is an important proinflammatory cytokine, but its neutralization in the management of inflammatory skin disorders like psoriasis may trigger eczematous skin lesions as an adverse reaction. OBJECTIVES This study aimed to elucidate whether TNF-α may protect from skin inflammation and to identify in detail the underlying mechanisms. METHODS Wild-type, TNF-α-deficient, thymic stromal lymphopoietin (TSLP) receptor-deficient, mast cell (MC)-deficient, TNF-α-TSLP receptor double-deficient, and TNF-α-MC double-deficient mice were subjected to a skin inflammation model and inspected by physical, clinical, histologic, immunohistochemical, and bioanalytic techniques. RESULTS TNF-α deficiency promoted skin inflammation. This was accompanied by MC hyperplasia and potent TSLP production in lesional skin and serum of TNF-α-deficient mice. Specifically, MCs were found to be responsible for inducing high levels of TSLP in the epidermis, compromising barrier function and initiating inflammation. In contrast, the production of immunoglobulins, including IgE, was reduced in mice lacking TNF-α. CONCLUSIONS TNF-α restrains MC-dependent TSLP production and the onset of eczema.
Collapse
Affiliation(s)
- Davender Redhu
- Division of Allergy and Immunology, Department of Dermatology, Venerology and Allergy, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vandana Kumari
- Center of Allergy & Environment (ZAUM), Institute of Allergy Research (IAF), Helmholtz Center Munich, Munich, Germany
| | - Kristin Franke
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, the Department of Clinical Research, and the Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Margitta Worm
- Division of Allergy and Immunology, Department of Dermatology, Venerology and Allergy, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Magda Babina
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| |
Collapse
|
2
|
Elbagir S, Mohammed NA, Oke V, Larsson A, Nilsson J, Elshafie A, Elagib EM, Nur MAM, Gunnarsson I, Svenungsson E, Rönnelid J. Anti-histone and anti-nucleosome rather than anti-dsDNA antibodies associate with IFN-induced biomarkers in Sudanese and Swedish SLE patients. Rheumatology (Oxford) 2025; 64:1170-1178. [PMID: 38460182 PMCID: PMC11879337 DOI: 10.1093/rheumatology/keae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 03/11/2024] Open
Abstract
OBJECTIVES In SLE, anti-dsDNA can co-occur with autoantibodies against other chromatin components, like histones and nucleosomes. These antibodies induce type-1 interferon production, a hallmark of SLE. We measured ANA sub-specificities and investigated their associations to inflammatory biomarkers including interferon-regulated chemokines. METHODS We included 93 Sudanese and 480 Swedish SLE patients and matched controls (N = 104 + 192). Autoantibodies targeting ANA sub-specificities: dsDNA, Sm, Sm/U1RNPcomplex, U1RNP, SSA/Ro52, SSA/Ro60, SSB/La, ribosomal P, PCNA and histones were quantified in all subjects, anti-nucleosome only in the Swedish patients, with a bead-based multiplex immunoassay. Levels of 72 plasma biomarkers were determined with the Proximity Extension Assay technique or ELISA. RESULTS Among Sudanese patients, the investigated antibodies were significantly associated with 9/72 biomarkers. Anti-histone antibodies showed the strongest positive correlations with MCP-3 and S100A12 as well as with interferon I-inducible factors MCP-1 and CXCL10. Anti-dsDNA antibodies were associated with CXCL10 and S100A12, but in multivariate analyses, unlike anti-histone, associations lost significance.Among Swedish patients, MCP-1, CXCL10, and SA100A12 also demonstrated stronger associations to anti-histone and anti-nucleosome antibodies, compared with anti-dsDNA and other ANA sub-specificities. In multiple regression models, anti-histone/nucleosome retained the strongest associations. When excluding anti-histone or anti-nucleosome positive patients, the associations between MCP-1/CXCL10 and anti-dsDNA were lost. In contrast, when excluding anti-dsDNA positive patients, associations with anti-histone and anti-nucleosome remained significant. CONCLUSION In two cohorts of different ethnical origins, autoantibodies targeting chromatin correlate stronger with IFN-induced inflammatory biomarkers than anti-dsDNA or other ANA sub-specificities. Our results suggest that anti-histone/nucleosome autoantibodies may be the main drivers of type-1 interferon activity in SLE.
