1
|
Tang L, Liu Y, Yan J, Yuan L, Wang Z, Li Z. Transcription factor GTF2I regulates osteoclast differentiation through mediating miR-134-5p and MAT2A expressions. J Cell Commun Signal 2025; 19:e70010. [PMID: 40191097 PMCID: PMC11968177 DOI: 10.1002/ccs3.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
This study explored the possible effect of transcription factor GTF2I on the differentiation of osteoclasts and its regulation on the miR-134-5p/MAT2A axis. RANKL-induced osteoclasts were measured for expressions of GTF2I, miR-134-5p, and MAT2A. The number and size of osteoclasts were assessed after TRAP staining. The expressions of osteoclast differentiation biomarkers, NFATC1, TRAP, and CTSK, were detected as well. The relationships of the GTF2I/miR-134-5p/MAT2A axis were verified by ChIP, dual luciferase, and RNA pull-down assay. In vivo experiments were conducted on ovariectomized (OVX)-treated mice to determine the effect of GTF2I overexpression on osteoclast differentiation and bone loss. RANKL-induced osteoclasts had suppressed expressions of GTF2I and miR-134-5p and increased expression of MAT2A. GTF2I overexpression or miR-134-5p overexpression contributed to decreased cell number and size and suppressed cell differentiation, whereas such an effect can be abolished by overexpression of MAT2A. GTF2I can bind the miR-134-5p promoter to regulate its expression, whereas miR-134-5p can negatively regulate MAT2A expression. The protective effect of GTF2I overexpression against bone loss and cell differentiation was verified by in vivo experiments. Collectively, these results indicate that GTF2I can mediate miR-134-5p expression to increase MAT2A expression, contributing to the suppression of osteoclast differentiation.
Collapse
Affiliation(s)
- Lian Tang
- Department of OrthopedicsAffiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Yanshi Liu
- Department of OrthopedicsAffiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Jiyuan Yan
- Department of OrthopedicsAffiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Lin Yuan
- Department of Clinical Skills CenterAffiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | | | - Zhong Li
- Department of OrthopedicsAffiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
- Stem Cell Immunity and Regeneration Key Laboratory of LuzhouAffiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
2
|
Xu Y, Kang X, Jiang H, Liu H, Wang W. HDAC4 regulates the proliferation, migration, and invasion of trophoblasts in pre-eclampsia through the miR-134-5p/FOXM1 axis. Mol Reprod Dev 2023; 90:849-860. [PMID: 37769062 DOI: 10.1002/mrd.23706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
Epigenetics, including histone modifications and noncoding RNAs, affects abnormal placental function in pre-eclampsia (PE). This study was conducted to explore the role of histone deacetylase 4 (HDAC4) in trophoblast invasion and migration. The expression levels of HDAC4, microRNA (miR)-134-5p, and forkhead box protein M1 (FOXM1) in placentas from PE patients and healthy controls and their correlations were examined. HTR8/SVneo cells were cultured and underwent gene intervention. Then, trophoblast proliferation, invasion, and migration were evaluated by 5-ethynyl-2'deoxyuridine, Transwell, and scratch assays. The enrichments of HDAC4 and acetylated histone H3 at lysine 9 (H3K9Ac) on the miR-134-5p promoter were quantified by chromatin immunoprecipitation. The binding of miR-134-5p to FOXM1 was analyzed by dual-luciferase assay. HDAC4 and FOXM1 were downregulated while miR-134-5p was upregulated in PE placentas. HDAC4 downregulation impaired trophoblast proliferation, invasion, and migration while HDAC4 overexpression played the opposite role. Mechanically, HDAC4 deacetylated H3K9Ac to repress miR-134-5p expression by erasing H3K9Ac, reduced the binding of miR-134-5p to FOXM1, and then promoted FOXM1 transcription. miR-134-5p overexpression or FOXM1 downregulation abrogated the promotive role of HDAC overexpression in trophoblast invasion and migration. Our study unraveled a novel mechanism of trophoblast proliferation, invasion, and migration and proposed that HDAC4 may be a promising target for the treatment of PE.
