1
|
Xuan W, Song D, Hou J, Meng X. Regulation of Hippo-YAP1/TAZ pathway in metabolic dysfunction-associated steatotic liver disease. Front Pharmacol 2025; 16:1505117. [PMID: 39917623 PMCID: PMC11798981 DOI: 10.3389/fphar.2025.1505117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most prevalent chronic liver disease worldwide, but effective treatments are still lacking. Metabolic disorders such as iron overload, glycolysis, insulin resistance, lipid dysregulation, and glutaminolysis are found to induce liver senescence and ferroptosis, which are hot topics in the research of MASLD. Recent studies have shown that Hippo-YAP1/TAZ pathway is involved in the regulations of metabolism disorders, senescence, ferroptosis, inflammation, and fibrosis in MASLD, but their complex connections and contrast roles are also reported. In addition, therapeutics based on the Hippo-YAP1/TAZ pathway hold promising for MASLD treatment. In this review, we highlight the regulation and molecular mechanism of the Hippo-YAP1/TAZ pathway in MASLD and summarize potential therapeutic strategies for MASLD by regulating Hippo-YAP1/TAZ pathway.
Collapse
Affiliation(s)
- Wei Xuan
- Department of Hepatopancreaticobiliary Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Dandan Song
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Jianghua Hou
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiuping Meng
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
4
|
Perestrelo AR, Silva AC, Oliver-De La Cruz J, Martino F, Horváth V, Caluori G, Polanský O, Vinarský V, Azzato G, de Marco G, Žampachová V, Skládal P, Pagliari S, Rainer A, Pinto-do-Ó P, Caravella A, Koci K, Nascimento DS, Forte G. Multiscale Analysis of Extracellular Matrix Remodeling in the Failing Heart. Circ Res 2021; 128:24-38. [PMID: 33106094 DOI: 10.1161/circresaha.120.317685] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
RATIONALE Cardiac ECM (extracellular matrix) comprises a dynamic molecular network providing structural support to heart tissue function. Understanding the impact of ECM remodeling on cardiac cells during heart failure (HF) is essential to prevent adverse ventricular remodeling and restore organ functionality in affected patients. OBJECTIVES We aimed to (1) identify consistent modifications to cardiac ECM structure and mechanics that contribute to HF and (2) determine the underlying molecular mechanisms. METHODS AND RESULTS We first performed decellularization of human and murine ECM (decellularized ECM) and then analyzed the pathological changes occurring in decellularized ECM during HF by atomic force microscopy, 2-photon microscopy, high-resolution 3-dimensional image analysis, and computational fluid dynamics simulation. We then performed molecular and functional assays in patient-derived cardiac fibroblasts based on YAP (yes-associated protein)-transcriptional enhanced associate domain (TEAD) mechanosensing activity and collagen contraction assays. The analysis of HF decellularized ECM resulting from ischemic or dilated cardiomyopathy, as well as from mouse infarcted tissue, identified a common pattern of modifications in their 3-dimensional topography. As compared with healthy heart, HF ECM exhibited aligned, flat, and compact fiber bundles, with reduced elasticity and organizational complexity. At the molecular level, RNA sequencing of HF cardiac fibroblasts highlighted the overrepresentation of dysregulated genes involved in ECM organization, or being connected to TGFβ1 (transforming growth factor β1), interleukin-1, TNF-α, and BDNF signaling pathways. Functional tests performed on HF cardiac fibroblasts pointed at mechanosensor YAP as a key player in ECM remodeling in the diseased heart via transcriptional activation of focal adhesion assembly. Finally, in vitro experiments clarified pathological cardiac ECM prevents cell homing, thus providing further hints to identify a possible window of action for cell therapy in cardiac diseases. CONCLUSIONS Our multiparametric approach has highlighted repercussions of ECM remodeling on cell homing, cardiac fibroblast activation, and focal adhesion protein expression via hyperactivated YAP signaling during HF.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/physiopathology
- Case-Control Studies
- Cell Movement
- Cells, Cultured
- Disease Models, Animal
- Extracellular Matrix/genetics
- Extracellular Matrix/metabolism
- Extracellular Matrix/ultrastructure
- Fibroblasts/metabolism
- Fibroblasts/ultrastructure
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Failure/physiopathology
- Humans
- Mechanotransduction, Cellular
- Mice, Inbred C57BL
- Myocardial Infarction/genetics
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Myocardium/metabolism
- Myocardium/ultrastructure
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Ventricular Function, Left
- Ventricular Remodeling
- YAP-Signaling Proteins
- Mice
Collapse
Affiliation(s)
- Ana Rubina Perestrelo
- International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (A.R.P., J.O.-D.L.C., F.M., V.H., G.C., O.P., V.V., S.P., K.K., G.F.)
| | - Ana Catarina Silva
- Instituto de Investigação e Inovação em Saúde and Instituto Nacional de Engenharia Biomédica, Universidade do Porto (A.C.S., P.P.-d.Ó., D.S.N.)