Collapse
Affiliation(s)
- Sahwa Elbagir
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Vilija Oke
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
- Centre for Rheumatology, Academic Specialist Centre, Stockholm, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Section of Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Jan Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Amir Elshafie
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Linköping University Hospital, Linköping, Sweden
| | | | - Musa A M Nur
- Rheumatology Unit, Alribat University Hospital, Khartoum, Sudan
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Abdulla MH, AlMarabeh S, Bolger T, Lucking EF, O'Halloran KD, Johns EJ. Effects of intrarenal pelvic infusion of tumour necrosis factor-α and interleukin 1-β on reno-renal reflexes in anaesthetised rats. J Hypertens 2024; 42:1027-1038. [PMID: 38690904 DOI: 10.1097/hjh.0000000000003689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
OBJECTIVE Reno-renal reflexes are disturbed in cardiovascular and hypertensive conditions when elevated levels of pro-inflammatory mediators/cytokines are present within the kidney. We hypothesised that exogenously administered inflammatory cytokines tumour necrosis factor alpha (TNF-α) and interleukin (IL)-1β modulate the renal sympatho-excitatory response to chemical stimulation of renal pelvic sensory nerves. METHODS In anaesthetised rats, intrarenal pelvic infusions of vehicle [0.9% sodium chloride (NaCl)], TNF-α (500 and 1000 ng/kg) and IL-1β (1000 ng/kg) were maintained for 30 min before chemical activation of renal pelvic sensory receptors was performed using randomized intrarenal pelvic infusions of hypertonic NaCl, potassium chloride (KCl), bradykinin, adenosine and capsaicin. RESULTS The increase in renal sympathetic nerve activity (RSNA) in response to intrarenal pelvic hypertonic NaCl was enhanced during intrapelvic TNF-α (1000 ng/kg) and IL-1β infusions by almost 800% above vehicle with minimal changes in mean arterial pressure (MAP) and heart rate (HR). Similarly, the RSNA response to intrarenal pelvic adenosine in the presence of TNF-α (500 ng/kg), but not IL-1β, was almost 200% above vehicle but neither MAP nor HR were changed. There was a blunted sympatho-excitatory response to intrapelvic bradykinin in the presence of TNF-α (1000 ng/kg), but not IL-1β, by almost 80% below vehicle, again without effect on either MAP or HR. CONCLUSION The renal sympatho-excitatory response to renal pelvic chemoreceptor stimulation is modulated by exogenous TNF-α and IL-1β. This suggests that inflammatory mediators within the kidney can play a significant role in modulating the renal afferent nerve-mediated sympatho-excitatory response.
Collapse
Affiliation(s)
- Mohammed H Abdulla
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Sara AlMarabeh
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Tom Bolger
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Edward J Johns
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Han N, Jiang W, Li G, Lu L, Shan J, Feng L, Jin L. Low-intensity pulsed ultrasound at ST36 improves the gastric motility by TNF-α/IKKβ/NF-κB signaling pathway in diabetic rats. J Gastroenterol Hepatol 2023; 38:2018-2026. [PMID: 37581362 DOI: 10.1111/jgh.16321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND AND AIM Low-intensity pulsed ultrasound (LIPUS) can effectively regulate the central and peripheral nervous system. However, whether LIPUS could act on acupuncture points to modulate the activity of peripheral nervous has rarely been studied. Our study aimed to investigate whether LIPUS at ST36 could improve gastric emptying in diabetic gastroparesis rats. METHODS Sprague-Dawley male rats were divided into three groups: control group (CON), diabetic gastroparesis group (DM), and diabetic gastroparesis LIPUS treated group (LIPUS). The body weight and blood glucose were recorded every week. Glucose tolerance, gastric emptying rate, and gastric motility were measured before and after treatment. Gastric motility was assessed by ultrasonic examination and Muscle strip experiment. The expression level of c-Kit was assessed by immunohistochemistry staining. Levels of TNF-α, p-NF-κB p-65, NF-κB p-65, and p-IKKβ, IKKβ were measured by western blot. RESULTS We reported LIPUS at an intensity of 0.88 W/cm2 exhibited significant differences in functional recovery of gastric delayed emptying in diabetic rats. Through ultrasound gastric motility functional testing and analysis of gastric antral smooth muscle strips indirectly and directly proved the effectiveness of LIPUS for the recovery of gastric delayed emptying. Pathological analysis and western blot indicated that the mechanism by which LIPUS applied to ST36 improved gastric motility may be partially attributed to the inhibition of the TNF-α/IKKβ/NF-κB signaling pathway, thereby rescuing the damaged interstitial cells of Cajal network. CONCLUSION LIPUS at ST36 improved the gastric motility and rescued the damaged networks of interstitial cells of Cajal. LIPUS may have a promising therapeutic potential for diabetic gastroparesis.