Collapse
Affiliation(s)
- Yanli Xu
- Department of Obstetrics and Gynecology, Beijing Ditan Hospital Affiliated Capital Medical University, Beijing, China
| | - Xiaodi Kang
- Department of Obstetrics and Gynecology, Beijing Ditan Hospital Affiliated Capital Medical University, Beijing, China
| | - Hongli Jiang
- Department of Obstetrics and Gynecology, Beijing Ditan Hospital Affiliated Capital Medical University, Beijing, China
| | - Huafang Liu
- Department of Obstetrics and Gynecology, Beijing Ditan Hospital Affiliated Capital Medical University, Beijing, China
| | - Wenjing Wang
- Department of Obstetrics and Gynecology, Beijing Ditan Hospital Affiliated Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Wang M, Zhang L, Huang X, Sun Q. Ligustrazine promotes hypoxia/reoxygenation-treated trophoblast cell proliferation and migration by regulating the microRNA-27a-3p/ATF3 axis. Arch Biochem Biophys 2023; 737:109522. [PMID: 36657605 DOI: 10.1016/j.abb.2023.109522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Preeclampsia (PE) is a pregnancy-specific syndrome. Ligustrazine (LSZ) is involved in hypoxia/reoxygenation (H/R)-treated trophoblast cell regulation, but its mechanism remains elusive. This study explored the mechanism of LSZ in H/R-treated trophoblast cells to provide a theoretical basis for the new treatment method development for PE. METHODS H/R HTR8/SVneo cell model was established for PE simulation to some extent. Trophoblast cell proliferation, apoptosis rate, migration, and invasion were detected by MTT assay, flow cytometry, scratch test, and Transwell assay. miR-27a-3p expression in trophoblast cells was detected by RT-qPCR. Binding sites between miR-27a-3p and ATF3 were predicted using Starbase and verified by dual-luciferase reporter assay. Activating transcription factor 3 (ATF3), β-catenin, Cyclin D1, and c-Myc protein levels were examined using Western blot. After LSZ treatment, H/R-induced HTR8/SVneo cells were delivered with miR-27a-3p mimic or ATF3 siRNA to verify their roles in HTR8/SVneo cells. RESULTS LSZ facilitated the proliferation, migration, and invasion of trophoblast cells and inhibited apoptosis. miR-27a-3p was elevated in H/R-induced HTR8/SVneo cells and miR-27a-3p overexpression annulled the effect of LSZ on trophoblast cells. miR-27a-3p targeted ATF3. ATF3 silencing averted the property of LSZ on trophoblast cells. Wnt/β-catenin pathway-related proteins were repressed in H/R-induced HTR8/SVneo cells, and LSZ activated the Wnt/β-catenin pathway by promoting ATF3 expression. CONCLUSION LSZ mediated the Wnt pathway by regulating the miR-27a-3p/ATF3 axis, thus promoting the proliferation and migration of trophoblast cells. The protective mechanism of LSZ showed the potential application value in the treatment of PE.
Collapse
Affiliation(s)
- Min Wang
- Department of Gynaecology and Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, 250001, Shandong Province, China
| | - Li Zhang
- Department of Gynaecology and Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, 250001, Shandong Province, China
| | - Xiuyan Huang
- Department of Gynaecology and Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, 250001, Shandong Province, China
| | - Qian Sun
- Department of Gynaecology and Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, 250001, Shandong Province, China.
