1
|
Smolarz B, Szaflik T, Romanowicz H, Bryś M, Forma E, Szyłło K. Analysis of VEGF, IGF1/2 and the Long Noncoding RNA (lncRNA) H19 Expression in Polish Women with Endometriosis. Int J Mol Sci 2024; 25:5271. [PMID: 38791310 PMCID: PMC11121376 DOI: 10.3390/ijms25105271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The coordinated action of VEGF, IGF1/2 and H19 factors influences the development of endometriosis. The aim of this study was to analyze the expression level of these genes in patients with endometriosis. The study group consisted of 100 patients who were diagnosed with endometriosis on laparoscopic and pathological examination. The control group consisted of 100 patients who were found to be free of endometriosis during the surgical procedure and whose eutopic endometrium wasnormal on histopathological examination. These patients were operated on for uterine fibroids. Gene expression was determined by RT-PCR. The expression of the VEGF gene was significantly higher in the samples classified as clinical stage 1-2 compared to the control material (p < 0.05). There was also a statistically significant difference between the samples studied at clinical stages 1-2 and 3-4 (p < 0.01). The expression of the VEGF gene in the group classified as 1-2 was significantly higher. IGF1 gene expression was significantly lower both in the group of samples classified as clinical stages 1-2 and 3-4 compared to the control group (p < 0.05 in both cases). The expression of the H19 gene was significantly lower in the group of samples classified as clinical stage 3-4 compared to the control group (p < 0.01). The reported studies suggest significant roles of VEGF, IGF and H19 expression in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland;
| | - Tomasz Szaflik
- Department of Gynecology, Oncological Gynecology and Endometriosis Treatment, Polish Mother’s Memorial Hospital Research Institute, 93-338 Rzgowska-Lodz, Poland; (T.S.); (K.S.)
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland;
| | - Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Lodz, Poland; (M.B.); (E.F.)
| | - Ewa Forma
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Lodz, Poland; (M.B.); (E.F.)
| | - Krzysztof Szyłło
- Department of Gynecology, Oncological Gynecology and Endometriosis Treatment, Polish Mother’s Memorial Hospital Research Institute, 93-338 Rzgowska-Lodz, Poland; (T.S.); (K.S.)
| |
Collapse
|
2
|
Luo L, Zhao L, Cui L, Peng C, Ou S, Zeng Y, Liu B. The roles of chromatin regulatory factors in endometriosis. J Assist Reprod Genet 2024; 41:863-873. [PMID: 38270747 PMCID: PMC11052748 DOI: 10.1007/s10815-024-03026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024] Open
Abstract
PURPOSE Endometriosis is an estrogen-dependent inflammatory disease and one of the most common gynecological diseases in women of reproductive age. The aim of the review was to explore the relationship between the chromatin regulatory factors and endometriosis. METHODS By searching for literature on chromatin regulators and endometriosis in PuMed. Finally, 98 documents were selected. RESULTS Chromatin regulators (CRs) are essential epigenetic regulatory factors that can regulate chromatin structure changes and are usually divided into three categories: DNA methylation compounds, histone modification compounds, and chromatin remodeling complexes. Noncoding RNAs are also chromatin regulators and can form heterochromatin by binding to protein complexes. Chromatin regulators cause abnormal gene expression by regulating chromatin structure, thereby affecting the occurrence and development of endometriosis. CONCLUSION This review summarizes the participation of chromatin regulators in the mechanisms of endometriosis, and these changes in related chromatin regulators provide a comprehensive reference for diagnosis and treatment of endometriosis.