Collapse
Affiliation(s)
- Nie Han
- Department of Ultrasound, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Weijun Jiang
- Department of Gastroenterology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanheng Li
- Department of Ultrasound, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingling Lu
- Department of Ultrasound, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiali Shan
- Department of Ultrasound, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lan Feng
- Department of Ultrasound, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lin Jin
- Department of Ultrasound, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Abstract
The gastrointestinal (GI) tract is a vital organ that digests food, absorbs nutrients, and excretes waste. Normal GI motility is the basis for these functions. The interstitial cells of Cajal (ICC) in the GI muscularis layer promote GI motility together with the enteric nervous system and smooth muscle cells. Since GI motility results from complex coordination of these heterogeneous cells, failure of any one of them can lead to GI dysmotility. Knowledge about ICC in physiological conditions has accumulated in recent decades, while the pathophysiology of ICC in GI inflammatory diseases, such as inflammatory bowel disease, is not well understood. In this review, we summarize the previous studies about the pathophysiological changes of ICC in inflammatory diseases and discuss the inflammatory mediators that induce ICC dysfunction.
Collapse
Affiliation(s)
- Noriyuki Kaji
- Laboratory of Veterinary Pharmacology, School of Veterinary
Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201,
Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of
Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo
113-8657, Japan
| |
Collapse
|
6
|
Li H, Wang Y, Tian Y, Tian F, Xing Z, Wang Y, Yan M, Gong Y. Atractylodes chinensis volatile oil up-regulated IGF-1 to improve diabetic gastroparesis in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:520-526. [PMID: 35656073 PMCID: PMC9150807 DOI: 10.22038/ijbms.2022.60126.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/09/2022] [Indexed: 11/10/2022]
Abstract
Objectives Diabetic gastroparesis (DGP) is one of the main complications of diabetes, and more than half of diabetes cases are accompanied by gastroparesis. This study aims to explore the effect of Atractylodes chinensis volatile oil (ACVO) on DGP rats. Materials and Methods The rats were injected with STZ combined with a high-sugar and high-fat diet in an irregular manner to establish the DGP model. ACVO at different doses (9.11 mg/kg, 18.23 mg/kg, and 36.45 mg/kg) were given by intragastric administration. A mixture of cisapride and metformin was used as the positive control. At the end of the experiment, gastric emptying and intestinal propulsion were determined. Then the tissue samples and blood were taken from each group for serum analysis, western blot and immunopathological examination. Results After treatment with ACVO, body weight increased and blood glucose decreased when compared with rats in the DGP group. Gastric emptying and intestinal propulsion were accelerated, and gastric acid secretion increased. The serum insulin-like growth factor-1 (IGF-1) level was increased. Protein expressions and positive cells of IGF-1 receptor (IGF-1R), acetylcholine transferase (CHAT), and stem cell factors (SCF) in the stomach were significantly increased determined by western blot and immunofluorescence staining. The morphology and the number of interstitial cells of Cajal (ICCs) in the stomach were restored, determined by hematoxylin and eosin staining and immunohistochemical staining, respectively. Conclusion ACVO effectively alleviated DGP in rats, and its mechanism may be related to the up-regulation of IGF-1/IGF-1R signaling.