| |
Collapse
|
4
|
Ge Q, Zhao J, Qu F. Expression of serum long noncoding RNA FAM99A in patients with hypertensive disorder complicating and its clinical significance. Blood Press Monit 2022; 27:233-238. [PMID: 35258024 DOI: 10.1097/mbp.0000000000000591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Hypertensive disorder complicating pregnancy (HDCP) consists of various heterogeneous conditions. Long noncoding RNAs (LncRNA) FAM99A is implicated in HDCP diagnosis. This study discussed the diagnostic efficiency of lncRNA FAM99A in HDCP. METHODS Totally 130 singleton HDCP patients including 50 patients of gestation hypertension (GH), 44 of mild preeclampsia (mPE), and 36 of severe preeclampsia (sPEz) were enrolled, with 70 healthy pregnant women as the control. Serum lncRNA FAM99A expression was detected and its diagnostic efficiency in HDCP was analyzed using the receiver operating characteristic curve. The influencing factors of PE grade were analyzed using the logistic regression model. RESULTS Serum lncRNA FAM99A was downregulated in HDCP patients. The SBP/DBP, 24-h urinary protein, and serum creatinine (SCr), AST and ALT contents were elevated, and platelet count (PLT) was diminished in HDCP patients. Relative to the high-expression group, SBP/DBP, 24-h urinary protein, SCr, AST, and ALT contents were raised, and PLT was lowered in the low-expression group. The area under curve of lncRNA FAM99A for HDCP diagnosis was 0.9514, and the cutoff value was 0.8450, with 83.85% sensitivity and 94.29% specificity. LncRNA FAM99A expression was downregulated in the GH group, then mPE group, and sPEz group the least. L ncRNA FAM99A had diagnostic efficiency for GH and mPE, and mPE and sPEz. DBP, urinary protein, PLT, and lncRNA FAM99A were independent risk factors for PE severity. CONCLUSION LncRNA FAM99A was diminished in HDCP patients and was related to HDCP severity, which might be used as a potential diagnostic marker of HDCP.
Collapse
Affiliation(s)
- Qiuyan Ge
- Department of Obstetrics, Nantong Tongzhou People's Hospital, Nantong, China
| | | | | |
Collapse
|
5
|
miR-134-5p inhibits osteoclastogenesis through a novel miR-134-5p/Itgb1/MAPK pathway. J Biol Chem 2022; 298:102116. [PMID: 35691339 PMCID: PMC9257423 DOI: 10.1016/j.jbc.2022.102116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoporosis affects approximately 200 million people and severely affects quality of life, but the exact pathological mechanisms behind this disease remain unclear. Various miRNAs have been shown to play a predominant role in the regulation of osteoclast formation. In this study, we explored the role of miR-134-5p in osteoclastogenesis both in vivo and in vitro. We constructed an ovariectomized (OVX) mouse model and performed microarray analysis using bone tissue from OVX mice and their control counterparts. Quantitative RT-PCR data from bone tissue and bone marrow macrophages (BMMs) confirmed the decreased expression of miR-134-5p in OVX mice observed in microarray analysis. In addition, a decrease in miR-134-5p was also observed during induced osteoclastogenesis of BMMs collected from C57BL/6N mice. Through transfection with miR-134-5p agomirs and antagomirs, we found that miR-134-5p knockdown significantly accelerated osteoclast formation and cell proliferation and inhibited apoptosis. Furthermore, a luciferase reporter assay showed that miR-134-5p directly targets the integrin surface receptor gene Itgb1. Cotransfection with Itgb1 siRNA reversed the effect of the miR-134-5p antagomir in promoting osteoclastogenesis. Moreover, the abundance levels of MAPK pathway proteins phosphorylated-p38 (p-p38) and phosphorylated-ERK (p-ERK) were significantly increased after transfection with the miR-134-5p antagomir but decreased after transfection with the miR-134-5p agomir or Itgb1 siRNA, which indicated a potential relationship between the miR-134-5p/Itgb1 axis and the MAPK pathway. Collectively, these results revealed that miR-134-5p inhibits osteoclast differentiation of BMMs both in vivo and in vitro and that the miR-134-5p/Itgb1/MAPK pathway might be a potential target for osteoporosis therapy.