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal (A.C.S., P.P.-d.Ó., D.S.N.)
- Gladstone Institute University of Cardiovascular Disease, San Francisco (A.C.S., J.O.-D.L.C.)
| | - Jorge Oliver-De La Cruz
- International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (A.R.P., J.O.-D.L.C., F.M., V.H., G.C., O.P., V.V., S.P., K.K., G.F.)
- Gladstone Institute University of Cardiovascular Disease, San Francisco (A.C.S., J.O.-D.L.C.)
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czech Republic (J.O.-D.L.C., F.M., V.V., G.F.)
| | - Fabiana Martino
- International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (A.R.P., J.O.-D.L.C., F.M., V.H., G.C., O.P., V.V., S.P., K.K., G.F.)
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czech Republic (J.O.-D.L.C., F.M., V.V., G.F.)
- Faculty of Medicine, Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic (F.M.)
| | - Vladimír Horváth
- International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (A.R.P., J.O.-D.L.C., F.M., V.H., G.C., O.P., V.V., S.P., K.K., G.F.)
- Centre for Cardiovascular and Transplant Surgery, Brno, Czech Republic (V.H.)
| | - Guido Caluori
- International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (A.R.P., J.O.-D.L.C., F.M., V.H., G.C., O.P., V.V., S.P., K.K., G.F.)
- Central European Institute for Technology, Masaryk University, Brno, Czech Republic (G.C., P.S.)
| | - Ondřej Polanský
- International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (A.R.P., J.O.-D.L.C., F.M., V.H., G.C., O.P., V.V., S.P., K.K., G.F.)
| | - Vladimír Vinarský
- International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (A.R.P., J.O.-D.L.C., F.M., V.H., G.C., O.P., V.V., S.P., K.K., G.F.)
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czech Republic (J.O.-D.L.C., F.M., V.V., G.F.)
| | - Giulia Azzato
- Department of Computer Engineering, Modelling, Electronics and Systems Engineering (G.A., A.C.), University of Calabria, Rende, Italy
| | - Giuseppe de Marco
- Information Technology Center (G.d.M.), University of Calabria, Rende, Italy
| | - Víta Žampachová
- First Institute of Pathological Anatomy, St. Anne's University Hospital Brno and Masaryk University, Brno, Czech Republic (V.Ž.)
| | - Petr Skládal
- Central European Institute for Technology, Masaryk University, Brno, Czech Republic (G.C., P.S.)
| | - Stefania Pagliari
- International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (A.R.P., J.O.-D.L.C., F.M., V.H., G.C., O.P., V.V., S.P., K.K., G.F.)
| | - Alberto Rainer
- Università Campus Bio-Medico di Roma, Rome, Italy (A.R.)
- Institute of Nanotechnologies (NANOTEC), National Research Council, Lecce, Italy (A.R.)
| | - Perpétua Pinto-do-Ó
- Instituto de Investigação e Inovação em Saúde and Instituto Nacional de Engenharia Biomédica, Universidade do Porto (A.C.S., P.P.-d.Ó., D.S.N.)
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal (A.C.S., P.P.-d.Ó., D.S.N.)
| | - Alessio Caravella
- Department of Computer Engineering, Modelling, Electronics and Systems Engineering (G.A., A.C.), University of Calabria, Rende, Italy
| | - Kamila Koci
- International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (A.R.P., J.O.-D.L.C., F.M., V.H., G.C., O.P., V.V., S.P., K.K., G.F.)
| | - Diana S Nascimento
- Instituto de Investigação e Inovação em Saúde and Instituto Nacional de Engenharia Biomédica, Universidade do Porto (A.C.S., P.P.-d.Ó., D.S.N.)
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal (A.C.S., P.P.-d.Ó., D.S.N.)
| | - Giancarlo Forte
- International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (A.R.P., J.O.-D.L.C., F.M., V.H., G.C., O.P., V.V., S.P., K.K., G.F.)
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czech Republic (J.O.-D.L.C., F.M., V.V., G.F.)
- Department of Biomaterials Science, Institute of Dentistry, University of Turku, Finland (G.F.)