Collapse
Affiliation(s)
- Hongzeng Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China,These authors contributed equally to this work
| | - Yitong Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China,These authors contributed equally to this work
| | - Yuxin Tian
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Feiyue Tian
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Zhiyang Xing
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yunfei Wang
- Shandong Xinhua Pharmaceutical Company Limited, Zibo, China
| | - Meixing Yan
- Qingdao Women and Children’s Hospital, Qingdao, China,Corresponding authors: Meixing Yan. Qingdao Women and Children’s Hospital, Qingdao 266011, China. ; Yanling Gong, Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China,Corresponding authors: Meixing Yan. Qingdao Women and Children’s Hospital, Qingdao 266011, China. ; Yanling Gong, Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| |
Collapse
|
7
|
Wei Y, Peng S, Lian C, Kang Q, Chen J. Anorexia nervosa and gut microbiome: implications for weight change and novel treatments. Expert Rev Gastroenterol Hepatol 2022; 16:321-332. [PMID: 35303781 DOI: 10.1080/17474124.2022.2056017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Host-microbiota interactions may be involved in many physical and psychological functions ranging from the digestion of food, maintenance of immune homeostasis, to the regulation of mood and cognition. Microbiome dysbiosis has been consistently described in many diseases. The pathogenesis and weight regulation mechanism in anorexia nervosa (AN) also seem to be implicated in the dynamic bidirectional adjustment of the microbiota-gut-brain axis. This review aims at elucidating this relationship. AREA COVERED This review starts with a description of pathogenic gut-brain pathways. Next, we focus on the latest research on the associations between gut microbiota and weight change in the condition of AN. The strategies to alter the intestinal microbiome for the treatment of this disorder are discussed, including dietary, probiotics, prebiotics, synbiotics, and fecal microbiota transplantation. EXPERT OPINION Gut microbiome is inextricably linked to AN. It may regulate weight gain in the process of refeeding via the microbiota-gut-brain axis, while the specific mechanism has yet to be clearly established. In the future, a better understanding of gut microbiome could have implications for developing microbiome-based prevention, diagnostics and therapies.
Collapse
Affiliation(s)
- Yaohui Wei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sufang Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Lian
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Kang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jue Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Li J, Bai J, Tuerdi N, Liu K. Long non-coding RNA MEG3 promotes tumor necrosis factor-alpha induced oxidative stress and apoptosis in interstitial cells of cajal via targeting the microRNA-21 /I-kappa-B-kinase beta axis. Bioengineered 2022; 13:8676-8688. [PMID: 35322738 PMCID: PMC9161977 DOI: 10.1080/21655979.2022.2054501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interstitial Cells of Cajal (ICC) plays a critical role in the peristaltic contractions of the gastrointestinal and urinary tract. The dysfunction and loss of ICC contributes to hypokinetic disease, such as gallstoneand ureteropelvic junction obstruction . In the present study, we identified the underlying driving molecular signals of oxidative stress and apoptosis in ICC. ICC was isolated from small intestine of Balb/c mice, and stimulated with tumor necrosis factor-alpha (TNF-α). MTT and flow cytometry were performed to assess cell viability, apoptosis, and the level of reactive oxygen species in ICC, respectively. The level of malondialdehyde, superoxide dismutase, and glutathione peroxidase in cells were measured to assess oxidative stress. The expression of inflammatory factors (interleukin, IL-1 and IL-6) and apoptosis-related proteins were detected by western blot. We observed that TNF-αinduced inflammation, oxidative stress and cell apoptosis in ICC. By using quantitative real-time PCR , we verified that the expression of long non-coding RNAMEG3 was elevated by TNF-α in ICC. Silencing MEG3 reversed inflammation, oxidative stress, and cell apoptosisin TNF-α-treated ICC. Subsequently, we confirmed that MEG3 sponged cytoprotective miR-21 to upregulate the expression of I-kappa-B-kinase beta (IKKB) and activate the nuclear factor kappa-B (NF-κB) pathway. Both miR-21 overexpression and IKKB knockdown reduced TNF-α-induced above symptoms in ICC. Taken together, we can conclude that MEG3 mediates inflammation, oxidative stress and apoptosis in TNF-α-treated ICC via the miR-21/IKKB-NF-κB axis. The study improves our understanding of the molecular mechanism of ICC reduction related diseases.