Collapse
Affiliation(s)
- Liumei Luo
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ling Zhao
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lanyu Cui
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education; Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences,, Guangxi Medical University, Nanning, China
| | - Chuyu Peng
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanshan Ou
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Zeng
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Liu
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
3
|
Ghasemian M, Zehtabi M, Dari MAG, Pour FK, Tabesh GA, Moramezi F, Jafari RM, Barati M, Uddin S, Farzaneh M. The emerging roles of long non-coding RNA (lncRNA) H19 in gynecologic cancers. BMC Cancer 2024; 24:4. [PMID: 38166752 PMCID: PMC10763168 DOI: 10.1186/s12885-023-11743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Long non-coding RNA (lncRNA) H19 has gained significant recognition as a pivotal contributor to the initiation and advancement of gynecologic cancers, encompassing ovarian, endometrial, cervical, and breast cancers. H19 exhibits a complex array of mechanisms, demonstrating dualistic effects on tumorigenesis as it can function as both an oncogene and a tumor suppressor, contingent upon the specific context and type of cancer being investigated. In ovarian cancer, H19 promotes tumor growth, metastasis, and chemoresistance through modulation of key signaling pathways and interaction with microRNAs. Conversely, in endometrial cancer, H19 acts as a tumor suppressor by inhibiting proliferation, inducing apoptosis, and regulating epithelial-mesenchymal transition. Additionally, H19 has been implicated in cervical and breast cancers, where it influences cell proliferation, invasion, and immune evasion. Moreover, H19 has potential as a diagnostic and prognostic biomarker for gynecologic cancers, with its expression levels correlating with clinical parameters and patient outcomes. Understanding the functional roles of H19 in gynecologic cancers is crucial for the development of targeted therapeutic strategies and personalized treatment approaches. Further investigation into the intricate molecular mechanisms underlying H19's involvement in gynecologic malignancies is warranted to fully unravel its therapeutic potential and clinical implications. This review aims to elucidate the functional roles of H19 in various gynecologic malignancies.
Collapse
Affiliation(s)
- Majid Ghasemian
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Khojasteh Pour
- Department of Obstetrics and Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghasem Azizi Tabesh
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Moramezi
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Razieh Mohammad Jafari
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojgan Barati
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Uddin
- Translational Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 22602, India
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Peng Y, Guo R, Shi B, Li D. The role of long non-coding RNA H19 in infertility. Cell Death Discov 2023; 9:268. [PMID: 37507391 PMCID: PMC10382492 DOI: 10.1038/s41420-023-01567-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Infertility is defined as the failure to conceive after at least one year of unprotected intercourse. Long non-coding RNAs (lncRNAs) are transcripts that contain more than 200 nucleotides but do not convert into proteins. LncRNAs, particularly lncRNA H19, have been linked to the emergence and progression of various diseases. This review focuses on the role of H19 in infertility caused by polycystic ovary syndrome, endometriosis, uterine fibroids, diminished ovarian reserve, male factor, and assisted reproductive technology-related pathology, highlighting the potential of H19 as a molecular target for the future treatment of infertility.
Collapse
Affiliation(s)
- Yuanyuan Peng
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China
| | - Renhao Guo
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Bei Shi
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China.
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China.
| |
Collapse
|
5
|
Rossi M, Seidita I, Vannuccini S, Prisinzano M, Donati C, Petraglia F. Epigenetics, endometriosis and sex steroid receptors: An update on the epigenetic regulatory mechanisms of estrogen and progesterone receptors in patients with endometriosis. VITAMINS AND HORMONES 2023; 122:171-191. [PMID: 36863793 DOI: 10.1016/bs.vh.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Endometriosis is a benign gynecological disease affecting ∼10% of reproductive-aged women and is defined as the presence of endometrial glands and stroma outside the uterine cavity. Endometriosis can cause a variety of health problems, from pelvic discomfort to catamenial pneumothorax, but it's mainly linked with severe and chronic pelvic pain, dysmenorrhea, and deep dyspareunia, as well as reproductive issues. The pathogenesis of endometriosis involves an endocrine dysfunction, with estrogen dependency and progesterone resistance, and inflammatory mechanism activation, together with impaired cell proliferation and neuroangiogenesis. The present chapter aims to discuss the main epigenetic mechanisms related to estrogen receptors (ERs) and progesterone receptors (PRs) in patients with endometriosis. There are numerous epigenetic mechanisms participating in endometriosis, regulating the expression of the genes encoding these receptors both indirectly, through the regulation of transcription factors, and directly, through DNA methylation, histone modifications, micro RNAs and long noncoding RNAs. This represents an open field of investigation, which may lead to important clinical implications such as the development of epigenetic drugs for the treatment of endometriosis and the identification of specific and early biomarkers for the disease.