Collapse
|
6
|
Yang HY, Jiang L. The involvement of long noncoding RNA APOA1-AS in the pathogenesis of preeclampsia. Hum Exp Toxicol 2022; 41:9603271211066586. [PMID: 35130745 DOI: 10.1177/09603271211066586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) are involved in preeclampsia (PE), and apolipoprotein A-1 antisense RNA (APOA1-AS) and has been found to be associated with a number of diseases. Our study aims to understand the involvement of APOA1-AS in PE. METHODS Clinically, APOA1-AS expression in early-onset severe PE (EOSPE) patients and healthy controls was detected by real-time quantitative polymerase chain reaction. In vitro experiments were divided into control [coculturing trophoblasts with human uterine microvascular endothelial cells (UtMVECs)], TNF-α [coculturing trophoblasts with UtMVECs treated with tumor necrosis factor-α (TNF-α)], and TNF-α + control siRNA/APOA1-AS siRNA groups (UtMVECs transfected with control siRNA/APOA1-AS siRNA were cocultured with trophoblasts in the presence of TNF-α). The animals were divided into normal group, PE group (PE model was established by administrating nitro-L-arginine methyl ester (L-NAME) in rats), PE + control siRNA group (PE rats were treated with control siRNA), and PE + APOA1-AS siRNA group (PE rats were treated with APOA1-AS siRNA). RESULTS Increased APOA1-AS was found in the placental tissues of EOSPE patients. APOA1-AS siRNA abolished the decreased integration of trophoblasts into UtMVEC networks induced by TNF-α. Furthermore, APOA1-AS siRNA improved pregnancy outcomes in PE rats with increased expression of vascular endothelial growth factor, placental growth factor, and fms-like tyrosine kinase receptor (Flt-1) but decreased expression of E-cadherin, intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). CONCLUSION Downregulation of APOA1-AS protected against TNF-α-induced inhibition of trophoblast integration into endothelial networks, thus exerting protective effects against PE rats.
Collapse
Affiliation(s)
- Hai-Yan Yang
- Department of Obstetrics, 519688Yantaishan Hospital, Yantai, China
| | - Ling Jiang
- Department of Obstetrics, 519688Yantaishan Hospital, Yantai, China
| |
Collapse
|
7
|
Ke W, Chen Y, Zheng L, Zhang Y, Wu Y, Li L. miR-134-5p promotes inflammation and apoptosis of trophoblast cells via regulating FOXP2 transcription in gestational diabetes mellitus. Bioengineered 2022; 13:319-330. [PMID: 34969354 PMCID: PMC8805916 DOI: 10.1080/21655979.2021.2001219] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a prevalent and risky pregnant complication which warrants targeted therapy for restriction the inflammation and apoptosis of trophoblast cells. This study sought to analyze the aberrant expression and regulatory mechanism of microRNA (miR)-134-5p in GDM. The miR-134-5p expression in the serum of GDM patients and normal participants was detected via qRT-PCR, followed by receiver operating characteristic (ROC) curve analysis. In vitro GDM cell model was established in the HTR-8/SVneo cells using 25 mmol/L glucose, followed by transfection with miR-134-5p inhibitor and si-Forkhead box p2(FOXP2). The miR-134-5p and FOXP2 expressions, TNF-α, IL-1β, and IL-10 levels, cell proliferation, migration, and apoptosis were determined by a combination of qRT-PCR, western blot, ELISA, and cell counting Kit-8, Transwell assay, and flow cytometry. The binding relationship between miR-134-5p and FOXP2 was predicted and verified. Our results revealed that miR-134-5p was increased in the serum of GDM patients and could serve as a critical diagnostic marker for GDM. Moreover, miR-134-5p was upregulated in the high glucose (HG)-induced HTR-8/SVneo cells. The miR-134-5p inhibition suppressed the inflammation and apoptosis of HG-induced HTR-8/SVneo cells. miR-134-5p inhibited FOXP2 expression. FOXP2 expression was decreased in GDM. FOXP2 inhibition attenuated the function of miR-134-5p in HG-induced HTR-8/SVneo cells. Overall, miR-134-5p inhibited the FOXP2 expression to facilitate the inflammation and apoptosis of trophoblast cells, thereby exacerbating GDM.
Collapse
Affiliation(s)
- Weiqi Ke
- Department of Anesthesiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yixiang Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Lijing Zheng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yuting Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yudan Wu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Li Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, Guangdong Province, China
| |
Collapse
|