Collapse
Affiliation(s)
- Jia Li
- Department of Pediatric Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Junbo Bai
- Department of Pediatric Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Nafeisha Tuerdi
- Department of Pediatric Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kaifang Liu
- Department of Pediatric Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
9
|
Liu M, Gao Q, Sun C, Liu B, Liu X, Zhou Q, Zheng X, Xu P, Liu B. Effects of dietary tea tree oil on the growth, physiological and non-specific immunity response in the giant freshwater prawn (Macrobrachium rosenbergii) under high ammonia stress. FISH & SHELLFISH IMMUNOLOGY 2022; 120:458-469. [PMID: 34929307 DOI: 10.1016/j.fsi.2021.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
This study aimed to investigate the effects of dietary tea tree oil (TTO) on the performance, intestinal antioxidant capacity, and non-specific immunity after ammonia nitrogen stress in Macrobrachium rosenbergii. Six experimental diets were formulated with 0, 25, 50, 100, 200, 400 mg/kg TTO, respectively. A total of 900 prawns (average initial weight, 0.39 ± 0.01 g) were randomly assigned to 6 groups in triplicate in 18 tanks. After an 8-week feeding trial, 20 prawns from each tank were changed with 20 mg/L ammonia stress for 24 h. The results showed that 100 mg/kg TTO significantly increased prawns performance and survival rate compared with the control group. Moreover, 100 and 200 mg/kg TTO significantly improved intestinal antioxidant capabilities by increasing SOD enzyme activities and decreasing MDA levels. In addition, the prawns fed with 100 mg/kg TTO diet showed the highest survival rate under ammonia stress. After ammonia stress, the group of 100 mg/kg TTO significantly improved antioxidant capacity by increasing hemolymph respiratory burst activity, as well as intestinal anti-superoxide anion activity and SOD. Coincidentally, 100 mg/kg TTO significantly upregulated the intestinal relative expression of antioxidant-related genes (peroxiredoxin-5). Further, it was found that 100 mg/kg TTO activated the toll-dorsal pathway in prawns, which performed the similar function as the classic NF-κB pathway by upregulating the TNF-α and IL-1. Finally, 100 mg/kg TTO increased the levels of iNOS activities and NO contents after ammonia stress and enhanced non-specific immunity. The results indicated that 100 mg/kg TTO could significantly improve the M. rosenbergii performance, antioxidant capacity and ammonia stress resistance. We suggested that the mechanisms may be attributed to that TTO enhanced the antioxidant capacity and non-specific immunity of M. rosenbergii via the NF-κB signal pathway.
Collapse
Affiliation(s)
- Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Qiang Gao
- Zhejiang Institute of Freshwater Fishery, Huzhou, 313001, PR China
| | - Cunxin Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Xin Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| | - Xiaochuan Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China.
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China.
| |
Collapse
|
10
|
Chen Z, Yi L, Pan Y, Long X, Mu J, Yi R, Zhao X. Lactobacillus fermentum ZS40 Ameliorates Inflammation in Mice With Ulcerative Colitis Induced by Dextran Sulfate Sodium. Front Pharmacol 2021; 12:700217. [PMID: 34867317 PMCID: PMC8640127 DOI: 10.3389/fphar.2021.700217] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis is an inflammatory disease of the intestine caused by many reasons, and it may even develop into colon cancer. Probiotics are normal bacteria that exist in the human body and have been proven to regulate the balance of intestinal flora and alleviate inflammation. The current study aimed to study the effect of Lactobacillus fermentum ZS40 (ZS40) on dextran sulfate sodium (DSS)-induced ulcerative colitis mice. The length and weight of the colon were measured, and the histopathological morphological changes of colon tissue were observed to evaluate the effects of ZS40 on colitis. Biochemical kits, ELISA kits, real-time quantitative PCR (RT-qPCR), and western blot were also used to detect the effects of ZS40 on serum and colon tissue related oxidative indicators and pro-inflammatory and anti-inflammatory cytokines. We found that ZS40 could reduce colonic inflammatory cell infiltration and goblet cell necrosis, increase total superoxide dismutase and catalase in mouse serum, and reduce myeloperoxidase and malondialdehyde levels. ZS40 could down-regulate the level of proinflammatory cytokines and up-regulate the level of anti-inflammatory cytokines. More importantly, ZS40 down-regulated the relative expression of nuclear factor-κB p65 (NF-κBp65), IL-6, and TNF-α mRNA and protein, up-regulated the relative expression of inhibitor kapa B alpha (IκB-α). By regulating the NF-κB and MAPK pathways to down-regulated the relative expression of p38 and JNK1/2 mRNA and p38, p-p38, JNK1/2, and p-JNK1/2 proteins. Our study suggested that ZS40 may serve as a potential therapeutical strategy for ulcerative colitis.