Collapse
Affiliation(s)
- Margherita Rossi
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Isabelle Seidita
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Silvia Vannuccini
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Matteo Prisinzano
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Chiara Donati
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Felice Petraglia
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
6
|
Silencing of circ_0007299 suppresses proliferation, migration, and invasiveness and promotes apoptosis of ectopic endometrial stromal cells in endometriosis via miR-424-5p-dependent modulation of CREB1. Arch Gynecol Obstet 2023; 307:149-161. [PMID: 35708784 DOI: 10.1007/s00404-022-06650-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/26/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND The abnormality of endometrial stromal cells (ESCs) can contribute to endometriosis pathogenesis. Circular RNAs (circRNAs) possess critical roles in endometriosis pathogenesis. Here, we defined the activity and mechanism of human circ_0007299 in the regulation of ectopic ESCs in vitro. METHODS Circ_0007299, miR-424-5p and cAMP response element-binding protein 1 (CREB1) were quantified by qRT-PCR or immunoblotting. Cell viability, proliferation, apoptosis, invasion and motility were gauged by CCK-8, 5-Ethynyl-2'-Deoxyuridine (EdU), flow cytometry, transwell, and wound-healing assays, respectively. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to verify the direct relationship between miR-424-5p and circ_0007299 or CREB1. RESULTS Our data showed that circ_0007299 was upregulated in human ectopic endometrium tissues and ectopic ESCs. Silencing endogenous circ_0007299 impeded the proliferation, invasiveness, and motility and enhanced apoptosis of ectopic ESCs. Mechanistically, circ_0007299 regulated miR-424-5p expression. Moreover, circ_0007299 silencing impeded the proliferation, invasiveness, and motility and enhanced apoptosis of ectopic ESCs via its regulation on miR-424-5p. CREB1 was identified as a direct miR-424-5p target, and miR-424-5p overexpression suppressed ectopic ESC proliferation, migration, and invasiveness and promoted apoptosis by downregulating CREB1. Furthermore, circ_0007299 positively modulated CREB1 expression through miR-424-5p competition. CONCLUSION Our findings establish that circ_0007299 silencing impedes the proliferation, invasiveness, and motility and promotes apoptosis of ectopic ESCs at least in part via miR-424-5p-dependent modulation of CREB1.
Collapse
|
7
|
Brichant G, Laraki I, Henry L, Munaut C, Nisolle M. New Therapeutics in Endometriosis: A Review of Hormonal, Non-Hormonal, and Non-Coding RNA Treatments. Int J Mol Sci 2021; 22:10498. [PMID: 34638843 PMCID: PMC8508913 DOI: 10.3390/ijms221910498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
Endometriosis is defined as endometrial-like tissue outside the uterine cavity. It is a chronic inflammatory estrogen-dependent disease causing pain and infertility in about 10% of women of reproductive age. Treatment nowadays consists of medical and surgical therapies. Medical treatments are based on painkillers and hormonal treatments. To date, none of the medical treatments have been able to cure the disease and symptoms recur as soon as the medication is stopped. The development of new biomedical targets, aiming at the cellular and molecular mechanisms responsible for endometriosis, is needed. This article summarizes the most recent medications under investigation in endometriosis treatment with an emphasis on non-coding RNAs that are emerging as key players in several human diseases, including cancer and endometriosis.
Collapse
Affiliation(s)
- Geraldine Brichant
- Obstetrics and Gynecology Department, ULiege, 4000 Liège, Belgium; (I.L.); (L.H.); (M.N.)
| | - Ines Laraki
- Obstetrics and Gynecology Department, ULiege, 4000 Liège, Belgium; (I.L.); (L.H.); (M.N.)
| | - Laurie Henry
- Obstetrics and Gynecology Department, ULiege, 4000 Liège, Belgium; (I.L.); (L.H.); (M.N.)
| | - Carine Munaut
- Laboratory of Tumor and Development Biology, Giga-Cancer, ULiege, 4000 Liège, Belgium;
| | - Michelle Nisolle
- Obstetrics and Gynecology Department, ULiege, 4000 Liège, Belgium; (I.L.); (L.H.); (M.N.)
| |
Collapse
|