| |
Collapse
|
5
|
Patel NJ, Nassal DM, Gratz D, Hund TJ. Emerging therapeutic targets for cardiac arrhythmias: role of STAT3 in regulating cardiac fibroblast function. Expert Opin Ther Targets 2020; 25:63-73. [PMID: 33170045 DOI: 10.1080/14728222.2021.1849145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction : Cardiac fibrosis contributes to the development of cardiovascular disease (CVD) and arrhythmia. Cardiac fibroblasts (CFs) are collagen-producing cells that regulate extracellular matrix (ECM) homeostasis. A complex signaling network has been defined linking environmental stress to changes in CF function and fibrosis. Signal Transducer and Activator of Transcription 3 (STAT3) has emerged as a critical integrator of pro-fibrotic signals in CFs downstream of several established signaling networks. Areas covered : This article provides an overview of STAT3 function in CFs and its involvement in coordinating a vast web of intracellular pro-fibrotic signaling molecules and transcription factors. We highlight recent work elucidating a critical role for the fibroblast cytoskeleton in maintaining spatial and temporal control of STAT3-related signaling . Finally, we discuss potential opportunities and obstacles for therapeutic targeting of STAT3 to modulate cardiac fibrosis and arrhythmias. Relevant publications on the topic were identified through Pubmed. Expert opinion : Therapeutic targeting of STAT3 for CVD and arrhythmias presents unique challenges and opportunities. Thus, it is critical to consider the multimodal and dynamic nature of STAT3 signaling. Going forward, it will be beneficial to consider ways to maintain balanced STAT3 function, rather than large-scale perturbations in STAT3 function.
Collapse
Affiliation(s)
- Nehal J Patel
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Drew M Nassal
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA.,Department of Internal Medicine, The Ohio State University Wexner Medical Center , Columbus, OH, USA
| |
Collapse
|
8
|
Chen X, Li Y, Luo J, Hou N. Molecular Mechanism of Hippo-YAP1/TAZ Pathway in Heart Development, Disease, and Regeneration. Front Physiol 2020; 11:389. [PMID: 32390875 PMCID: PMC7191303 DOI: 10.3389/fphys.2020.00389] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/01/2020] [Indexed: 01/20/2023] Open
Abstract
The Hippo-YAP1/TAZ pathway is a highly conserved central mechanism that controls organ size through the regulation of cell proliferation and other physical attributes of cells. The transcriptional factors Yes-associated protein 1 (YAP1) and PDZ-binding motif (TAZ) act as downstream effectors of the Hippo pathway, and their subcellular location and transcriptional activities are affected by multiple post-translational modifications (PTMs). Studies have conclusively demonstrated a pivotal role of the Hippo-YAP1/TAZ pathway in cardiac development, disease, and regeneration. Targeted therapeutics for the YAP1/TAZ could be an effective treatment option for cardiac regeneration and disease. This review article provides an overview of the Hippo-YAP1/TAZ pathway and the increasing impact of PTMs in fine-tuning YAP1/TAZ activation; in addition, we discuss the potential contributions of the Hippo-YAP1/TAZ pathway in cardiac development, disease, and regeneration.
Collapse
Affiliation(s)
- Xiaoqing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yilang Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiandong Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Jin B, Shi H, Zhu J, Wu B, Geshang Q. Up-regulating autophagy by targeting the mTOR-4EBP1 pathway: a possible mechanism for improving cardiac function in mice with experimental dilated cardiomyopathy. BMC Cardiovasc Disord 2020; 20:56. [PMID: 32019530 PMCID: PMC6998347 DOI: 10.1186/s12872-020-01365-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/29/2020] [Indexed: 01/22/2023] Open
Abstract
Background Autophagy plays a crucial role in the pathological process of cardiovascular diseases. However, little is known about the pathological mechanism underlying autophagy regulation in dilated cardiomyopathy (DCM). Methods We explored whether up-regulating autophagy could improve cardiac function in mice with experimental DCM through the mTOR-4EBP1 pathway. Animal model of DCM was established in BALB/c mice by immunization with porcine cardiac myosin. Both up- or down-regulation of autophagy were studied by administration of rapamycin or 3-MA in parallel. Morphology, Western blotting, and echocardiography were applied to confirm the pathological mechanisms. Results Autophagy was activated and autophagosomes were significantly increased in the rapamycin group. The collagen volume fraction (CVF) was decreased in the rapamycin group compared with the DCM group (9.21 ± 0.82% vs 14.38 ± 1.24%, P < 0.01). The expression of p-mTOR and p-4EBP1 were significantly decreased in rapamycin-induced autophagy activation, while the levels were increased by down-regulating autophagy with 3-MA. In the rapamycin group, the LVEF and FS were significantly increased compared with the DCM group (54.12 ± 6.48% vs 45.29 ± 6.68%, P < 0.01; 26.89 ± 4.04% vs 22.17 ± 2.82%, P < 0.05). As the inhibitor of autophagy, 3-MA aggravated the progress of maladaptive cardiac remodeling and declined cardiac function in DCM mice. Conclusions The study indicated a possible mechanism for improving cardiac function in mice with experimental DCM by up-regulating autophagy via the mTOR-4EBP1 pathway, which could be a promising therapeutic strategy for DCM.
Collapse
Affiliation(s)
- Bo Jin
- Department of Cardiology, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Haiming Shi
- Department of Cardiology, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Jun Zhu
- Department of Cardiology, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Bangwei Wu
- Department of Cardiology, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
| | - Quzhen Geshang
- Department of Medicine, Medical College of Tibet University, Lasa, Tibet, China
| |
Collapse
|