Collapse
Affiliation(s)
- Zixia Chen
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Long Yi
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
11
|
Goji berry juice fermented by probiotics attenuates dextran sodium sulfate-induced ulcerative colitis in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
12
|
Gu M, Liu C, Yang T, Zhan M, Cai Z, Chen Y, Chen Q, Wang Z. High-Fat Diet Induced Gut Microbiota Alterations Associating With Ghrelin/Jak2/Stat3 Up-Regulation to Promote Benign Prostatic Hyperplasia Development. Front Cell Dev Biol 2021; 9:615928. [PMID: 34249898 PMCID: PMC8264431 DOI: 10.3389/fcell.2021.615928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
The role of high-fat diet (HFD) induced gut microbiota alteration and Ghrelin as well as their correlation in benign prostatic hyperplasia (BPH) were explored in our study. The gut microbiota was analyzed by 16s rRNA sequencing. Ghrelin levels in serum, along with Ghrelin and Ghrelin receptor in prostate tissue of mice and patients with BPH were measured. The effect of Ghrelin on cell proliferation, apoptosis, and induction of BPH in mice was explored. Our results indicated that BPH mice have the highest ratio of Firmicutes and Bacteroidetes induced by HFD, as well as Ghrelin level in serum and prostate tissue was significantly increased compared with control. Elevated Ghrelin content in the serum and prostate tissue of BPH patients was also observed. Ghrelin promotes cell proliferation while inhibiting cell apoptosis of prostate cells. The effect of Ghrelin on enlargement of the prostate was found almost equivalent to that of testosterone propionate (TP) which may be attenuated by Ghrelin receptor antagonist YIL-781. Ghrelin could up-regulate Jak2/pJak2/Stat3/pStat3 expression in vitro and in vivo. Our results suggested that Gut microbiota may associate with Ghrelin which plays an important role in activation of Jak2/Stat3 in BPH development. Gut microbiota and Ghrelin might be pathogenic factors for BPH and could be used as a target for mediation.
Collapse
Affiliation(s)
- Meng Gu
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chong Liu
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - TianYe Yang
- Department of Emergency, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikang Cai
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanbo Chen
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Chen
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Zheng H, Liu YJ, Chen ZC, Fan GQ. miR-222 regulates cell growth, apoptosis, and autophagy of interstitial cells of Cajal isolated from slow transit constipation rats by targeting c-kit. Indian J Gastroenterol 2021; 40:198-208. [PMID: 33792838 DOI: 10.1007/s12664-020-01143-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/25/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Excessive autophagy and apoptosis of the interstitial cells of Cajal (ICC) have been identified in gastrointestinal (GI) motility disorders including slow transit constipation (STC). MicroRNA 222 (miR-222) has been shown to affect GI motility. This study aimed to explore whether miR-222 influences apoptosis and excessive autophagy of isolated ICC. METHODS miR-222, c-kit, and stem cell factor (SCF) were evaluated in colon tissues in STC rats compared with normal control by qRT-PCR and western blot analysis. The condition of autophagy of colon tissue was observed by transmission electron microscope. ICC were isolated from the colon of STC rats. Cell Counting Kit-8 (CCK-8) assay and wound healing assay were carried out to examine the cell viability and migration rate. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) and Annexin V-Flourescein Isothiocyanate/Propidine Iodide (FITC/PI) apoptosis detection kit. Western blot analysis was performed to detect the c-kit and SCF expression; apoptosis-related proteins Bcl-2, Bax, caspase-3, and pro-caspase-3; and autophagy-related proteins LC3B and Beclin-1. The connection between miR-222 and c-kit was detected by bioinformatics and luciferase activity analysis. RESULTS miR-222 expression was significantly higher, whereas c-kit and SCF expressions were markedly lower in STC rats' colon tissue compared with normal control. Meanwhile, STC rats exhibited excessive autophagy in colon tissue than normal control. Inhibition of miR-222 expression promoted cell proliferation as well as migration and inhibited autophagy, whereas upregulation of miR-222 had the opposite effect. In addition, miR-222 upregulation induced apoptosis and excessive autophagy compared with normal controls (NC). Western blot analysis showed that miR-222 overexpression caused decreased c-kit and SCF protein levels compared with NC. Bioinformatics and luciferase activity analysis revealed that miR-222 could be a predictive regulator of c-kit. CONCLUSION miR-222 induces apoptosis and excessive autophagy of ICC and may serve as potential biomarker for ICC loss in STC.
Collapse
Affiliation(s)
- Hao Zheng
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Yan-Ju Liu
- Department of Rehabilitation, Linyi People's Hospital, Linyi, 276003, Shandong Province, China
| | - Zi-Chao Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, China
| | - Gang-Qi Fan
- Department of Cerebropathy, Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, Jiangsu Province, China.
| |
Collapse
|
14
|
Zhang L, Cheng J, Shen J, Wang S, Guo C, Fan X. Ghrelin Inhibits Intestinal Epithelial Cell Apoptosis Through the Unfolded Protein Response Pathway in Ulcerative Colitis. Front Pharmacol 2021; 12:661853. [PMID: 33776781 PMCID: PMC7988211 DOI: 10.3389/fphar.2021.661853] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) that occurs in the lining of the rectum and colon. Apoptosis of the intestinal epithelial cells (IECs) is common in active UC patients. Ghrelin is reported to be downregulated in apoptosis of IECs induced by tumor necrosis factor-α (TNF-α). Therefore, we hypothesized that ghrelin might play an antiapoptotic role in UC progression, which was investigated using in vitro and in vivo studies. The TNF-α-treated Caco-2 cell model and mouse colitis model induced by dextran sulfate sodium (DSS) or 2,4,6-trinitrobenzenesulfonic acid (TNBS) were established and employed. We found that ghrelin could inhibit the apoptosis of Caco-2 cells induced by TNF-α, which could be disturbed by [D-lys3]-GHRP-6, the antagonist of ghrelin receptor GHS-R1a. Similarly, in the DSS- and TNBS-induced mouse colitis models, ghrelin could also protect intestinal tissues from apoptosis in DSS- and TNBS-induced colitis depending on GHS-R1a. Furthermore, ghrelin modulated the unfolded protein response (UPR) pathway and regulated the expressions of caspase-3, BAX, and Bcl-2, which contributed to the inhibition of cell apoptosis. In conclusion, ghrelin protects IECs from apoptosis during the pathogenesis of colitis by regulating the UPR pathway.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Gastroenterology, Jinshan Hospital, Fudan University, Shanghai, China
- Center of Emergency and Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jian Cheng
- Department of Gastroenterology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jie Shen
- Center of Emergency and Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China
| | - Sheng Wang
- Department of Gastroenterology, Jinshan Hospital, Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chuanyong Guo
- Department of Gastroenterology, Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Lei R, Li J, Liu F, Li W, Zhang S, Wang Y, Chu X, Xu J. HIF-1α promotes the keloid development through the activation of TGF-β/Smad and TLR4/MyD88/NF-κB pathways. Cell Cycle 2019; 18:3239-3250. [PMID: 31645185 DOI: 10.1080/15384101.2019.1670508] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A keloid is defined as an overgrowth of the dense fibrous tissues that form around a wound. Since they destroy the vascular network, keloid tissues often exhibit anoxic conditions. Hypoxia-inducible factor-1α (HIF-1α) is a core factor that mediates hypoxia stress responses and regulates the hypoxic cellular and biological behaviors. In this study, we found that the expression level of HIF-1α in keloid tissue was significantly higher than that in the normal skin tissue. Hypoxia-induced HIF-1α expression significantly inhibited cellular apoptosis and promoted cellular proliferation in keloid fibroblasts but not in normal fibroblasts. Specifically, HIF-1α activated the TGF-β/Smad and TLR4/MyD88/NF-κB pathways, and the interaction of these two pathways may promote the development of keloids. Moreover, in vivo experiments showed that the inhibition of HIF-1α significantly reduced the growth of keloids.
Collapse
Affiliation(s)
- Rui Lei
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Li
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feng Liu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weihan Li
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shizhen Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xi Chu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|